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HARMONIC MAPS AND PARA-SASAKIAN GEOMETRY

S. K. Srivastava and K. Srivastava

Abstract. The purpose of this paper is to study the harmonicity of maps to or from
para-Sasakian manifolds. We derive a condition for the tension field of paraholomorphic
map between almost para-Hermitian manifold and para-Sasakian manifold. Necessary and
sufficient conditions for a paraholomorphic map between para-Sasakian manifolds to be para-
pluriharmonic are shown and a non-trivial example is presented for their illustration.

1. Introduction

The study of harmonic maps was initiated by F. B. Fuller, J. Nash and J. H. Sampson
[8, 26], while the first general result on the existence of harmonic maps is due to
J. Eells and J. H. Sampson [9]. Harmonic maps are extrema (critical points) of the
energy functional defined on the space of smooth maps between Riemannian (pseudo-
Riemannian) manifolds. The trace of the second fundamental form of such maps
vanishes.

More precisely, let (Mi, gi), i ∈ {1, 2}, be pseudo-Riemannian manifolds and
Γ(TMi) denote the sections of the tangent bundle TMi of Mi, that is, the space
of vector fields on Mi. Then energy E(f) of a smooth map f : (M1, g1) → (M2, g2)
is defined by the formula

E(f) =

∫
M1

e(f)Vg1 ,

where Vg1 is the volume measure associated to the metric g1 and the energy density
e(f) of f is the smooth function e(f) : M1 → [0,∞) given by

e(f)p =
1

2
‖f∗‖2 =

1

2
Trg1(f∗g2)(p),

for each p ∈ M1. In the above equation f∗ is a linear map f∗ : Γ(TM1)→ Γf (TM2)
therefore it can be considered as a section of the bundle TM1 ⊗ f−1(TM2) → M1,
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where f−1(TM2) is the pullback bundle having fibres (f−1(TM2))p = Tf(p)M2,

p ∈ M1 and f∗g2 is the pullback metric on M1. If we denote by ∇ and ∇ the
Levi-Civita connections on M1 and M2 respectively, then the second fundamental
form of f is the symmetric map αf : Γ(TM1)× Γ(TM2)→ Γf (TM2) defined by

αf (X,Y ) = ∇̃Xf∗Y − f∗∇XY, (2)

for any X, Y ∈ Γ(TM1), where ∇̃ is the pullback of the Levi-Civita connection ∇ on

M2 to the pullback bundle f−1(TM2)→M1, which is given by ∇̃Xf∗Y = ∇f∗Xf∗Y .
The section τ(f) ∈ Γ(f−1(TM2)), defined by

τ(f) = Trg1αf (3)

is called the tension field of f and a map is said to be harmonic if its tension field
vanishes identically (see [5, 10]).

Let {fs,t}s,t∈(−ε, ε) be a smooth two-parameter variation of f such that f0,0 = f
and let V, W ∈ Γ(f−1(TM2)) be the corresponding variational vector fields. Then

V =
∂

∂s

(
fs,t

)∣∣∣∣
(s,t)=(0,0)

, W =
∂

∂t

(
fs,t

)∣∣∣∣
(s,t)=(0,0)

.

The Hessian of a harmonic map f is defined by

Hf (V,W ) =
∂2

∂s∂t

(
E(fs,t)

)∣∣∣∣
(s,t)=(0,0)

.

The index of a harmonic map f : (M1, g1)→ (M2, g2) is defined as the dimension
of the tangent subspace of Γ(f−1(TM2)) on which the Hessian Hf is negative definite.
A harmonic map f is said to be stable if Morse index (i.e., the dimension of largest
subspace of Γ(f−1(TM2)) on which the Hessian Hf is negative definite) of f is zero
and otherwise, it is said to be unstable (see [11, 15]). For a non-degenerate point
p ∈ M1, we decompose the space TpM1 into its vertical space νp = ker f∗p and its
horizontal space Hp = (ker f∗p)

⊥, that is, Hp = ν⊥p , so that TpM1 = νp ⊕ Hp. The
map is said to be horizontally conformal if for each p ∈ M1 either the rank of f∗p is
zero (that is, p is a critical point), or the restriction of f∗p to the horizontal space Hp
is surjective and conformal (here p is a regular point) [6, 10].

The premise of harmonic maps has acknowledged several important contributions
and has been successfully applied in computational fluid dynamics (CFD), minimal
surface theory, string theory, gravity and quantum field theory (see [4, 18, 20, 23]).
Most of works on harmonic maps are between contact Riemannian manifolds [3]. The
harmonic maps between pseudo-Riemannian manifolds behave differently and their
study must be subject to some restricted classes of pseudo-Riemannian manifolds.
For any pseudo-Riemannian manifold there is a natural existence of a subspace whose
metric is degenerate (that is a lightlike subspace) where one fails to apply the theory of
harmonic maps of non-degenerate manifolds (see [7]). A systematic study of harmonic
maps between almost para-Hermitian manifolds was first undertaken by C. L. Bejan
and M. Benyounes in [1]. However, up to our knowledge, a precise study of harmonic
maps to or from para-Sasakian manifolds has not been initiated yet, whereas para-
Sasakian geometry is a topic with many analogies with the Sasakian geometry and
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also with the differences. In the present paper we show that any paraholomorphic map
between para-Sasakian manifolds satisfying a certain condition is parapluriharmonic.
This result corresponds to a well known one given in the Sasakian case.

This paper is organized as follows. In Section 2, the basic definitions about al-
most para-Hermitian manifolds, almost paracontact manifolds and normal almost
paracontact manifolds are given. In Section 3, we define and study paraholomorphic
maps. We prove that the tension field of any (J, φ)-paraholomorphic map between
almost para-Hermitian manifold and para-Sasakian manifold lies in Γ(D1). Section
4 deals with parapluriharmonic maps in which we obtain a necessary and sufficient
condition for a (φ1, φ2)-paraholomorphic map between para-Sasakian manifolds to be
φ1-parapluriharmonic and give an example for their illustrations.

2. Preliminaries

2.1 Almost para-complex manifolds

A tensor field J of type (1, 1) defined on a smooth manifold N is said to be an almost
product structure if it satisfies the relation

J2 = Id. (4)

In this case the pair (N, J) is called an almost product manifold. An almost para-
complex manifold is an almost product manifold (N, J) such that the eigenbundles
T±N associated with the eigenvalues ±1 of tensor field J have the same rank. An
almost para-complex structure on a smooth manifold N of dimension 2m may alterna-
tively be defined as a G-structure on N with structural group GL(m,R)×GL(m,R)
[13]. An almost para-Hermitian manifoldN(J, h) (introduced by P. Libermann in [19])
is a smooth manifold of dimension 2m endowed with an almost para-complex structure
J and a pseudo-Riemannian metric h compatible in the sense that

h(JX, Y ) = −h(X,JY ), ∀ X, Y ∈ Γ
(
TN

)
.

It follows that the metric h has signature (m,m) and the eigenbundles T±N are
totally isotropic with respect to h. Let {e′1, · · · , e′m, e′m+1 = Je′1, · · · , e′2m = Je′m} be
an orthonormal basis and denote ε′i = g(e′i, e

′
i) = ±1: ε′i = 1 for i = 1, · · · ,m and

ε′i = −1 for i = m + 1, · · · , 2m. The fundamental 2-form of almost para-Hermitian
manifold is defined by Φ(X,Y ) = h(JX, Y ) and the co-differential δΦ of Φ is given

as follows (δΦ)(X) =
∑2m
i=1 ε

′
i

(
∇e′iΦ

)
(e′i, X). An almost para-Hermitian manifold is

called para-Kähler (defined by Rashevskij in [22]) if ∇J = 0.

2.2 Almost paracontact metric manifolds

A smooth manifold M2n+1 of dimension (2n + 1) is said to have a triplet (φ, ξ, η)-
structure if it admits an endomorphism φ, a unique vector field ξ and a 1-form η
satisfying

φ2 = Id− η ⊗ ξ and η (ξ) = 1, (5)
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where Id is the identity transformation, and the endomorphism φ induces an almost
paracomplex structure on each fibre of ker η, the contact subbundle, i.e., eigen dis-
tributions (ker η)

±1
corresponding to the characteristic values ±1 of φ have the same

dimension n.
From the equation (5), it can be easily deduced that

φξ = 0, η ◦ φ = 0 and rank(φ) = 2n. (6)

This triplet structure (φ, ξ, η) is called an almost paracontact structure and the man-
ifold M2n+1 equipped with the (φ, ξ, η)-structure is called an almost paracontact
manifold (see also [16,21,24,25]). If an almost paracontact manifold admits a pseudo-
Riemannian metric g satisfying

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ), (7)

where signature of g is necessarily (n+ 1, n) for any vector fields X and Y ; then the
quadruple (φ, ξ, η, g) is called an almost paracontact metric structure and the manifold
M2n+1 equipped with paracontact metric structure is called an almost paracontact
metric manifold. With respect to g, η is metrically dual to ξ, that is g(X, ξ) = η(X).
Also, equation (7) implies that

g(φX, Y ) = −g(X,φY ). (8)

Further, in addition to the above properties, if the structure-(φ, ξ, η, g) satisfies

dη(X,Y ) = g(X,φY ),

for all vector fields X, Y on M2n+1, then the manifold is called a paracontact metric
manifold and the corresponding structure-(φ, ξ, η, g) is called a paracontact structure
with the associated metric g [28]. For an almost paracontact metric manifold, there
always exists a special kind of local pseudo-orthonormal basis {Xi, Xi∗ , ξ}, where
Xi∗ = φXi; ξ and Xi’s are space-like vector fields and Xi∗ ’s are time-like. Such a basis
is called a φ-basis. Hence, an almost paracontact metric manifold M2n+1(φ, ξ, η, g) is
an odd dimensional manifold with a structure group U(n,R) × Id, where U(n,R) is
the para-unitary group isomorphic to GL(n,R).

An almost paracontact metric structure-(φ, ξ, η, g) is para-Sasakian if and only if

(∇Xφ)Y = −g(X,Y )ξ + η(Y )X. (9)

From equations (6), (8) and (9), it can be easily deduced for a para-Sasakian manifold
that

∇Xξ = −φX, ∇ξξ = 0. (10)

In particular, a para-Sasakian manifold is K-paracontact [28].

2.3 Normal almost paracontact metric manifolds

On an almost paracontact metric manifold, one defines the (1, 2)-tensor field Nφ by

Nφ := [φ, φ]− 2 dη ⊗ ξ,
where [φ, φ] is the Nijenhuis torsion of φ. If Nφ vanishes identically, then we say
that the manifold M2n+1 is a normal almost paracontact metric manifold [17, 28].
The normality condition implies that the almost paracomplex structure J defined on
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M2n+1 × R by

J

(
X,λ

d

dt

)
=

(
φX + λξ, η(X)

d

dt

)
is integrable. Here X is tangent to M2n+1, t is the coordinate on R and λ is a smooth
function on M2n+1 ×R. Now we recall the following proposition which characterizes
the normality of almost paracontact metric 3-manifolds.

Proposition 2.1. [27] For an almost paracontact metric 3-manifold M3, the follow-
ing three conditions are mutually equivalent

(i) M3 is normal,

(ii) there exist smooth functions p, q on M3 such that

(∇Xφ)Y = q(g(X,Y )ξ − η(Y )X) + p(g(φX, Y )ξ − η(Y )φX), (11)

(iii) there exist smooth functions p, q on M3 such that

∇Xξ = p(X − η(X)ξ) + qφX, (12)

where ∇ is the Levi-Civita connection of the pseudo-Riemannian metric g.

The functions p, q appearing in equations (11) and (12) are given by

2p = trace {X → ∇Xξ} , 2q = trace {X → φ∇Xξ} .
A normal almost paracontact metric 3-manifold is called paracosymplectic if p = q = 0
and para-Sasakian if p = 0, q = −1 [24].

3. Paraholomorphic map

One can look at structure preserving mapping between almost para-Hermitian and
almost paracontact manifolds as analogous to the well-known holomorphic mappings
in complex geometry [2, 12].

Definition 3.1. Let M2ni+1
i (φi, ξi, ηi, gi), i ∈ {1, 2} be almost paracontact metric

manifolds and N2m(J, h) be an almost para-Hermitian manifold. Then a smooth map

1. f : M2n1+1
1 → N2m is (φ1, J)-paraholomorphic map if f∗ ◦ φ1 = J ◦ f∗. For

such a map f∗ξ1 = 0.

2. f : N2m → M2n1+1
1 is (J, φ1)-paraholomorphic map if f∗ ◦ J = φ1 ◦ f∗. Here

Im f∗ ⊥ ξ1.

3. f : M2n1+1
1 →M2n2+1

2 is (φ1, φ2)-paraholomorphic map if f∗ ◦ φ1 = φ2 ◦ f∗. In
particular, f∗(ξ

⊥
1 ) ⊂ ξ⊥2 and f∗(ξ1) ∼ ξ2.

When f∗ interwines the structures up to a minus sign, we call the corresponding map-
pings respectively (φ1, J)-anti paraholomorphic, (J, φ1)-anti paraholomorphic and
(φ1, φ2)-anti paraholomorphic.
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Now, we prove the following result.

Proposition 3.2. Let f be a smooth (φ1, φ2)-paraholomorphic map between para-
Sasakian manifolds M2ni+1

i (φi, ξi, ηi, gi), i ∈ {1, 2}. Then

φ2(τ(f)) = f∗(divφ1)− Trg1β, (13)

where β(X,Y ) =
(
∇̃Xφ2

)
(f∗Y ), ∀ X, Y ∈ Γ

(
TM2n1+1

1

)
.

Proof. Since f∗ has values in f−1
(
TM2n2+1

2

)
it follows that f∗ ◦ φ1 and φ2 ◦ f∗ have

values in f−1
(
TM2n2+1

2

)
. Thus, we have(

∇̃(f∗ ◦ φ1)
)
(X,Y ) = ∇̃Xf∗(φ1Y )− (f∗ ◦ φ1)(∇XY )

=
(
∇̃Xf∗

)
(φ1Y ) + f∗(∇Xφ1Y )− (f∗ ◦ φ1)(∇XY )

= αf (X,φ1Y ) + f∗((∇φ1)(X,Y )). (14)

In the last equality, we have used (2). On the other hand, we obtain(
∇̃(φ2 ◦ f∗)

)
(X,Y ) = ∇̃Xφ2(f∗Y )− (φ2 ◦ f∗)(∇XY )

=
(
∇̃Xφ2

)
(f∗Y ) + φ2

(
∇̃Xf∗Y

)
− φ2(f∗(∇XY ))

=
(
∇̃Xφ2

)
(f∗Y ) + φ2(αf (X,Y )). (15)

From equations (14) and (15), we have

φ2(αf (X,Y )) +
(
∇̃Xφ2

)
(f∗Y ) = f∗((∇φ1)(X,Y )) + αf (X,φ1Y ). (16)

Let {e1, e2, · · · , en1
, φ1e1, φ1e2, · · · , φ1en1

, ξ1} be a local orthonormal frame for
TM2n1+1

1 . Taking the trace in (16) and using the fact that αf is symmetric, we
have (13). �

Following the proof of the above proposition, we can give the following remarks.

Remark 3.3. Let M2n1+1
1 (φ1, ξ1, η1, g1) and N2m(J, h) be a para-Sasakian and a

para-Hermitian manifolds respectively.

(a) If f : M2n1+1
1 → N2m is (φ1, J)-paraholomorphic map then we have

J(τ(f)) = f∗divφ1 − Trg1β′, (17)

where β′(X,Y ) =
(
∇̃XJ

)
(f∗Y ), ∀ X, Y ∈ Γ

(
TM2n1+1

1

)
.

(b) If f : N2m →M2n1+1
1 is (J, φ1)-paraholomorphic map then we have

φ1(τ(f)) = f∗divJ − Trhβ′′,

where β′′(X,Y ) =
(
∇̃Xφ1

)
(f∗Y ), ∀ X, Y ∈ Γ

(
TN2m

)
.

Theorem 3.4. Let f be a (φ1, J)-paraholomorphic map between para-Sasakian mani-
fold M2n1+1

1 (φ1, ξ1, η1, g1) and para-Kähler manifold N2m(J, h). Then f is harmonic.

Proof. Let {e1, · · · , en1 , φ1e1, · · · , φ1en1 , ξ1} be a local orthonormal adapted basis on
TM2n1+1

1 , then from equations (6) and (9), we have divφ1 = 0 (since for a (φ1, J)-
paraholomorphic map f∗ξ1 = 0). It follows by the use of equation (17) that J(τ(f)) =
0 as N2m is a para-Kähler manifold. Therefore, τ(f) = 0 and f is harmonic. �



S. K. Srivastava, K. Srivastava 159

For i ∈ {1, 2}, letDi be real distributions, respectively, on para-Sasakian manifolds
M2ni+1
i of rank 2ni. Then they admit globally defined 1-forms ηi such that Di ⊆

ker ηi. Clearly, TM2ni+1
i = Di ⊕ {ξi}, where {ξi} is the real distribution of rank one

defined by ξi [12].
Now, we prove:

Theorem 3.5. For any (J, φ1)-paraholomorphic map f between almost para-
Hermitian manifold N2m(J, h) and para-Sasakian manifold M2n1+1

1 (φ1, ξ1, η1, g1), the
tension field τ(f) ∈ Γ(D1).

Before going to proof of this theorem, we first prove the following proposition.

Proposition 3.6. For an almost para-Hermitian manifold N2m(J, h), we have
m∑
i=1

{
∇Je′iJe

′
i −∇e′ie

′
i

}
= J

{
divJ −

m∑
i=1

[
e′i, Je

′
i

]}
(18)

where {e′1, e′2, · · · , e′m, Je′1, Je′2, · · · , Je′m} is a local orthonormal frame on TN2m.

Proof. It is straightforward to calculate

divJ =

m∑
i=1

{
[e′i, Je

′
i]− J(∇e′ie

′
i) + J(∇Je′iJe

′
i)
}

(19)

and the result follows from (4) and (19). �

Proof. (of Theorem 3.5) Since f∗(X) ∈ Γ(D1), ∀X ∈ Γ
(
TN2m

)
therefore for any

local orthonormal frame {e′1, e′2, · · · , e′m, Je′1, Je′2, · · · , Je′m} on TN2m, we obtain by
using equations (2), (3), (8) and (10) that

g1(τ(f), ξ1) =

m∑
i=1

{
g1(f∗(∇Je′iJe

′
i), ξ1)− g1(f∗(∇e′ie

′
i), ξ1)

}
.

Employing equation (18), the above equation reduces to

g1(τ(f), ξ1) = g1

(
φ1f∗

(
divJ −

m∑
i=1

J [e′i, Je
′
i]

)
, ξ1

)
. (20)

Reusing equation (8) in (20), we get g1(τ(f), ξ1) = 0, which shows that τ(f) ∈
Γ(D1). �

By the consequence of the above theorem we can state the following result as a
corollary of Theorem 3.5.

Corollary 3.7. Let N2m(J, h) and M2n1+1
1 (φ1, ξ1, η1, g1) be para-Kähler and para-

Sasakian manifolds respectively. Then for any (J, φ1)-paraholomorphic map f : N2m →
M2n1+1

1 , the tension field τ(f) ∈ Γ(D1).

4. Parapluriharmonic map

In this section we define the notion of φ1-parapluriharmonic map which is similar
to the notion of φ-pluriharmonic map between almost contact metric manifold and
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Riemannian manifold, for φ-pluriharmonic map (see [2, 14]).

Definition 4.1. A smooth map f between almost paracontact metric manifold
M2n1+1

1 (φ1, ξ1, η1, g1) and pseudo-Riemannian manifold Nm, is said to be φ1-
parapluriharmonic if

αf (X,Y )− αf (φ1X,φ1Y ) = 0, ∀ X, Y ∈ Γ
(
TM2n1+1

1

)
,

where the second fundamental form αf of f is defined by (2). In particular, αf (X, ξ1) =
0 for any tangent vector X.

Proposition 4.2. Any φ1-parapluriharmonic map f between almost paracontact met-
ric manifold M2n1+1

1 (φ1, ξ1, η1, g1) and pseudo-Riemannian manifold Nm is harmonic.

Proof. Let {e1, · · · , en1
, φ1e1, · · · , φ1en1

, ξ1} be a local orthonormal frame on TM2n1+1
1 .

Then by definition of φ1-parapluriharmonicity, we have

αf (ξ1, ξ1) = 0 and αf (ei, ei)− αf (φ1ei, φ1ei) = 0,

for i ∈ {1, 2, · · · , n}. Therefore, τ(f) = Trg1αf = 0. �

Theorem 4.3. Let f be a smooth (φ1, J)-paraholomorphic map between normal al-
most paracontact metric 3-manifold M3

1 (φ1, ξ1, η1, g1) and para-Kähler manifold
N2(J, h). Then f is harmonic.

Proof. We recall that f∗ξ1 = 0 for a (φ1, J)-paraholomorphic map and N2 is para-
Kähler, and that from equation (11) for any vectors X,Y tangent to M3

1 , we have

f∗(∇Xφ1)Y = −{qf∗X + pf∗φ1X}η1(Y ).

Using equation (16) for a given map, we obtain

J(αf (X,Y )) = −{qf∗X + pf∗φ1X}η1(Y ) + αf (X,φ1Y ).

Replacing Y by φ1Y and employing equations (5) and (6), the above equation reduces
to

J(αf (X,φ1Y )) = αf (X,Y ).

By the virtue of the fact that αf is symmetric, we obtain from above equation that

αf (X,Y )− αf (φ1X,φ1Y ) = 0.

The above expression implies that f is φ1-parapluriharmonic and thus harmonic from
Proposition 4.2. �

As an immediate consequence of the above theorem and Remark 2.4 of [24] one
easily gets the following corollary.

Corollary 4.4. Let M3
1 (φ1, ξ1, η1, g1) be a normal almost paracontact metric 3-

manifold with p, q =constant, N2(J, h) be a para-Kähler manifold and f : M3
1 → N2

be a smooth (φ1, J)-paraholomorphic map. Then M3
1 is a paracosymplectic manifold.

Here, we derive a necessary and sufficient condition for a (φ1, φ2)-paraholomorphic
map between para-Sasakian manifolds to be φ1-parapluriharmonic.
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Theorem 4.5. Let f : M2n1+1
1 → M2n2+1

2 be a (φ1, φ2)-paraholomorphic map be-
tween para-Sasakian manifolds M2ni+1

i (φi, ξi, ηi, gi), i ∈ {1, 2}. Then f is φ1-para-

pluriharmonic if and only if ξ2 ∈ (Im f∗)
⊥

.

Proof. Since f is a (φ1, φ2)-paraholomorphic map then for all x ∈M2n1+1
1 there exists

a function λ on M2n1+1
1 such that

(f∗ξ1)f(x) = λ(x) (ξ2)f(x) and (f∗η2)x = λ(x) (η1)x . (21)

For any X,Y ∈ Γ (D1), we have from equations (2), (9) and (21) that

αf (X,φ1Y ) = φ2αf (X,Y ) + η2(f∗X)f∗Y − g2(f∗X, f∗Y )ξ2 + λg1(X,Y )ξ2.

From the above equation and the fact that αf is symmetric, we obtain that

αf (X,φ1Y )− αf (φ1X,Y ) = η2(f∗Y )f∗X − η2(f∗X)f∗Y.

Replacing Y by φ1Y in the above expression and using equations (5) and (6), we find

αf (X,Y )− αf (φ1X,φ1Y ) = −η2(f∗X)φ2(f∗Y ).

This implies that αf (X,Y )− αf (φ1X,φ1Y ) = 0 if and only if ξ2 ∈ (Im f∗)
⊥

. �

Now, we present an example for illustrating Theorem 4.5.

4.1 Example

Let M3
i ⊂ R3, i ∈ {1, 2}, be 3-dimensional manifolds with standard Cartesian coor-

dinates. Define the almost paracontact structures (φi, ξi, ηi, gi) respectively on M3
i

by

φ1e1 = −e2 + x2e3, φ1e2 = −e1, φ1e3 = 0, ξ1 = e3, η1 = x2dy + dz,

φ2e
′
1 = −e′2, φ2e′2 = −e′1 + v2e′3, φ2e

′
3 = 0, ξ2 = e′3, η2 = −v2du+ dw,

where e1 = ∂
∂x , e2 = ∂

∂y , e3 = ∂
∂z , e′1 = ∂

∂u , e′2 = ∂
∂v , e′3 = ∂

∂w and x, v ∈ (0,∞). By

direct calculations, one verifies that the Nijenhuis torsion of φi for i ∈ {1, 2} vanishes,
which implies that the structures are normal. Let the pseudo-Riemannian metrics
gi, i ∈ {1, 2} are prescribed respectively on M3

i by

[g1 (es, et)] =

−x 0 0
0 x4 + x x2

0 x2 1

 , [g2 (e′s, e
′
t)] =

v4 + v 0 v2

0 −v 0
v2 0 1

 ,
for all s, t ∈ {1, 2, 3}. For the Levi-Civita connections ∇,∇ with respect to metrics
g1, g2 respectively, we obtain

∇e1e1 =
1

2x
e1, ∇e1e2 =

2x3 + 1

2x
e2 +

(x
2
− x4

)
e3 = ∇e2e1, ∇e2e2 =

4x3 + 1

2x
e1,

∇e1e3 = e2 − x2e3 = ∇e3e1, ∇e2e3 = e1 = ∇e3e2, ∇e3e3 = 0,

∇e1′e1′ =
4v3 + 1

2v
e′2, ∇e1′e2′ =

2v3 + 1

2v
e′1 +

(v
2
− v4

)
e3
′ = ∇e2′e1′, ∇e3′e3′ = 0,

∇e2′e3′ = e1
′ − v2e′3 = ∇e3′e2′, ∇

′
e2e2

′ =
1

2v
e′2, ∇e3′e1′ = e2

′ = ∇e1′e3′.
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From the above expressions and equation (12), we find p = 0, q = −1. Hence M3
1

and M3
2 are para-Saakian manifolds with invariant distributions D1 = span{e1, φ1e1}

and D2 = span{e2′, φ2e′2} respectively. Let f : M3
1 → M3

2 be a mapping defined by
f(x, y, z) = (y, x, z). Then f∗ ◦φ1 = φ2 ◦ f∗, i.e., f is a (φ1, φ2)-paraholomorphic map
between para-Sasakian manifolds. For any X,Y ∈ Γ(D1) and x ∈M3

1 , it is not hard
to see that αf (X,Y ) = αf (φ1X,φ1Y ), λ(x) = 1 and g2(ξ2, f∗X) = 0. Thus Theorem
4.5 is verified.
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[14] S. Ianuş, A. M. Pastore, Harmonic maps on contact metric manifolds, Ann. Math. Blaise
Pascal 2(2) (1995), 43–53.
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