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ARITHMETIC PROPERTIES OF 3-REGULAR BI-PARTITIONS
WITH DESIGNATED SUMMANDS

M. S. Mahadeva Naika and S. Shivaprasada Nayaka

Abstract. Recently Andrews, Lewis and Lovejoy introduced the partition functions
PD(n) defined by the number of partitions of n with designated summands and they found
several modulo 3 and 4. In this paper, we find several congruences modulo 3 and 4 for
PBDs3(n), which represent the number of 3-regular bi-partitions of n with designated sum-
mands. For example, for each n > 1and @« > 0 PBD3;(4-3*"n +10-3°T!) =0
(mod 3).

1. Introduction

In 2002 Andrews, Lewis and Lovejoy [1] introduced a new class of partitions, parti-
tions with designated summands which are constructed by taking ordinary partitions
and tagging exactly one part among parts with equal size. With a convention that
PD(n) =0, for example there are 15 partitions of 5 with designated summands:
5, 4 +1, 3+2, 3I+1+1, 3F+1+1, 274+2+1, 24+2+1,
2+1U+1+1, 241+1U+1, 22+1+4+1+1, 1V+14+1+1+1,
1+1V+14+14+1, 14+14+14+1+1, 1414+1+1+1, 1+1+1+1+1".
The authors [1] derived the following generating function of PD(n).

i PD(n)q" = fs
n=0

~ fifafs

Throughout the paper, we use the standard g-series notation, and fj is defined as
n
Y'Y N ok
fr=1(a"0") —nlggollj[l(l qr).

For |ab| < 1, Ramanujan’s general theta function f (a,b) is defined as
o0

f (a,b) — Z an(n+l)/2bn(n—l)/2. (2)

n=—oo
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Using Jacobi’s triple product identity [4, Entry 19, p. 35], (2) becomes
f(a,b) = (—a,adb), (—b,ab) (ab,ab)_ .

The most important special cases of f (a b) are

. n(n+1)/2 _ q q ) ﬁ
Y (q) = Zq (q, 2. 7
and f(=q) := f(—q,—¢*) = Z (—1)ng"Gn=1/2 — .

The concept of partitions with designated summands goes back to MacMahon [9].
He considered partitions with designated summands and with exactly ¢ different sizes
(see also Andrews and Rose [2]).

Andrews et al. [1] and N. D. Baruah and K. K. Ojah [3] have also studied PDO(n),
the number of partitions of n with designated summands in which all parts are odd
and the generating function is given by

iippomm": Jufs
=0

fifsfiz’
Thus PDO(5) = 8 are

5, 3 +1U+1, F+1+1, 1V+14+1+1+4+1, 1+1V4+1+1+1,
1+1+1V+14+1, 14+14+141+1, 1+4+14+14+141"

Chen, Ji, Jin and Shen [5] have established Ramanujan type identity for the parti-
tion function PD(3n+ 2) which implies the congruence of Andrews et al. [1] and they
also gave a combinatorial interpretation of the congruence for PD(3n + 2) by intro-
ducing a rank for partitions with designated summands. Recently Xia [14] extended
the work of deriving congruence properties of PD(n) by employing the generating
functions of PD(3n) and PD(3n + 2) due to Chen et al. [5].

Mahadeva Naika et al. [10] have studied PD3(n), the number of partitions of n
with designated summands whose parts are not divisible by 3 and the generating
function is given by

= n __ f62f9
2 Phs(ma" = 5

In [11] Mahadeva Naika et al. have established many congruences for PDs(n), the
number of bipartitions of n with designated summands and the generating function
is given by

= w8
2 PDend" = i

Mahadeva Naika et al. [12] have derived PDs 3(n), the number of partitions of n
with designated summands in which parts are not multiples of 2 or 3 and generating
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function is given by

_ fafgfofse
fiftafts
Motivated by the above work, in this paper, we study PBDs(n), the number of

3-regular bi-partitions of n with designated summands and the generating function is
given by

Z PDQ’S(TL)(]”
n=0

S PBD ()" = 1o d 3)
s f213 1T
To be precise by a bipartition with designated summands we mean a pair of partitions
(4, k) where in partitions p and k are partitions with designated summands. Thus
PBD3(4) = 35 are
4,0), (2'+2,0), (2+2,0), (2'+1+1,0), (2'+14+1,0), (I'+1+1+1,0),
(A+1+1+1,0), (1+1+141,0), (1+14+141,0), (2/,2), (2/,1'+1), (2/,1+1'),
r,+141), 1, 1+1+1), 1, 1+141), ('+1,1"4+1), (I'+1,1+1),
(I+1,1"+1), A+1V,1+1), (2'+1,1), (1,2'+1), (I'+1,2), (1+1,2),
1+1+1,1), 1+1V+11), Q1+1+1,1), (0,4), (0,2 +2), 0,2+2),
0,2"4+1'+1), (0,274+14+1), @,1+1+1+1), (0,1+14+1+1), (0,1+1+1"+1)
0, 14+1+1+1").
In Section 3, we prove the following theorems.

9

THEOREM 1.1. For n > 0 we have

- 318 ffSfi
PBD3(2n)q" = +q , 4
2 PBDs2N" = g+ s @
o0 2 £4 £2
> PBD;(2n + 1)¢" =2f2{3f6. (5)
= fifo
THEOREM 1.2. For each nonnegative integer n and o > 0, we have
PBD3 (4 x3*"n+10 x 3°T) =0 (mod 3), (6)
PBD3 (8 x3*™n+8x3*t?) =0 (mod 3), (7)
PBD; (2**%n) = 2*PBDs(4n) (mod 3), (8)
> PBDs(4n+2)q" = 9(q)¢(¢*) (mod 3), (9)
n=1
Z PBD3(8n +4)¢" = 21(q)¢(¢%)  (mod 3). (10)
n=1

-3
THEOREM 1.3. Let p be a prime with <) = —1. Then for any nonnegative inte-
p

ger a,

> PBD; (4p**n+2p>*) ¢" = ¢(¢)1(¢*) (mod 3), (11)

n=1
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and formn>0,1<j<p-1,

PBD; (4p°* " (pn+ j) +2p**™?) =0 (mod 3). (12)
THEOREM 1.4. Let p be a prime with (_3> = —1. Then for any nonnegative inte-
ger a, P
o0
> PBDs (8p*n+4p™*) ¢" = 20(q)¢(¢®)  (mod 3), (13)
n=1
and form>0,1<j<p-1,
PBDs (8p°*t (pn + j) + 4p**T*) =0 (mod 3). (14)
THEOREM 1.5. For eachn >0
PBD3(12n+7) =0 (mod 4), (15)
PBD3(12n+11) =0 (mod 4), (16)
PBD3(24n+17) =0 (mod 4), (17)
PBD3(36n+27)=0 (mod 4), (18)
PBD3(72n+39) =0 (mod 4), (19)
PBDs3(72n 4+ 57) =0 (mod 4), (20)
PBD3(216n +153) =0 (mod 4), (21)
ZOO,O PBDs(72n+3) =2f; (mod 4), (22)
Yy~ (PBDs(T2n+15) =2fifa (mod 4). (23)
n=
THEOREM 1.6. For any primep > 5, « > 0 and n > 0, we have
oo
> PBD;3 (72p**n +3p*) ¢" =2f1 (mod 4). (24)

n=0

THEOREM 1.7. For any primep >5, >0, n>0andl=1,2,..p — 1, we have

> PBDs3 (72p**(pn+ 1)+ 3p°*) =0 (mod 4). (25)
n=0
. . —4 )
THEOREM 1.8. If p > 5 is a prime such that () = —1. Then for all integers
p
a>0,
> PBD; (72p*n + 15p**) ¢" = 2f1fs  (mod 4). (26)
n=0
. —4 )
THEOREM 1.9. Let p > 5 be prime and () = —1. Then for all integers n > 0
p
and o > 1,
PBD; (72p**n + p** 1 (15p + 725)) =0  (mod 4), (27)

where j =1,2,...,p— 1.



196

THEOREM 1.10.

THEOREM 1.11.
a>0,

THEOREM 1.12.

and o > 1,

where j =1,2,...

Arithmetic properties of 3-regular bi-partitions

For each n >0
PBD5(18n+15) =0 (mod 6), (28)
PBD3(18n+3) =4f1f3 (mod 6). (29)
. . -3 .
If p > 5 is a prime such that (p) = —1. Then for all integers

> PBDs (18p°*n +3p**) ¢" = 4f1fs (mod 6). (30)

n=0

-3
Let p > 5 be prime and (p> = —1. Then for all integers n > 0

PBDj; (18p**n + p** ' (3p+185)) =0 (mod 6), (31)
P — 1.

2. Preliminaries

We list a few dissection formulas to prove our main results.

LEMMA 2.1. [4, Corollory, p. 49] We have

¥(q) = f(d*, ¢°) + qv(q”) (32)

LEMMA 2.2. The following 2-dissections hold:

f3 _ B8 1

BT RR TR o
fi _ hfifts 1)
A A A Y

Hirschhorn, Garvan and Borwein [7] proved equation (33). Replacing ¢ by —¢ in
(33), we obtain (34).

LEMMA 2.3. The following 2-dissections hold:

L fif i
hhs - RRsiE TR R (35)
flfS _ f2f82f{12 o fzilf6f224 (36)

Plsfz hIEfE

Equation (35) was proved by Baruah and Ojah [3]. Replacing ¢ by —¢ in (35) and

3
using the fact that (—¢; —¢)eo = f—Q, we get (36).

fifa
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LEMMA 2.4. The following 3-dissection holds:

4
fifo= Jf}fi —qfofis — 2q

One can see this identity in [8].

2 f3f1s
fefd "

(37)

LEMMA 2.5. The following 2-dissections hold:
fo  fihhs 3 fe 36
Jo _ + 38
fir f3fefse I 13 fr2 (38)
f1 foft Jato 3

and — = —

= q .
fo fafefTs fi2fis
Lemma 2.5 was proved by Xia and Yao [13]. Replacing ¢ by —¢ in (38) and using

(39)

3
the relation (—¢; —¢)oo = f—Q, we obtain (39).
Jifa
LEMMA 2.6. [6, Theorem 2.1] For any odd prime p,
L;?' m24m p24+(@2m+1)p  p2—(2m+1)p p2—1 2
W)= g2 fla 7 a2 +q 5 Y(g). (40)
=0

m
2
Furthermore, m22+m £ % (mod p) for 0 <m < %,

LEMMA 2.7. [6, Theorem 2.2] For any prime p > 5,

p—1
2

3k24k 3p24(6k+1)p 3p2 — (6k+1)p tp_1 p2_1
e YR (g ) 4 )
k=—p=1
kA(£p—1)/6
2 2
(Furtger)more, for —(p—1)/2 < k < (p—1)/2 and k # (£p —1)/6, 3+ £ F-1
mod p).

3. Proofs of main results

3.1 Proof of Theorems 1.1 and 1.2
Substituting (38) into (3), we find that

f: PBDs(n)q" = 18 (fl%f%g +2qfff%2f18+q2fff§f§6>
n=0

I RN f3 IS
2L SR FAfREE
= gsrn TR T

Extracting the terms involving ¢2" and ¢?"*! from the above equation, we obtain (4)
and (5).
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By the binomial theorem, it is easy to see that for positive integers k and m,

= fF"  (mod 2), (41)
mo= ™ (mod 3) (42)
and am = fim o (mod 4). (43)
Invoking (42) in (4), we find
- I8
> PBDs(2n)¢" = 1+ ¢35 (mod 3),
2 7213
o - n_ NG
which implies that Z PBDs3(2n)q" = quf3 (mod 3). (44)
n=1 243
Employing (34) into (44), we have
s fifty o fafth
PBD3(2n)¢" =q —q mod 3). 45
Z (2n) I2f6 1218 ( ) (#2)

n=1

Extracting the terms containing ¢?"*!, dividing throughout by ¢ and then replacing
2

¢* by q from (45) and using the fact that ¥ (q) = J;—z, we get (9).
1

Substituting (32) into (9), we obtain

> PBD3(4n+2)¢" = f(¢*,¢°)¥(d”) + q¥(¢*)¥(¢”)  (mod 3),  (46)

n=1
implying > PBDs(12n + 6)¢" = (q)¥(¢*) (mod 3). (47)
n=1
From equations (9) and (47), we get
PBD3(12n+6) = PBD3(4n+2) (mod 3). (48)
By using mathematical induction on « in (48), we have
PBD3 (4 x 3*"'n+2x 3*t") = PBD3(4n+2) (mod 3). (49)
Extracting the terms containing ¢*"2 from (46) we obtain
PBD3(12n4+10) =0 (mod 3). (50)

Using (50) in (49), we find (6).

Extracting the terms containing ¢*" and replacing ¢> by ¢ from (45), we get

0 6
> PBDs(4n)q" =2q / ;f & (mod 3). (51)
n=1 f2 f3
Employing (34) into (51), we obtain
& 2 r2 6
> PBDs(4n)q" = qf4 iz _ 24 Jofiz (mod 3). (52)

fafe fife

Congruence (10) is obtained by extracting the terms containing ¢>"** from (52) and

n=1
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2

using the fact that ¥(q) = f—z
1
Substituting (32) into (10), we have

> PBDs(8n+4)q" = 2f(¢%, ¢°)0(¢%) + 2q0(¢*)¥(¢°)  (mod 3).

n=1
Extracting the terms containing ¢>"*! and ¢*"*2 from the above equation, we obtain
> PBD3(24n +12)¢" = 2(q)¢(¢*) (mod 3) (53)
n=1
and PBD3(24n+20) =0 (mod 3). (54)
In view of the congruences (10) and (53), we get
PBD3(24n+ 12) = PBD3(8n+4) (mod 3). (55)
Utilizing (55) and by mathematical induction on «, we arrive at
PBDj; (8 x 3°T'n + 8 x 3°™) = PBD3(8n +4) (mod 3). (56)

Using (54) in (56), we obtain (7).
Extracting the terms containing ¢?* and replacing ¢? by ¢ from (52), we have

> PBDs(8n)q" = qf if fi (mod 3). (57)
2 T
In view of the congruences (57) and (51), we obtain
PBD;(8n) = 2- PBD3(4n) (mod 3). (58)
Utilizing (58) and by mathematical induction on «, we arrive at (8). O

3.2 Proof of Theorem 1.3

Equation (9) is the a = 0 case of (11). If we assume that (11) holds for some o > 0,
then, substituting (40) in (11),

o0
Z PBDs; (4p20‘n + 2p2°‘) q"

n=1

-3
=z, m24m p?+@mt+Dp  p2-(@mil)p p2—1 P
=( > ¢ = (a7 g +q & ¥(d”) (59)
m=0
p=3
2 am2+m 24 (2m+1) ap2—(2m+1) op2—
X(qu 2+ f<q3p+22+1p’q3p 22+1p>+q3p

; w(q%) (mod 3).
m=0

For any odd prime p, and 0 < my,ms < (p — 3)/2, consider the congruence

2 2 42_4
ml;ml +3m2—gm2 = p8 (mod p),

which implies that (2mq 4+ 1)* +3(2ma + 1) =0 (mod p). (60)
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-1
Since (_73) = —1, the only solution of the congruence (60) is m; = my = p?
2_
Therefore, equating the coefficients of ¢gP™* *5= from both sides of (59), dividing
4p2—4

throughout by ¢~ 5 and then replacing ¢? by ¢, we obtain

S PBD; (a2 (o + W )t o) (oas. (o

n=1
Equating the coefficients of ¢P™ on both sides of (61) and then replacing ¢” by ¢, we
obtain

> PBDs (9™ 2n +2p°) ¢" = ¢(q)v(¢®) (mod 3),
n=1

which is the a+1 case of (11). Extracting the terms involving ¢?"*7 for 1 < j < p—1
in (61), we get (12). O
3.3 Proof of Theorem 1.4

Equation (10) is the o = 0 case of (13). If we assume that (13) holds for some o > 0,
then, substituting (40) in (13),

> PBDs (8p*n +4p™) "

n=1

p=3
2. m24m p2+(@m+D)p  p?—(@m+lp p2-1 2
_2<Zq 2 f(‘l g @ )*q (™) (62)
m=0
—3
pT 3m2+m 3p2+(2m+1)P 31727(2m+1)1j 3172—
| D¢ +q
m=0

s 1w<q3p2>> (mod 3).

For any odd prime p, and 0 < mq,ms < (p — 3)/2, consider the congruence

2 2 2
mi +my ms +mo _ 4p° —4
= d
5 T3 g (modp),

which implies that (2m1 + 1) +3@2mz +1)>=0 (mod p). (63)

. -1
Since (?) = —1, the only solution of the congruence (63) is my; = my = pT

2

Therefore, equating the coefficients of qZ"”JrM8 * from both sides of (62), dividing

4p2

throughout by ¢ s and then replacing ¢P by ¢, we obtain

5Py (s (om+ ) )t = 20 0la) (mod 3. (00

n=1

Equating the coefficients of ¢g?™ on both sides of (64) and then replacing ¢? by ¢, we
obtain

> PBD; (8p°*"n + 4p***?) ¢" = 20(q)¢b(¢®)  (mod 3),
n=1
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which is the a+ 1 case of (13). Extracting the terms involving ¢?"*7 for 1 < j <p—1
in (64), we arrive at (14). O

3.4 Proof of Theorem 1.5
Invoking (43) in (5), we find

i PBDs(2n+1)¢" = 2f12fél (mod 8). (65)
= fifo
Employing (39) into (65), we obtain
c- n_ o foft o f1ffis
> PBD3(2n+1)¢" = A 2 il (mod 8). (66)

n=0
Extracting the terms containing ¢!, dividing throughout by ¢ and then replacing
¢® by ¢ from the above equation, we get

> n_ o J2f3 I
> PBD3(4n+3)q" = 65228 (mod 8), (67)
= fifefs
fofifis _  fafSfo
but 6 =6 mod 8). 68
el = oY (0%)
Invoking (41) in (68), we get
> PBDs(4n+3)q" = 2fsfofo (mod 4). (69)
n=0
Congruences (15) and (16) follow by extracting the terms containing ¢3**1 and ¢3"+?2
from (69).
Extracting the terms containing ¢3" and replacing ¢® by ¢ from (69). we obtain
> PBD3(12n+3)¢" = 2f1fofs (mod 4). (70)
n=0

Substituting (37) into (70), we find

o0 4
> PBDs(12n+3)¢" = 2f6‘2fg
fis
Congruence (18) is obtained by extracting the terms containing ¢3"*2 from (71).
Extracting the terms containing ¢3" and replacing ¢® by ¢ from the above equation
we arrive at

—2qf3fofis (mod 4). (71)

n=0

& 4
> PBD3(36n +3)¢" = 2! %3 (mod 4). (72)
n=0 6
Using (41) in (72), we obtain
> PBDs(36n+3)¢" = 2f> (mod 4). (73)

n=0

Congruences (19) and (22) follow by extracting the terms containing ¢*" and ¢?"*!
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from (73).
Extracting the terms containing ¢
ing ¢® by ¢ from (71), we obtain

3n+1dividing throughout by ¢ and then replac-

> PBD3(36n+ 15)¢" = 2f1 fsfs (mod 4). (74)
n=0
Employing (36) into (74), we find

o f2 S8 [z file 13
PBD3(36n + 15 —2q mod 4). 75)
;% sB0n )" =27 " M g, (o0 Y (
Extracting the terms containing ¢®" and then replacing ¢* by ¢ from (75), we obtain
Z PBDs3(72n 4 15)¢" PRRERL (mod 4). (76)

=0 f2f12
Using (41) in (76) we arrive at (23).

Extracting the terms containing ¢?” and replacing ¢ by ¢ from (66), we get
g g g

- n_ o f318
;PBD3(4n +1)g" =2 b (mod 8). (77)
Using (41) in (77), we have
§P3D3(4n +1)¢" = f{;ﬁls (mod 4). (78)
Substituting (33) into (78), we arrive at
iPBD3(4n+1)q”E2 f1f5 +2¢ fe fis (mod 4). (79)

I3 fi12f1s f2f4f18

Extracting the terms containing ¢*" and replacing ¢* by ¢ from (79), we obtain

313

n=0

;PBD?’(&L + 1" = Ftols (mod 4),
513 _ ffsfe -
but Fofofo = fufo o4
This vi — n_ o I3 36
is yields Z PBD3(8n+1)¢" =2 il (mod 4). (80)
n=0

Using Jacobi’s triple product identity and ¥ (q) = %2 in (32), we arrive at

1

B Sl Tk

hRhs T Th =1
Employing (81) into (80), we get
i PBDs(8n+1)¢" = fjff +2 f3];f9f18 (mod 4). (82)

n=0
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Congruence (17) is obtained by extracting the terms containing ¢®"**2 from the above
equation.

Extracting the terms containing ¢3**!, dividing throughout by ¢ and then replac-
ing ¢ by ¢ from (82), we obtain

i PBD3(24n + 9)q" = 5! 15222]0 ¢ (mod 4). (83)
n=0

Using (41) in (83), we have
> PBD3(24n+9)¢" = 2f1f2fs (mod 4). (84)
n=0

Substituting (37) into (84), we obtain

- f&fs
> PBDs3(24n + 9)¢" = 24553
o f3fis

Congruence (20) follows from (85) and extracting the terms containing ¢" and re-
placing ¢® by ¢ from the above equation. we find

—2qfefofis (mod 4). (85)

- f3fs
> PBD3(72n+9)¢" = 2225 (mod 4). (86)
2 fif2
Using (41) in (86), we get
oo 2
> PBD3(72n+9)¢" = 2‘572 =2(¢q) (mod 4). (87)
n=0 1
Substituting (32) into (87) and extracting the terms containing ¢3"*2, we arrive
at (21). O
3.5 Proof of Theorem 1.6
Employing Lemma (2.7) into (22), it can be see that
9] 2 _q
Y PBD; (72 (pn +2 o ) + 3) ¢" =2f, (mod 4), (88)

n=0
which implies that

> PBD;3 (72p°n+3p) ¢" =2f1 (mod 4).

n=0
Therefore, PBD3 (72p*n + 3p*) = PBD3(72n + 3) (mod 4).
Using the above relation and by induction on «, we arrive at (24). O

3.6 Proof of Theorem 1.7
Combining (88) with Theorem (1.6), we derive that for a > 0,

> PBDs (72p°* 0+ 3p°*) = 2f, (mod 4).

n=0
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Therefore, it follows that

> PBD;3 (12p** (pn+1) +3p>) =0 (mod 4).
n=0

where [ = 1,2,...,p — 1, and we obtain (25). O

3.7 Proof of Theorem 1.8

For a prime p > 5 and —(p—1)/2 < k,m < (p — 1)/2, consider
k2 +k 3m2+m  5p?—5
4 = d p).
5 +4 x 5 51 (mod p)
This is equivalent to (6k +1)2 +4(6m+1)?> =0 (mod p). Since (‘74) = —1, the only

solution of the above congruence is k = m = (£p—1)/6. Therefore, from Lemma 2.7,

o0 2
-1
Z PBD;3 (72 <p2n +5x 2 51 ) + 15) ¢ =2f1fs (mod 4). (89)
n=0
Using (23), (89), and induction on «, we get (26). O

3.8 Proof of Theorem 1.9

From Lemma 2.7 and Theorem 1.8, for each o > 0,

ZPBDS (72 <p2n+5 x P 51 ) + 15) q" =2f1fs (mod 4).

n=0

That is,

> PBDs (729 0 + 15p* %) ¢" = 2f, f1,  (mod 4). (90)
n=0
Since there are no terms on the right of (90) where the powers of ¢ are congruent to
1,2,...,p— 1 modulo p,

PBDs (72p** ! (pn + j) + 15p***%) =0 (mod 4),
forj=1,2,...,p—1. Therefore, for j =1,2,...,p—1and @ > 1, we arrive at (27). O

3.9 Proof of Theorem 1.10

By the binomial theorem, it is easy to see that for positive integers k and m,

sm = 2™ (mod 9), (91)
Invoking (91) in (5), we have
IR 131318

Z PBDs(2n+ 1)¢" =2
fo

n=0

(mod 18). (92)
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Employing (37) into (92) and extracting the terms containing ¢®"*!, dividing through-
out by ¢ and then replacing ¢ by ¢ from (92), we obtain
o 3 ¢4 3 £8
> PBD3(6n+3)q" = 147275 8qf1 f"’ (mod 18). (93)
o e 3
Invoking (42) in (93), we see that
o0 8
> PBDs(6n+3)q" = 4f3 + 4qu6 (mod 6). (94)

f3
Congruence (28) follows by extracting the terms containing ¢*"*2 from the above

equation.
Extracting the terms containing ¢®" and replacing ¢ by ¢ from (94), we arrive at

n=0

> PBD3(18n+3)¢" = 4f{ (mod 6),

n=0
which implies Z PBD3(18n + 3)¢" = 4f1f2 (mod 6). (95)
n=0
Invoking (42) in (95) we get (29). O

3.10 Proof of Theorem 1.11
For a prime p > 5 and —(p—1)/2 < k,m < (p — 1)/2, consider
3k% +k 3m2+m  4dp?—4
= d p).
5 + 3 x 5 o (mod p)
This is equivalent to (6k + 1)? + 3(6m + 1)2 =0 (mod p).

Since (*73) = —1, the only solution of the above congruence is k = m = (+p—1)/6.

Therefore, from Lemma 2.7,

e e] 2 1
Z PBD3 (18 <p2n tax? 51 > + 3> ¢ =4f1fs (mod 6). (96)
n=0

Using (29), (96), and induction on «, we arrive at (30). O

3.11 Proof of Theorem 1.12

From Lemma 2.7 and Theorem 1.11, for each o > 0,

oo 2_1
> PBDs (18 <p2n+4 x P > +3> ¢"=4f1fs (mod 6).

24

n=0

That is, > PBD;3 (18p** ™0 + 3p°*™2) ¢" = 4f,f3, (mod 6). (97)
n=0

Since there are no terms on the right of (97) where the powers of ¢ are congruent to

1,2,...,p— 1 modulo p,

PBDs (18p°*t ! (pn + j) +3p°*T?) =0 (mod 6),
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forj =1,2,...,p—1. Therefore, for j =1,2,...,p—1 and @ > 1, we obtain (31). O
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