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Abstract. In this paper, we will develop a new method to study coupled fixed points of
a mapping T : X ×X → X, where (X, d) is a special class of b-metric spaces endowed with
a graph. We will prove some general fixed point theorems which enable us to extend some
old results in fixed point theory. Moreover, we will extend Edelstein’s fixed point theorem
for two variable mappings in ε-chainable b-metric spaces.

1. Introduction

In 1922, Banach [2] established a fixed point theorem known as the Banach Con-
traction Principle which is one of the most important results in analysis. There are
many generalizations of Banach Contraction Principle. In particular, Ran and Reur-
ings [22] extended Banach’s fixed point theorem in complete metric spaces endowed
with a partial ordering as follows.

Theorem 1.1. [22] Let (X, d) be a complete metric space endowed with a partial
ordering - such that every pair of elements of X has an upper and lower bound. Let
T : X → X be continuous and monotone and such that for some α ∈ (0, 1),

x - y ⇒ d(Tx, Ty) ≤ αd(x, y) (x, y ∈ X).

If there is x0 ∈ X with x0 - Tx0 or Tx0 - x0, then T has a unique fixed point x∗

and x∗ = limn→∞ Tnx for all x ∈ X.

Subsequently, a few generalizations of Theorem 1.1 were obtained in [18–21].
In 2007, Jachymski [12] investigated the class of generalized Banach contractions

on a metric space endowed with a directed graph (see also [1] and [4]). Therefore
many corresponding results on partially ordered metric spaces were extended.
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Let X be a topological space. Following Opoitsev [23,24] a pair (x∗, y∗) ∈ X×X is
called a coupled fixed point for a mapping T : X×X → X provided that x∗ = T (x∗, y∗)
and y∗ = T (y∗, x∗). We inductively define {Tn} as follows: T 1(x, y) = T (x, y) and
Tn+1(x, y) = T

(
Tn(x, y), Tn(y, x)

)
for each n ∈ N and x, y ∈ X.

The mapping T is called a Picard operator if the sequence {
(
Tn(x, y), Tn(y, x)

)
}

converges to a unique coupled fixed point of T for each (x, y) ∈ X2. T is a weakly
Picard operator if for each (x, y) ∈ X2, the sequence

{(
Tn(x, y), Tn(y, x)

)}
converges

to a coupled fixed point of T .

The theory of coupled fixed points was expanded by Guo and Lakshmikantham
[10], who used the monotone iteration method for two variable contractive type map-
pings. In 2006, Bhaskar and Lakshmikantham proved the following.

Theorem 1.2. [3] Let (X,-) be a partially ordered set and suppose that there is a
metric d on X such that (X, d) is a complete metric space. Let T : X × X → X
be a continuous mapping having the mixed monotone property on X i.e. T (·, y) is
monotone increasing and T (x, ·) is monotone decreasing. Assume that there exists
a λ ∈ [0, 1) with d(T (x, y), T (u, v)) ≤ λ

2 (d(x, u) + d(y, v)) for all x, y, u, v ∈ X for
which x % u and y - v. If there exist x0, y0 ∈ X such that x0 - T (x0, y0) and
y0 % T (y0, x0), then T has a coupled fixed point.

They also proved that Theorem 1.2 is still valid when continuity of T is replaced
by the following properties.

(i) If a nondecreasing sequence {xn} converges to x, then xn - x, for all n ∈ N.

(ii) If a nonincreasing sequence {xn} converges to x, then x - xn, for all n ∈ N.

In 2015, Bota et al. obtained the following result in b-metric spaces.

Theorem 1.3. [5] Let (X, d) be a complete b-metric space with parameter k ≥ 1 and
- be partial order on X. If T : X ×X → X is a continuous mapping with the mixed
monotone property and the following conditions are satisfied:

(i) there exists λ ∈ [0, 1/k) such that d
(
T (x, y), T (u, v)

)
≤ λ

2 [d(x, u) + d(y, v)] for
all x % u, y - v,

(ii) there exist x0, y0 ∈ X such that x0 - T (x0, y0) and y0 % T (x0, y0).

Then T has a coupled fixed point.

In 1995, Czerwik [6] introduced a new class of b-metric spaces. In this paper, we
use Frink’s lemma on this class of b-metric spaces endowed with a graph to obtain some
general results for the existence of coupled fixed points of generalized contractions.
Our results enable us to extend the above results in b-metric spaces endowed with a
graph. Moreover, we will prove Edelstein’s fixed point theorem in ε-chainable b-metric
spaces for two variable mappings.
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2. Results

Let us start by recalling the following definition.

Definition 2.1. [6] Let X be a nonempty set and d : X ×X → [0,∞) satisfies the
following properties:

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, z) ≤ k[d(x, y) + d(y, z)]

for all x, y, z ∈ Z and for some k > 1. Then (X, d) is called a b-metric space.

In 1995, Czerwik [6] defined a special class of b-metrics by replacing (iii) with the
following:

(iv) For each ε > 0 and x, y, z ∈ X if d(x, y) < ε and d(y, z) < ε, then d(x, z) < 2ε.

It is easy to verify that “<” can be replaced by “≤” in (iv). Moreover, if d satisfies
(iv), then (iii) holds for k = 2.

Example 2.2. Let X = `
1
2 (R). For x, y ∈ X define d(x, y) = ||x− y|| 1

2
. Then (X, d)

is not a metric space. But it satisfies (iv), hence it is a b-metric space in the sense of
Czerwik.

However, for the b-metric (R, d′) defined by d′(x, y) = |x− y|2, x, y ∈ R, we have
d′(1, 0) = d′(0,−1) = 1 but d′(1,−1) = 4 ≮ 2. It is easy to verify that (R, d′) satisfies
(iii) for k = 2. Hence the class of those b-metrics with the property (iv) is strictly
smaller than the class of all b-metric spaces for k = 2.

We refer the interested reader to [11, 14–17] for some recent results on b-metric
spaces.

The following result plays an important role in the sequel.

Lemma 2.3. ( [8, 9]) Suppose d : X × X → [0,∞) satisfies the following condition.
For any ε > 0 and x, y, z ∈ X, if d(x, y) < ε and d(y, z) < ε, then d(x, z) < 2ε.
Define ρ : X ×X → [0,∞) by

ρ(x, y) = inf

{
n∑
i=1

d(xi−1, xi); where n ∈ N, x0 = x and xn = y

}
(x, y ∈ X).

Then ρ has the following properties:

(i) ρ(x, z) ≤ ρ(x, y) + ρ(y, z), for all x, y, z ∈ X.

(ii) d(x,y)
4 ≤ ρ(x, y) ≤ d(x, y) for all x, y ∈ X. Further, ρ is symmetric (i.e. ρ(x, y) =

ρ(y, x)) if d is.
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Hereafter, we will assume that (X, d) is a b-metric space in the sense of Czerwik [6],
that is a b-metric with the property (iv). Moreover, we will assume that ∆ is the
diagonal of the Cartesian product X ×X and that G is a graph on X such that the
set V (G) of its vertices coincides with X and the set E(G) of its edges contains ∆.

The metric space (X, d) endowed with the graph G is called a G-b-metric space.
We also denote by G−1 the graph obtained from G by reversing the direction of edges.
Define the graph G2 on X2 by

E(G2) = {
(
(x, y), (u, v)

)
∈ X2 ×X2 : (x, u) ∈ E(G), (y, v) ∈ E(G−1)}.

Example 2.4. Let - be a partial order in X. We define the graph G1 by E(G1) =
{(x, y) ∈ X2 : x - y}. Then a mapping T : X × X → X has the mixed monotone
property with respect to - if and only if it is G2

1-edge preserving.

Now, we recall some basic notions concerning connectivity of graphs [13]. Let G be
a graph on X and x and y be vertices in G. Then a path in G from x to y of length N
(N = 0, 1, 2, . . . ) is a finite sequence x0 = x, x1, . . . , xN = y, where (xi−1, xi) ∈ E(G)
for 1 ≤ i ≤ N .

A graph G is called connected if there is a path between any two vertices. The
graph G is called weakly connected if G̃ is connected, where G̃ is the undirected graph
obtained from G by ignoring the direction of edges.

Let E(G) be symmetric and x ∈ V (G). The component of G which contains
x, denoted by Gx, is the subgraph of G consisting of all edges and vertices which
are contained in some path beginning at x. In this case, the relation “yRz if and
only if there is a path in G from y to z” defines an equivalent relation on X and
V (Gx) = [x]G, where [x]G is the equivalence class of x.

Definition 2.5. A function T : X ×X → X is called

(i) G2-edge preserving if
(
(x, y), (u, v)

)
∈ E(G2) implies that(

(T (x, y), T (y, x)), (T (u, v), T (v, u))
)
∈ E(G2).

(ii) G2-continuous if xn → x, yn → y and
(
(xn, yn), (xn+1, yn+1)

)
∈ E(G2) implies

that T (xn, yn)→ T (x, y).

(iii) G-contraction if it is G2 edge preserving and there is λ ∈ [0, 1) such that
((x, y), (u, v)) ∈ E(G2) implies that d(T (x, y), T (u, v)) ≤ λ

2

[
d(x, u) + d(y, v)

]
.

In order to state the main results of this paper, we need the following auxiliary
results.

Lemma 2.6. Let T : X ×X → X be a G-contraction with a constant 0 ≤ λ < 1 and
(x, y) ∈ [(x0, y0)]G̃2

, where x0, y0, x, y ∈ X. Then there is some ϕ(x, y) such that

d
(
Tn(x, y), Tn(x0, y0)

)
≤ λnϕ(x, y) (n ∈ N). (2)

Proof. By induction on n, we will show that

d
(
Tn(a, b), Tn(c, d)

)
≤ λn

2
[d(a, c) + d(b, d)], (n ∈ N), (3)
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whenever
(
(a, b), (c, d)

)
∈ E(G̃2). Since T is a G-contraction, (3) holds for n = 1.

Let (3) hold for some n ∈ N and
(
(a, b), (c, d)

)
∈ E(G̃2). Since T is G2-edge

preserving,
(
(T (a, b), T (b, a)), (T (c, d), T (d, c))

)
∈ E(G̃2). Thus by our hypothesis,

d
(
Tn+1(a, b), Tn+1(c, d)

)
= d
(
Tn(T (a, b), T (b, a)), Tn(T (c, d), T (d, c))

)
≤ λn

2
[d
(
T (a, b), T (c, d)

)
+ d
(
T (b, a), T (d, c)

)
]

≤ λn+1

2
[d(a, c) + d(b, d)].

This proves (3) for each n ∈ N and
(
(a, b), (c, d)

)
∈ E(G̃2).

Suppose that (ti, wi)
N
i=0 is a path from (x, y) to (x0, y0) in G̃2. Then (x, y) =

(t0, w0), (x0, y0) = (tN , wN ) and
(
(ti−1, wi−1), (ti, wi)

)
∈ E(G̃2) for i = 1, . . . , N .

Therefore, by (3), for all n ∈ N and 1 ≤ i ≤ N ,

d
(
Tn(ti−1, wi−1), Tn(ti, wi)

)
≤ λn

2
[d(ti−1, ti) + d(wi−1, wi)].

Let ρ be as in Lemma 2.3. Then

d
(
Tn(x, y), Tn(x0, y0))

)
≤ 4ρ

(
Tn(x, y), Tn(x0, y0)

)
≤ 4

N∑
i=1

ρ
(
Tn(ti−1, wi−1), Tn(ti, wi)

)
≤ 4

N∑
i=1

d
(
Tn(ti−1, wi−1), Tn(ti, wi)

)
≤ 2λn

N∑
i=1

[d(ti−1, ti) + d(wi−1, wi)].

This proves (2) with ϕ(x, y) = 2
∑N
i=1[d(ti−1, ti) + d(wi−1, wi)]. �

Lemma 2.7. Let T : X ×X → X be G2-edge preserving such that for some (x0, y0) ∈
X2,

(
T (x0, y0), T (y0, x0)

)
∈ [(x0, y0)]G̃2 . Then for each (x, y) ∈ [(x0, y0)]G̃2 ,(

Tn(x, y), Tn(y, x)
)
∈ [(x0, y0)]G̃2 , (n ∈ N). (4)

Proof. We will prove (4) by induction. Let (x, y) ∈ [(x0, y0)]G̃2 . Then there is a path

(x, y) = (t0, w0), . . . , (tN , wN ) = (x0, y0), from (x, y) to (x0, y0) in G̃2. Since T is
G2-edge preserving,((

T (ti−1, wi−1), T (wi−1, ti−1)
)
,
(
T (ti, wi), T (wi, ti)

))
∈ E(G̃2); i = 1, . . . , N.

It follows that
(
T (x, y), T (y, x)

)
and

(
T (x0, y0), T (y0, x0)

)
are in the same class.

Hence
(
T (x, y), T (y, x)

)
∈ [(x0, y0)]G̃2 . This proves (4) for n = 1.

Let (4) hold for some n. Put u = Tn(x, y) and v = Tn(y, x). Then (u, v) ∈
[(x0, y0)]G̃2 . Repeating the argument from the first part of the proof, we see that(

Tn+1(x, y), Tn+1(y, x)
)

=
(
T (u, v), T (v, u)

)
∈ [(x0, y0)]G̃2 .

This proves (4). �
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In order to state our next auxiliary result, we need the following definition.

Definition 2.8. Let {xn} and {yn} be two sequences in X. We say that these
sequences are Cauchy equivalent if each of them is Cauchy and d(xn, yn) → 0 as
n→∞.

Lemma 2.9. Let T : X × X → X be a G-contraction with a constant λ ∈ [0, 1)
and let (T (x0, y0), T (y0, x0)) ∈ [(x0, y0)]G̃2 for some (x0, y0) ∈ X2. Then for each
(x, y) ∈ [(x0, y0)]G̃2 the following statements hold.

(i) The sequences {Tn(x, y)} and {Tn(x0, y0)} are Cauchy equivalent.

(ii) The sequences {Tn(y, x)} and {Tn(y0, x0)} are Cauchy equivalent.

Proof. Since
(
T (x0, y0), T (y0, x0)

)
∈ [(x0, y0)]G̃2 , by Lemma 2.6, there is some ϕ(x0, y0)

such that for each n ∈ N,

d
(
Tn(x0, y0), Tn+1(x0, y0)

)
= d
(
Tn(x0, y0), Tn(T (x0, y0), T (y0, x0))

)
≤ λnϕ(x0, y0).

Let ρ be as in Lemma 2.3. Then for each m > n,

d
(
Tn(x0, y0), Tm(x0, y0)

)
≤ 4ρ

(
Tn(x0, y0), Tm(x0, y0)

)
≤ 4

m−1∑
i=n

ρ
(
T i(x0, y0), T i+1(x0, y0)

)
≤ 4

m−1∑
i=n

d
(
T i(x0, y0), T i+1(x0, y0)

)
≤ 4ϕ(x0, y0)

m−1∑
i=n

λi ≤ 4ϕ(x0, y0)λn

1− λ
.

Since the right-hand side of the above inequality tends to zero as n tends to infin-
ity, {Tn(x0, y0)} is a Cauchy sequence. Let (x, y) ∈ [(x0, y0)]G̃2 . By Lemma 2.7,
(T (x, y), T (y, x)) ∈ [(x, y)]G̃2 . By a similar argument as used above, one can show
that {Tn(x, y)} is also a Cauchy sequence. This, together with Lemma 2.6, implies
that the first statement holds. The proof of the second statement is similar. �

We also need the following definition.

Definition 2.10. A mapping T : X ×X → X is called orbitally G2-continuous if for
each x, y, x∗, y∗ ∈ X and any sequence kn of positive integers,

(i) T kn(x, y)→ x∗, T kn(y, x)→ y∗ as n→∞, and

(ii)
((
T kn(x, y), T kn(y, x)

)
,
(
T kn+1(x, y), T kn+1(y, x)

))
∈ E(G2) for each n ∈ N im-

ply that T (T kn(x, y), T kn(y, x))→ x∗ and T (T kn(y, x), T kn(x, y))→ y∗ as n→∞.

Now, we are ready to state one of the main results of this section.

Theorem 2.11. Let (X, d) be a complete b-metric space and T : X × X → X a
G-contraction with a constant 0 ≤ λ < 1. Suppose that T is orbitally G2-continuous
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and the set X2
T =

{
(x, y) :

(
(x, y),

(
T (x, y), T (y, x)

))
∈ E(G2)

}
, is not empty. Then

the following statements hold.

(i) For all (x0, y0) ∈ X2
T , (x, y) ∈ [(x0, y0)]G̃2 , the sequence

{(
Tn(x, y), Tn(y, x)

)}
converges to a fixed point of T and the limit does not dependent on (x, y).

(ii) If G2 is weakly connected, then T is a Picard operator.

(iii) If X2
T = X2, then T is a weakly Picard operator.

Proof. Let (x0, y0) ∈ X2
T . By Lemma 2.9, the sequences {Tn(x0, y0)} and {Tn(y0, x0)}

are Cauchy. Thanks to completeness of X, there are x∗, y∗ ∈ X such that x∗ =
limn→∞ Tn(x0, y0), y∗ = limn→∞ Tn(y0, x0). By using the fact that T is G2-edge
preserving, one can inductively prove that((

Tn(x0, y0), Tn(y0, x0)
)
,
(
Tn+1(x0, y0), Tn+1(y0, x0)

))
∈ E(G2) (n ∈ N). (5)

Since T is orbitally G2-continuous, by (5),

T (x∗, y∗) = T
(

lim
n→∞

Tn(x0, y0), lim
n→∞

Tn(y0, x0)
)

= lim
n→∞

T (Tn(x0, y0), Tn(y0, x0)) = lim
n→∞

Tn+1(x0, y0) = x∗.

Similarly, one can show that T (y∗, x∗) = y∗. Hence (x∗, y∗) is a fixed point of T . If
(x, y) ∈ [(x0, y0)]G̃2 , by Lemma 2.9,

1) {Tn(x, y)} and {Tn(x0, y0)} are Cauchy equivalent, also

2) {Tn(y, x)} and {Tn(y0, x0)} are Cauchy equivalent.

So that x∗ = limn→∞ Tn(x, y) and y∗ = limn→∞ Tn(y, x). This proves (i).
Statement (ii) follows from (i).
If X2

T = X2, by the argument used in the beginning of the proof one can easily see
that for each (x, y) ∈ X2, the sequence

{(
Tn(x, y), Tn(y, x)

)}
converges to a fixed

point of T . This proves (iii). �

The following example shows that our results are genuine generalization of some
old results.

Example 2.12. Let X = [0, 1] equipped with usual topology. Define - on X by

x - y ⇔ (x, y ∈ (0, 1)& x ≤ y) or (x = y = 0) or (x = y = 1).

Let G1 be the graph defined in Example 2.4. Consider the function T : X ×X → X
defined by

T (x, y) =

{
x+y
4 if x, y ∈ (0, 1),

1 otherwise .

It is easy to verify that T is G1-contraction. Since

|T (1, 1)− T (0.9, 0.9)| = 1− 0.9 + 0.9

4
= 5.5

( |1− 0.9|+ |1− 0.9|
2

)
,
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T is not a contraction. But T is G̃1
2
-orbitally continuous and (1, 1) ∈ X2

T , so that
Theorem 2.11 implies that T has a coupled fixed point. However, T is not continuous,
since limn→∞ T ( 1

n ,
1
n ) = 0 6= T (0, 0) = 1. Hence Theorem 1.3 cannot be applied.

The next result, which is an extension of Theorem 1.3, follows immediately from
Theorem 2.11 by considering the graph G1 from Example 2.4.

Corollary 2.13. Let (X, d) be a complete b-metric space and - be partial order on
X. Suppose that T : X ×X → X is a continuous mapping with the mixed monotone
property and for some 0 ≤ λ < 1

d
(
T (x, y), T (u, v)

)
≤ λ

2
[d(x, u) + d(y, v)] for all x % u, y - v.

Let X2
T = {(x, y) : x % T (x, y), y - T (y, x)}. Then the following statements hold.

(i) If X2
T is nonempty, then T has a coupled fixed point.

(ii) If X2
T = X2, then T is a weakly Picard operator.

The next result states that when T is not G2-orbitally continuous, the results of
Theorem 2.11 are still valid provided that the underlying b-metric space has some
additional properties.

Theorem 2.14. Let (X, d) be a complete b-metric space and T : X × X → X a
G-contraction with a constant λ ∈ [0, 1). Assume that the following properties hold.

(i) X2
T =

{
(x, y) :

(
(x, y),

(
T (x, y), T (y, x)

))
∈ E(G2)

}
is not empty.

(ii) If (xn, xn+1) ∈ E(G) and {xn} converges to x, then (xn, x) ∈ E(G) for all n ∈ N.

(iii) If (xn+1, xn) ∈ E(G) and {xn} converges to x, then (x, xn) ∈ E(G) for all
n ∈ N.

Then the following statements hold.

(1) For all (x0, y0) ∈ X2
T , (x, y) ∈ [(x0, y0)]G̃2 , the sequence

{(
Tn(x, y), Tn(y, x)

)}
converges to a fixed point of T and the limit does not dependent on (x, y).

(2) If G2 is weakly connected, then T is a Picard operator.

(3) If X2
T = X2, then T is a weakly Picard operator.

Proof. Let (x0, y0) ∈ X2
T . By the proof of Theorem 2.11, we need only to show that

(x∗, y∗) is a coupled fixed point of T , where

x∗ = lim
n→∞

Tn(x0, y0), y∗ = lim
n→∞

Tn(y0, x0). (6)

Let ε > 0. By (6), there is some n0 ∈ N such that for each n ≥ n0,

max{d(x∗, Tn(x0, y0)), d(y∗, Tn(y0, x0))} < ε

6
.
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Then for each n ≥ n0, we have

d(x∗, T (x∗, y∗)) ≤ 2d(x∗, Tn+1(x0, y0)) + 2d(Tn+1(x0, y0), T (x∗, y∗))

≤ ε

3
+ 2d

(
T (Tn(x0, y0), Tn(y0, x0)), T (x∗, y∗)

)
≤ ε

3
+ λ[d(Tn(x0, y0), x∗) + d(Tn(y0, x0), y∗)]

≤ ε

3
+ λ[

ε

6
+
ε

6
] < ε.

Since ε > 0 was arbitrary, x∗ = T (x∗, y∗). A similar argument shows that y∗ =
T (y∗, x∗). This completes our proof. �

The following example shows that conditions (ii) and (iii) are necessary in Theo-
rem 2.14.

Example 2.15. Let X = [0, 1] be endowed with the Euclidean metric d(x, y) = |x−y|.
Define E(G) =

{
(x, y) : x, y ∈ (0, 1) or x, y ∈ {0, 1}

}
and T : X ×X → X by

T (x, y) =

{
x+y
4 if x, y ∈ (0, 1),

1
2 otherwise .

It is easy to verify that T is a G-contraction with constant λ = 1
2 and (x, y) ∈ X2

T for
each x, y ∈ (0, 1). However, T has no fixed points. Therefore the conditions (ii) and
(iii) are necessary in Theorem 2.14.

By considering the graph G1 from Example 2.4, we get to the following result
which represents an extension of Theorem 2.2 from [3].

Corollary 2.16. Let (X, d) be a complete b-metric space and - be partial order on
X. Suppose that T : X ×X → X has the following properties.

(i) T has the mixed monotone property.

(ii) There is 0 ≤ λ < 1 such that d
(
T (x, y), T (u, v)

)
≤ λ

2 [d(x, u) + d(y, v)] whenever
x % u and y - v.

(iii) If a nondecreasing sequence {xn} converges to x, then xn - x, for all n ∈ N.

(iv) If a nonincreasing sequence {xn} converges to x, then x - xn, for all n ∈ N.

Let X2
T = {(x, y) : x % T (x, y), y - T (y, x)}. Then the following statements hold.

(1) If X2
T is nonempty, then T has a coupled fixed point.

(2) If X2
T = X2, then T is a weakly Picard operator.

In order to state the next main result, we need the following lemma.

Lemma 2.17. Let T : X ×X → X be a mapping and A ⊂ X2 be such that for some
(x∗, y∗) ∈ X2, Tn(x, y) → x∗ and Tn(y, x) → y∗ for each (x, y) ∈ A. If {Tn} is
equicontinuous on Ā, then Tn(x, y)→ x∗ and Tn(y, x)→ y∗ for each (x, y) ∈ Ā.
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Proof. Let (x, y) ∈ Ā and ε > 0. Thanks to equicontinuity of {Tn}, there is some
δ > 0 such that for all n ∈ N, (x′, y′) ∈ Ā, (d(x, x′) < δ and d(y, y′) < δ) imply
(d(Tn(x, y), Tn(x′, y′) < ε/4 and d(Tn(y, x), Tn(y′, x′)) < ε/4) . Let (x′, y′) ∈ A be
such that d(x, x′) < δ and d(y, y′) < δ. Take some n0 > 0 such that d

(
Tn(x′, y′), x∗

)
for all n > n0, then

d
(
Tn(x, y), x∗

)
≤ 2
(
d(Tn(x, y), Tn(x′, y′)

)
+ d
(
Tn(x′, y′), x∗

)
< 2(ε/4 + ε/4) = ε (n > n0).

Hence limn→∞ Tn(x, y) = x∗.
By an obvious change, one can prove that limn→∞ Tn(y, x) = y∗. �

The next result states that under some circumstances equicontinuity of {Tn} im-
plies that T is Picard operator on a closed subset of X ×X.

Theorem 2.18. Let (X, d) be a complete b-metric and T : X × X → X be a G-
contraction with a constant λ ∈ [0, 1). Suppose that for some (x, y) ∈ X, the sequence
{Tn} is equicontinuous on [(x, y)]G̃ and

(
T (x, y), T (y, x)

)
∈ [(x, y)]G̃. Then T |

[(x,y)]G̃
is a Picard operator.

Proof. By Lemma 2.7,
{(
Tn(x, y), Tn(y, x)

)}
∈ [x, y)]G̃2 for each n ∈ N. According

to Lemma 2.9, for each (u, v) ∈ [x, y)]G̃2 , the sequences
{(
Tn(x, y), Tn(y, x)

)}
and{(

Tn(u, v), Tn(v, u)
)}

are Cauchy equivalent. By the completeness of [(x, y)]G̃2 , there

is some (x∗, y∗) ∈ [x, y)]G̃2 such that

lim
n→∞

Tn(u, v) = x∗ and lim
n→∞

Tn(v, u) = y∗ (7)

for all (u, v) ∈ [x, y)]G̃2 . Lemma 2.17 guarantees that (7) is true for all (u, v) ∈
[(x, y)]G̃2 . Finally, continuity of T implies that (x∗, y∗) is the unique fixed point of T

in [(x, y)]G̃2 . �

In order to state an application of the above result, we need the following definition.

Definition 2.19. Let (X, d) be a b-metric space and ε > 0. Then X is called ε-
chainable if for each x, y ∈ X, there is some n0 ∈ N and x0 = x, x1, . . . , xn0

∈ X such
that d(xi−1, xi) < ε for i = 1, . . . , n0.

Edelstein [7] proved that if a complete metric space (X, d) for some ε > 0 is
ε-chainable and T : X → X for some 0 ≤ λ < 1 satisfies

d(x, y) < ε⇒ d(Tx, Ty) < λd(x, y),

then T has a unique fixed point. In the following result, we extend Edelstein’s theorem
for two variable mappings T : X ×X → X, where X is a complete b-metric space.

Corollary 2.20. Let (X, d) be a complete and ε-chainable b-metric space for some
ε > 0. Let T : X ×X → X be such that for some 0 ≤ λ < 1,

d(x, x′) < ε and d(y, y′) < ε⇒ d
(
T (x, y), T (x′, y′)

)
≤ λ

2

[
d(x, x′) + d(y, y′)

]
. (8)

Then T is a Picard operator.
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Proof. We inductively prove that for each n ∈ N,

d(x, x′) < ε, d(y, y′) < ε⇒ d
(
Tn(x, y), Tn(x′, y′)

)
≤ λn

2
[d(x, x′) + d(y, y′)]. (9)

For n = 1, (9) becomes (8). Assume that for some n ∈ N (9) holds. If d(x, x′) < ε
and d(y, y′) < ε, then d

(
Tn(x, y), Tn(x′, y′)

)
≤ λn

2 [d(x, x′) + d(y, y′)] < λnε < ε.

Similarly, d
(
Tn(y, x), Tn(y′, x′)

)
< ε. Therefore we have

d
(
Tn+1(x, y), Tn+1(x′, y′)

)
= d

(
T
(
Tn(x, y), Tn(y, x)

)
, T
(
Tn(x′, y′), Tn(y′, x′)

))
≤ λ

2

[
d
(
Tn(x, y), Tn(x′, y′)

)
+ d
(
Tn(y, x), Tn(y′, x′)

)]
≤ λ

2

[
λn
(
d(x, x′) + d(y, y′)

)]
=
λn+1

2
[d(x, x′) + d(y, y′)].

Hence (9) holds for all n ∈ N. Therefore, {Tn} is equicontinuous.
Let G be a graph with V (G) = X and E(G) = {(x, x′) : d(x, x′) < ε}. Then

ε-chainability of (X, d) implies that G2 is connected. So that X2 = [(x, y)]G2 for each
(x, y) ∈ X2. By Theorem 2.18, T is a Picard operator. �
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[16] Z. Kadelburg, S. Radenović, M. Rajović, A note on fixed point theorems for rational Geraghty
contractive mappings in ordered b-metric spaces, Krag. J. Math. 39(2), (2015), 187–195.

[17] A. K. Mirmostafaee, Fixed point theorems for set-valued mappings in b-metric spaces, to
apperar in Fixed Point Theory.
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