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Abstract. In this paper we introduce and study some stronger forms of transitivity like
total transitivity, weakly mixing for maps on G-spaces. We obtain their relationship with
the earlier defined notion of strongly mixing for maps on G-spaces. We also study in detail
G-minimal maps on G-spaces.

1. Introduction

Dynamical properties of maps in dynamical systems have been extensively studied in
recent years. They are of extreme importance in the qualitative study of dynamical
systems. One of the most important and useful dynamical properties is topological
transitivity. It plays an important role in the study of chaos theory and decomposi-
tion theorems. Apart from standard topological transitivity, various variants of this
concept are proposed and studied. For example, total transitivity, topological mixing,
minimality etc. One can refer to [1–3, 6, 10–14] for results on these notions. While
working in one dimensional topological dynamics, it is natural to try to extend results
studied in a particular setting to more general settings. We show that some impor-
tant facts from the topological dynamics work on much more general spaces than on
metric spaces/topological spaces namely, on G-spaces, that is on topological spaces
on which topological groups act continuously. Dynamical properties of group actions
have been defined and studied in detail [5]. However, dynamical properties for maps
on G-spaces apparently have not attracted much attention and a systematic study has
not been done. The present paper is a sincere attempt in this direction. In [7] authors
have defined strongly G-mixing map and used it to prove decomposition theorem on
G-spaces. We study in detail stronger forms of transitivity on metric/topological G-
spaces like total G-transitivity, strongly G-mixing, weakly G-mixing, G-minimality.

2010 Mathematics Subject Classification: 54H20, 37B05

Keywords and phrases: Topological transitivity; topological mixing; G-space; pseudoequiv-
ariant map.

164



M. Garg, R. Das 165

In Section 2, we introduce notions of total G-transitivity and weakly G-mixing
for maps on G-spaces. We study their interrelations with strongly G-mixing maps
on G-spaces. Observing that in general, notions of total G-transitivity and weakly
G-mixing are independent, we provide conditions under which one notion implies the
other. Section 3 is devoted to the study of G-minimal maps on G-spaces. Justifying
that product of two G-minimal maps does not need to be G × G-minimal on the
product space, we give a sufficient condition under which the product of two G-
minimal maps becomes G×G-minimal. Giving some characterizations of G-minimal
maps, we show that a pseudoequivariant self map on a compact Hausdorff G-space
possesses a G-minimal set.

We denote by R the set of real numbers, by Z the set of integers and by N the
set of positive integers. A (discrete) dynamical system is a pair (X, f), where X is a
topological space and f : X → X is a continuous map. For x ∈ X, the f -orbit of x
in X is given by the set Of (x) = {fk(x) : k > 0}, where fk is the kth iteration of f .
A point x ∈ X is said to be isolated if {x} is open in X. A point x ∈ X is a periodic
point of f if fk(x) = x, for some k ∈ N. The smallest such k is called a prime period
of x. The set of periodic points of f is denoted by Per(f). A map f is said to be
topologically transitive (or transitive) if for any pair of nonempty open subsets U , V
of X, there exists k > 1 such that fk(U)∩V 6= ∅. The facts that product of transitive
maps need not be transitive and composition of transitive maps need not be transitive
motivated the concepts of weakly mixing and total transitivity, which are stronger
than transitivity. A map f is called totally transitive if all its iterates fn, n > 1, are
transitive. A map f is said to be strongly mixing if for any pair of nonempty open
subsets U , V of X there is N ∈ N such that for all n > N , fn(U) ∩ V 6= ∅. Also f is
said to be weakly mixing if f × f is transitive. One can note that a strongly mixing
map is weakly mixing, but the converse is not true [15]. A subset A of X is said to be
+f invariant if f(A) ⊆ A, −f invariant if f−1(A) ⊆ A and f -invariant if f(A) = A.
A dynamical system (X, f) is said to be minimal if every orbit in X is dense in X; in
that case we also say that f itself is minimal. A subset A of X is said to be a minimal
set of f if it is nonempty, closed, +f invariant and (A, f |A) is minimal.

By a G-space X, we mean a triple (G,X, θ), where G is a topological group, X
is a topological space and θ : G ×X → X is a continuous action of G on X [4]. We
denote θ(g, x) by g.x, for g ∈ G and x ∈ X. By a trivial action of G on X, we mean
g.x = x, for all g ∈ G, x ∈ X. Note that if X is a G-space, then for any g ∈ G,
Tg : X → X defined by Tg(x) = g.x, x ∈ X, is a homeomorphism. For x ∈ X, the
G-orbit of x in X is given by the set G(x) = {g.x : g ∈ G}. For a subset A of X, we
also define G(A) = {g.a : g ∈ G, a ∈ A}. If X, Y are G-spaces, then a continuous
map f : X → Y is said to be equivariant if f(g.x) = g.f(x) for every g ∈ G and every
x ∈ X and pseudoequivariant if f(G(x)) = G(f(x)) for every x ∈ X. It is clear that
every equivariant map is pseudoequivariant, but the converse is not true [8]. Note
that if f is pseudoequivariant, then f(G(A)) = G(f(A)) for every subset A of X and
f−1(G(A)) = G(f−1(A)) for every subset A of Y . Consider the equivalence relation
∼ defined on X by x ∼ y if y = g.x for some g ∈ G. Then for any x ∈ X, the
equivalence class of x is G(x). The set of all equivalence classes G(x), x ∈ X, is
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denoted by X/G, endowed with quotient topology, it is called the orbit space of X.
The map p : X → X/G defined by p(x) = G(x), x ∈ X, is called the orbit map, which
is clearly continuous, onto and open. If f : X → X is pseudoequivariant, then its
induced map f̄ : X/G → X/G defined by f̄(G(x)) = G(f(x)), G(x) ∈ X/G, is well
defined. Note that f̄ is continuous and p ◦ f = f̄ ◦ p.

A subset A of X, where X is a G-space, is said to be G-invariant if g.A ⊆ A for
every g ∈ G. For x ∈ X, the associated Gf -orbit of x is given by the set Gf (x) =
G(Of (x)) = {g.fk(x) : g ∈ G, k > 0}. Note that if f : X → X is pseudoequivariant,
thenGf (x) is the smallest +f invariant, G-invariant set containing x. Also for a subset
A of X and f : X → X pseudoequivariant, G+

f (A) =
⋃
g∈G

⋃
k>0 g.f

k(A) is the small-

est +f invariant, G-invariant set containing A and G−f (A) =
⋃
g∈G

⋃
k>0 g.f

−k(A) is
the smallest −f invariant, G-invariant set containing A. Also recall that a point
x ∈ X is called G-transitive point of f if its Gf -orbit, Gf (x), is dense in X. The set
of all G-transitive points of f is denoted by G-Transf .

2. Total transitivity and mixing on G-spaces

Let X be a G-space and f : X → X be continuous. Recall that the map f is said to
be G-transitive (GT ) if for any pair of nonempty open subsets U , V of X, there exists
g ∈ G such that the set Ng(U, V ) = {k ∈ N : (g.fk(U)) ∩ V 6= ∅} is nonempty [9].

The following example shows that if f : X → X is G-transitive, then f2 need not
be G-transitive.

Example 2.1. Consider X = {± 1
n ,±(1 − 1

n ) : n ∈ N} with relative topology of R.
Define h : X → X by

h(x) =

 x if x ∈ {−1, 0, 1},
−x+ if 0 < x < 1, x ∈ X,
−x− if − 1 < x < 0, x ∈ X,

where x+ (x−) denotes the element of X immediate to the right (left) of x. Consider
the action of the topological group G = {hn : n ∈ Z} on X given by hn.x = hn(x) for
every n ∈ Z, every x ∈ X. Also define f : X → X by

f(x) =

{
x if x ∈ {−1, 0, 1},
x+ if x ∈ X \ {−1, 0, 1}.

Then Gf (x) = G(x) ∪G(f(x)) = X \ {−1, 0, 1} for every x ∈ X \ {−1, 0, 1}, which is
dense in X. Note that any open set containing 0 contains points of the form ±1/n.
Similarly, any open set containing −1 (or 1) contains points of the form −(1 − 1/n)
(or 1− 1/n). Therefore Gf -orbit of every open set in X is dense in X, which implies
that f is G-transitive. On the other hand, if U = {2/3} and V = {5/6}, then
(hk.(f2)n(U)) ∩ V = ∅ for every n ∈ N and every k ∈ Z, which implies that f2 is not
G-transitive.

The above example motivates the following definition of total G-transitivity.
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Definition 2.2. Let X be a G-space and f : X → X be continuous. Then f is said
to be totally G-transitive if fn is G-transitive for every n > 1.

One can observe that under the trivial action of G on X, notions of total transi-
tivity and total G-transitivity coincide. Under a non-trivial action of G on X, every
totally transitive map is totally G-transitive, but the converse is not true as justified
by the following example.

Example 2.3. Let S1 denote the unit circle in the complex plane. Consider X =
Tn = S1 × S1 × · · · × S1 (n-dimensional torus) with standard topology and topolog-
ical group G = Tm, where m < n. Denoting e2πιθ in S1 by its argument θ ∈ [0, 1],
define the action of G on X by (g1, g2, . . . , gm).(θ1, θ2, . . . , θm, θm+1, . . . , θn) = (θ1 +
g1, θ2 + g2, . . . , θm + gm, θm+1, . . . , θn), where (g1, g2, . . . , gm) ∈ G. Define f : X → X
by f(θ1, θ2, . . . , θm, θm+1, . . . , θn) = (θ1, θ2, . . . , θm, θm+1 + βm+1, . . . , θn + βn), where
{βm+1, βm+2, . . . , βn} is rationally independent (i.e. {βm+1, βm+2, . . . , βn, 1} is lin-
early independent over Q). Then we can find hm ∈ R such that hm /∈ span{βm+1, . . . ,
βn, 1} (over Q), so that the set {hm, βm+1, . . . , βn, 1} becomes linearly independent
over Q. Continuing like this, we can find h1, h2, . . . , hm in R such that {h1, h2, . . . , hm,
βm+1, . . . , βn, 1} is linearly independent over Q. Therefore using [17, (1.14)], we get
Gf (θ1, θ2, . . . , θn) is dense in X. Thus Gf -orbit of every point in X is dense in X,
which implies that f is G-transitive. Similarly, f2 is given by f2(θ1, θ2, . . . , θm, . . . , θn)
= (θ1, θ2, . . . , θm, θm+1 + 2βm+1, . . . , θn + 2βn), which is G-transitive, since the set
{2βm+1, . . . , 2βn, 1} is also linearly independent over Q. Thus continuing like this, we
get fk is G-transitive for every k > 1 and hence f is totally G-transitive. However, f is
not totally transitive. For if n = 2 and m = 1, then the map f is given by f(θ1, θ2) =
(θ1, θ2 +β2), where β2 is irrational. Note that for U1 = V1 = {θ : 1/8 < θ < 1/6} (i.e.
open arc joining (cos π4 , sin

π
4 ) and (cos π3 , sin

π
3 )) and U2 = V2 = {θ : 5/8 < θ < 2/3},

fk(U1 × V1) ∩ (U2 × V2) = ∅ for every k ∈ N, which implies that f is not transitive.

Definition 2.4. [7] Let X be a G-space and f : X → X be continuous. Then f is
said to be strongly G-mixing if for any pair of nonempty open subsets U , V of X, there
exists N ∈ N such that for all n > N , there is gn ∈ G such that (gn.f

n(U)) ∩ V 6= ∅.

Note that under the trivial action of G on X, notions of strongly G-mixing and
strongly mixing coincide. In general, under a non-trivial action of G on X, a strongly
mixing map is strongly G-mixing, but the converse is not true, as justified by the
following example.

Example 2.5. Consider X = [−1, 1] with relative topology of R and the action of
additive group of integers modulo 2, G = Z2 = {0, 1} with discrete topology on X,
given by 0.x = x, 1.x = −x, x ∈ X. Define f : X → X by

f(x) =

 −2x− 2 if − 1 6 x 6 −1/2,
2x if − 1/2 < x < 1/2,
−2x+ 2 if 1/2 6 x 6 1.

Then one can observe that for U = (−1/2, 0) and V = (0, 1/2), fn(U)∩V = ∅ for
every n ∈ N, which implies that f is not transitive and hence not strongly mixing.
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We show that f is strongly G-mixing. Let U , V ⊆ [−1, 1] be nonempty open sets,
(a, b) ⊆ U ∩ [0, 1] and (c, d) ⊆ U ∩ [−1, 0], so that at least one of (a, b) or (c, d) is
nonempty. Suppose (a, b) is nonempty. Then one can note that fk(a, b) = [0, 1] for
some k ∈ N, so that if V ∩ [0, 1] 6= ∅, then (0.fn(U)) ∩ V 6= ∅ for all n > k. On
the other hand, if V ⊆ [−1, 0), then (1.fn(U)) ∩ V 6= ∅ for all n > k and hence f is
strongly G-mixing.

Recall that if X is a G-space, then X × X is a G × G-space under the action
(g, h).(x, y) = (g.x, h.y), for (g, h) ∈ G×G, (x, y) ∈ X ×X.

Next we define the notion of weakly G-mixing for continuous self maps on G-spaces
and study its relation with strongly G-mixing and total G-transitivity.

Definition 2.6. Let X be a G-space and f : X → X be continuous. Then f is said
to be weakly G-mixing if the Cartesian product f × f is G × G-transitive, that is,
for every pair U × V , E × F of nonempty basic open subsets of X ×X, there exist
(g, h) ∈ G×G and k ∈ N such that ((g, h).(f×f)k(U×V ))∩(E×F ) 6= ∅ equivalently,
(g.fk(U)) ∩ E 6= ∅ and (h.fk(V )) ∩ F 6= ∅.

In the following result, we prove that every strongly G-mixing map is weakly
G-mixing.

Proposition 2.7. Let X be a G-space and f : X → X be continuous. If f is strongly
G-mixing, then it is weakly G-mixing.

Proof. Let U × V , E × F be nonempty basic open subsets of X × X. Since f is
strongly G-mixing, there exist N1, N2 ∈ N such that for all n > N1, there is gn ∈ G
such that (gn.f

n(U)) ∩ E 6= ∅ and for all m > N2, there is hm ∈ G such that
(hm.f

m(V )) ∩ F 6= ∅. Choosing N = max{N1, N2}, we get the required result. �

Note that under the trivial action of G on X, the notion of weakly G-mixing
coincides with that of weakly mixing. In general, under a non-trivial action of G on
X, a weakly mixing map is weakly G-mixing, but the converse is not true as shown
in the following example.

Example 2.8. Consider G, X and f as given in Example 2.5. Since f is strongly
G-mixing, it is weakly G-mixing. However, for U × V = (0, 1/2) × (0, 1/2) and
E×F = (−1/2, 0)× (−1/2, 0), (f × f)k(U ×V )∩ (E×F ) = ∅ for every k ∈ N, which
implies that f is not weakly mixing.

The following result shows that every stronglyG-mixing map is totallyG-transitive.

Proposition 2.9. Let X be a G-space and f : X → X be continuous. If f is strongly
G-mixing, then it is totally G-transitive.

Proof. Let m ∈ N and U , V be nonempty open subsets of X. Since f is strongly
G-mixing, there exists N ∈ N such that for all n > N , there is gn ∈ G such that
(gn.f

n(U)) ∩ V 6= ∅. Let k be the smallest multiple of m greater than N . Then
(gk.(f

m)k/m(U)) ∩ V 6= ∅, gk ∈ G, which proves that fm is G-transitive. �
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Next we obtain conditions under which a map becomes totally G-transitive.

Proposition 2.10. Let X be a G-space and f : X → X be pseudoequivariant. If
f × f × · · · × f (n-times) is G × G × · · · × G (n-times) transitive for every n ∈ N,
then f is totally G-transitive.

Proof. Suppose that fm is not G-transitive for some m > 1. Then there exists
a subset F of X, which is nonempty, proper, closed, G-invariant, +fm invariant
and hence +fmn invariant for any n > 1 such that int(F ) 6= ∅. This implies that
fmn is not G-transitive for any n > 1. Therefore for any given n > 1, there exist
nonempty open subsets Un, Vn of X such that for every g ∈ G and every p > 1,
we have (g.(fmn)p(Un)) ∩ Vn = ∅. Note that the same U1, V1 will work for all n,
so without loss of generality we can assume that U , V are nonempty open subsets
of X such that (g.fmk(U)) ∩ V = ∅ for every g ∈ G and every k > 1. Since f is
pseudoequivariant, U ∩ (g.f−mk(V )) = ∅ for every g ∈ G and every k > 1. We
claim that f × f × · · · × f (m-times) is not G × G × · · · × G (m-times) transitive.
Consider the sets V ′ = V × f−1(V ) × · · · × f−(m−1)(V ) and U ′ = U × U × · · · × U .
Then U ′ ∩ ((g1, g2, . . . , gm).(f × f × · · · × f)−r(V ′)) = ∅ for every (g1, g2, . . . , gm) ∈
G × G × · · · × G and every r > 1, which gives f × f × · · · × f (m-times) is not
G×G×· · ·×G (m-times) transitive, which is a contradiction. Thus fm is G-transitive
for every m > 1. �

Remark 2.11. A totally G-transitive map need not be weakly G-mixing as illustrated
in the following example.

Example 2.12. Denoting e2πιθ in S1 by its argument θ ∈ [0, 1], consider the action
of G = Z2 on S1 with standard topology given by 0.θ = θ, 1.θ = −θ, θ ∈ S1, and
irrational rotation on S1 given by f(θ) = θ + α. Then f is totally G-transitive.
However, f is not weakly G-mixing. For proving this, take open sets U = {θ : 1/12 <
θ < 1/8}, V1 = {θ : 1/6 < θ < 1/4}, V2 = {θ : 5/12 < θ < 1/2} of S1 and the basic
open subsets U × U and V1 × V2 of S1 × S1. Suppose (0.fn1(U)) ∩ V1 6= ∅ for some
n1 ∈ N. Since f is an isometry, we have (0.fn1(U))∩V2 = ∅ and (1.fn1(U))∩V2 = ∅.
Similarly, if (1.fn2(U)) ∩ V1 6= ∅ for some n2 ∈ N, then (g.fn2(U)) ∩ V2 = ∅ for every
g ∈ Z2. Thus f is not weakly G-mixing.

Definition 2.13. [7] Let X be a G-space and f : X → X be continuous. Then
x ∈ X is said to be Gf -periodic point of f if there exist g ∈ G and k ∈ N such that
g.fk(x) = x. The smallest such k is called Gf -prime period of x.

Remark 2.14. Note that every periodic point of a self map f on a G-space X is a
Gf -periodic point of f , which implies that if the set of periodic points of f is dense in
X, then the set of Gf -periodic points of f is also dense in X. However, in Example
2.1, every point is a Gf -periodic point of f , but Per(f) = {−1, 0, 1}.

The next result gives a sufficient condition for a totally G-transitive map to be
weakly G-mixing.
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Proposition 2.15. Let X be a G-space and f : X → X be pseudoequivariant and
totally G-transitive with dense set of Gf -periodic points. Then f is weakly G-mixing.

Proof. Let U × V , E × F be nonempty basic open subsets of X ×X. Since f is G-
transitive, there exist g1 ∈ G and k ∈ N such that (g1.f

k(U)) ∩E 6= ∅, which implies
that the set W = U ∩f−k(g−1

1 .E) is open and nonempty. Since the set of Gf -periodic
points is dense, there exists a Gf -periodic point x in W , say of Gf -prime period m,
such that g0.f

m(x) = x for some g0 ∈ G. Now since f−k(F ) is open, nonempty and
fm is G-transitive, there exist g2 ∈ G and j ∈ N such that (g2.f

mj(V ))∩f−k(F ) 6= ∅.
Since f is pseudoequivariant, we have (h.fmj+k(V )) ∩ F 6= ∅ for some h ∈ G. Again
using pseudoequivariancy of f and Gf -periodicity of x repeatedly, we get fmj(x) =
h0.x for some h0 ∈ G. This in turn implies g.fmj+k(x) = g1.f

k(x) ∈ E for some
g ∈ G. Thus (g.fmj+k(U)) ∩ E 6= ∅ and hence f is weakly G-mixing. �

Remark 2.16. Note that Example 2.12 justifies that in general, a totally G-transitive
map need not be strongly G-mixing.

Recall that a topological space is said to be second countable if it has a countable
base and non-meager if it is not a union of a countable family of nowhere dense
subsets.

Lemma 2.17. If X is a second countable and non-meager G-space and f is a G-
transitive and pseudoequivariant self map on X, then there exists x ∈ X such that
Gf (x) is dense in X.

Proof. Let U = {Un : n > 1} be a countable base for X. We need to show that
G-Transf 6= ∅. Note that x ∈ G-Transf iff Gf (x) ∩ U 6= ∅ for every nonempty
open set U in X iff Gf (x) ∩ Un 6= ∅ for every n > 1 iff x ∈ G−f (Un) for every

n > 1. Therefore G-Transf =
⋂
n>1G

−
f (Un). Since f is G-transitive, each G−f (Un)

is dense in X. If G-Transf = ∅, then X =
⋃
n>1(G−f (Un))c, where each (G−f (Un))c is

nowhere dense subset of X, which is a contradiction to the fact that X is non-meager.
Thus G-Transf is nonempty and hence there exists x ∈ X such that Gf (x) is dense
in X. �

The following result shows that under certain conditions G-transitivity implies
strongly G-mixing. Note that Lemma 2.17 justifies the hypothesis of the next result.

Proposition 2.18. Let X be a second countable, non-meager G-space and f : X → X
be pseudoequivariant and G-transitive with Gf (x) dense in X for some x ∈ X. If for
each neighbourhood W of x, there exists N ∈ N such that for all n > N , there is
gn ∈ G such that (gn.f

n(W )) ∩W 6= ∅, then f is strongly G-mixing.

Proof. Let U , V be nonempty open subsets of X. Then there exist g1, g2 ∈ G
and k1, k2 > 0 such that g1.f

k1(x) ∈ U and g2.f
k2(x) ∈ V , which implies that

x ∈ (h1.f
−k1(U))∩ (h2.f

−k2(V )) = W (say) for some h1, h2 ∈ G. Since W is an open
neighbourhood of x, there exists N ∈ N such that for all n > N , there is gn ∈ G such
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that (gn.f
n(W )) ∩W 6= ∅. This gives fk2((gn.f

n(h1.f
−k1(U))) ∩ (h2.f

−k2(V ))) 6= ∅,
which in turn implies that for all n > N , there is hn ∈ G such that (hn.f

n+k2−k1(U))∩
V 6= ∅. Hence f is strongly G-mixing. �

3. Minimality on G-spaces

Definition 3.1. [16] Let X be a G-space and f : X → X be continuous. Then a
nonempty, closed, +f invariant, G-invariant subset Y of X is said to be a G-minimal
set of f if Gf (y) = Y for every y ∈ Y . The map f is said to be G-minimal if X itself
is a G-minimal set.

Note that under the trivial action of G on X, concepts of minimality and G-
minimality coincide. In general, under a non trivial action of G on X, a minimal map
is G-minimal, but the converse is not true (see Example 2.3).

Remark 3.2. Let X be a G-space and f : X → X be continuous. Then one can
observe that

(a) if f is pseudoequivariant, then f isG-minimal iffX does not contain any nonempty,
proper, closed, +f invariant, G-invariant subset;

(b) if f is pseudoequivariant and G-minimal, then f(X) is dense in X. If additionally,
X is compact and Hausdorff, then f is onto;

(c) if f is G-minimal and Y is a +f invariant, G-invariant subset of X, then f |Y is
also G-minimal.

Remark 3.3. One can observe that if f × h is G × G-minimal, then f and h are
G-minimal. The following example shows that the converse is not true.

Example 3.4. Let X = S1 × S1 with standard topology and topological group G =
S1. Denoting e2πιθ in S1 by its argument θ ∈ [0, 1], we consider the action of G on
X given by g.(θ1, θ2) = (θ1 + g, θ2), g ∈ G, (θ1, θ2) ∈ X. Define f : X → X by
f(θ1, θ2) = (θ1, θ2 + 1/8). Then f is G-minimal. However, (G × G)f×f ((0, 0), (0, 0))
is not dense in X ×X, since U1 × U2 × U3 × U4, where U1 = {θ : 5/12 < θ < 7/12},
U2 = {θ : 1/12 < θ < 1/6}, U3 = U4 = {θ : 11/12 < θ 6 1} ∪ {θ : 0 6 θ <
1/12}, is an open set in X × X containing (1/2.f(0, 0), (0, 0)), but not intersecting
(G×G)f×f ((0, 0), (0, 0)).

The following result gives a sufficient condition for the product of two G-minimal
maps to be G×G-minimal on the product space.

Proposition 3.5. Let X, Y be G-spaces and f : X → X, h : Y → Y be pseudoequiv-
ariant, G-minimal maps. Then f × h is G×G-minimal iff for all g, k ∈ G, x ∈ X,
y ∈ Y , (g.f(x), y), (x, k.h(y)) ∈ (G×G)f×h(x, y).
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Proof. Let G′ = G × G. First we claim that G′f×h(x, y) = Gf (x) × Gh(y) for all

x ∈ X, y ∈ Y iff (g.f(x), y), (x, k.h(y)) ∈ G′f×h(x, y) for all g, k ∈ G, x ∈ X,

y ∈ Y . Let (g.f(x), y), (x, k.h(y)) ∈ G′f×h(x, y) for all g, k ∈ G, x ∈ X, y ∈ Y .

Then one can prove that (g.fm(x), k.hn(y)) ∈ G′f×h(x, y) for all g, k ∈ G, x ∈ X,

y ∈ Y , m > 0, n > 0. This in turn implies that Gf (x) × Gh(y) ⊆ G′f×h(x, y) for

all x ∈ X, y ∈ Y . Also, G′f×h(x, y) ⊆ Gf (x) × Gh(y) for all x ∈ X, y ∈ Y . Thus

G′f×h(x, y) = Gf (x)×Gh(y). Converse is straightforward. Hence the claim holds.

Now if (g.f(x), y), (x, k.h(y)) ∈ G′f×h(x, y) for all g, k ∈ G, x ∈ X, y ∈ Y ,

then by the claim and using G-minimality of both f and h, we have G′f×h(x, y) =

Gf (x)×Gh(y) = X×Y for all x ∈ X, y ∈ Y . Conversely, by G-minimality of both f ,

h and G×G-minimality of f ×h, we have G′f×h(x, y) = Gf (x)×Gh(y) for all x ∈ X,

y ∈ Y and hence by the claim, we have (g.f(x), y), (x, k.h(y)) ∈ G′f×h(x, y) for all g,

k ∈ G, x ∈ X, y ∈ Y . �

Note that if x ∈ X is a Gf -periodic point of f with Gf -prime period k and

f : X → X is pseudoequivariant, then Gf (x) =
⋃k−1
m=0G(fm(x)).

Proposition 3.6. Let X be a Hausdorff G-space, where G is a compact group and
f : X → X be pseudoequivariant and G-minimal. Then either X has no isolated
points or X is a single Gf -orbit.

Proof. If X has no isolated points, we are done. Suppose that x ∈ X is an isolated
point. Since f is G-minimal, Gf (f(x)) = X, which implies that x = g.fk(x) for some

g ∈ G and k > 1. Therefore Gf (x) =
⋃k−1
m=0G(fm(x)). Since G is compact and X is

Hausdorff, G(y) is closed in X for every y ∈ X. Thus X = Gf (x) = Gf (x). �

Proposition 3.7. Let X be a G-space and f : X → X be pseudoequivariant and
G-transitive (GT ). If M ⊆ X is a G-minimal set of f , then either M = X or M is
nowhere dense in X.

Proof. If M = X, we are done. Suppose that M 6= X. Since M is a G-minimal set,
it is nonempty, closed, +f invariant, G-invariant. Then X \M is −f invariant and
G-invariant, so that G−f (X \M) = X \M . Since f is G-transitive, pseudoequivariant

and X \M is a nonempty open set, G−f (X \M) = X, which implies that X \M = X.

Thus int(M) = ∅. �

The next result shows that a pseudoequivariant map on a G-space is G-minimal
iff its induced map on the related orbit space is minimal.

Proposition 3.8. Let X be a G-space and f : X → X be pseudoequivariant. Then
f is G-minimal iff its induced map f̄ : X/G→ X/G is minimal.

Proof. Suppose f is G-minimal. Let G(x) ∈ X/G and U be a nonempty open subset
of X/G. Then p−1(U) is a nonempty open subset of X, thus there exist g ∈ G, k > 0
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such that g.fk(x) ∈ p−1(U). This gives f̄k(G(x)) ∈ U and hence Of̄ (G(x)) is dense
in X/G.

Conversely, suppose f̄ is minimal. Let x ∈ X and U be a nonempty open subset
of X. Then p(U) is a nonempty open subset of X/G, thus there exists k > 0 such
that f̄k(G(x)) ∈ p(U). This implies that there exists g ∈ G such that g.fk(x) ∈ U
and hence Gf (x) = X. �

We now obtain a nice characterization of pseudoequivariant G-minimal maps in
terms of open sets in a sequentially compact G-space.

Proposition 3.9. Let X be a sequentially compact G-space and f : X → X be
pseudoequivariant. Then f is G-minimal iff for every nonempty open subset U of X,
there exists n ∈ N such that

⋃
g∈G

⋃n
k=0 g.f

−k(U) = X.

Proof. Let f be G-minimal. Assume that there is a nonempty open subset U of
X satisfying the following condition: for every n ∈ N, there exists xn ∈ X such
that xn /∈

⋃
g∈G

⋃n
k=0 g.f

−k(U). Since X is sequentially compact, there exists a
convergent subsequence (xnk

) of (xn) such that xnk
→ x0 as k → ∞. Also since f

is G-minimal, Gf (x0) = X, thus there exist g ∈ G, m > 0 such that g.fm(x0) ∈ U .
By pseudoequivariancy of f , x0 ∈ g′.f−m(U) for some g′ ∈ G. Now since g′.f−m(U)
is an open neighbourhood of x0, there exists k0 ∈ N such that xnk

∈ g′.f−m(U) for
all k > k0. Therefore there exists k ∈ N sufficiently large such that nk > m and
xnk

∈ g′.f−m(U). Thus xnk
∈
⋃
g∈G

⋃nk

i=0 g.f
−i(U), which contradicts the choice

of xnk
.

Conversely, let x ∈ X. For proving Gf (x) = X, let us assume that U is a nonempty
open subset of X. By hypothesis, there exists n ∈ N such that

⋃
g∈G

⋃n
k=0 g.f

−k(U) =

X. Since x ∈ X, there exist g ∈ G, 0 6 k0 6 n such that x ∈ g.f−k0(U), which gives
g′.fk0(x) ∈ U for some g′ ∈ G and hence Gf (x) = X. �

The following result shows that in any compact Hausdorff G-space there are G-
minimal sets and any two G-minimal sets are either disjoint or equal.

Proposition 3.10. Let X be a compact Hausdorff G-space and f : X → X be
pseudoequivariant. Then X contains a nonempty, G-minimal, f -invariant subset.
Also, any two distinct G-minimal sets of f are disjoint.

Proof. If X itself is G-minimal, we are done. Let us suppose that X is not G-minimal.
Then by Remark 3.2(a), the collection of nonempty, proper, closed, +f invariant, G-
invariant subsets of X, say C, is nonempty. Let {Cn : n ∈ N} be a nested sequence
in C and C = ∩n∈NCn. Then C is closed, proper, +f invariant, G-invariant. By
compactness of X, it is nonempty, which gives C ∈ C. Therefore by Zorn’s lemma, C
has a minimum element, say A. Using compactness and Hausdorffness of X, we have
f(A) ∈ C. Thus by minimality of A, f(A) = A and hence A is f -invariant. Also A
is G-minimal, since it does not contain any nonempty, proper, closed, +f invariant,
G-invariant subset.

Let A and B be two distinct G-minimal sets of f and x ∈ A ∩ B. Since f is
pseudoequivariant, Gf (x) is a nonempty, closed, +f invariant, G-invariant subset of

both A and B, which implies that A = Gf (x) = B. �
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Remark 3.11. Note that, in general, strongly G-mixing and G-minimality are not
related, as justified by the following examples.

Example 3.12. Consider the action of G = Z2 on S1 given by 0.θ = θ, 1.θ = −θ,
θ ∈ S1, and the doubling map f : S1 → S1 defined by f(θ) = 2θ. Then f is strongly
G-mixing, but not G-minimal.

Example 3.13. Consider the G-space and the map f given in Example 2.12. Then
one can observe that f is G-minimal, but not strongly G-mixing.

By combining the above results, we have the following implications, where the
preconditions P1 and P2 are as follows:

P1: X is a G-space, f : X → X is a pseudoequivariant map and f × f × · · · × f
(n-times) is G×G× · · · ×G (n-times) transitive for every n ∈ N.

P2: X is a G-space, f : X → X is a pseudoequivariant map with dense set of
Gf -periodic points in X.

Here SGM , WGM , TGT , GT and GM stand for strongly G-mixing, weakly
G-mixing, totally G-transitive, G-transitive and G-minimal respectively.

SGM - WGM

�
�

��	

P1

TGT
�
�
���

P2

@
@
@@R

-�
P1

GT � GM

Note that GT 6−→ TGT (Example 2.1)
TGT 6−→ SGM (Example 2.12)
GT 6−→ GM (Example 2.5)

We are looking for conditions under which G-minimality and G-mixing are related
and also for examples justifying that weakly G-mixing need not imply strongly G-
mixing.
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