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Abstract. The aim of this note is to establish the existence of three solutions for a
two-point boundary value problem. The approach is based on variational methods. Some
particular cases and two concrete examples are then presented.

1. Introduction

In this paper, we consider the following Dirichlet boundary value problem{
−u′′ = [λf(x, u) + g(u)]h(x, u′) in (0, 1),

u(0) = u(1) = 0,
(2)

where λ is a positive parameter, f : [0, 1] × R → R is an L1-Carathéodory function,
g : R→ R is a Lipschitz continuous function with the Lipschitz constant L > 0, i.e.,

|g(t1)− g(t2)| ≤ L|t1 − t2|
for every t1, t2 ∈ R, with g(0) = 0, and h : [0, 1] × R → [0,+∞) is a bounded and
continuous function with m := inf(x,t)∈[0,1]×R h(x, t) > 0.

Motivated by the fact that such problems are used to describe a large class of
physical phenomena, many authors looked for existence of solutions for second order
ordinary differential non-linear equations. The existence of solutions for problem (2)
or, more generally, for nonlinear differential problems has been widely investigated
(see, for instance, [1–3,5, 7, 10,12] and the references therein).

In [2], using variational methods, the authors established the existence of at least
one non-trivial solution for problem (2).

Using Ricceri’s variational principle, in [1] the existence of infinitely many weak
solutions has been proved for the problem{

−u′′ + uh(x, u′) = [λf(x, u) + µg(x, u) + p(u)]h(x, u′) in (a, b),

u(a) = u(b) = 0,
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272 Existence of three weak solutions for a Dirichlet problem

where λ is a positive parameter, µ is a non-negative parameter, f, g : [0, 1]× R → R
are L1-Carathéodory functions, p : R→ R is a Lipschitz continuous function with the
Lipschitz constant L > 0, p(0) = 0, and h : [0, 1] × R → [0,+∞) is a bounded and
continuous function with m := inf(x,t)∈[0,1]×R h(x, t) > 0.

In the present paper, employing two three critical points theorems which we recall
in the next section (Theorems 2.1 and 2.2), we establish the existence of three solutions
for the problem (2).

The following theorem represents a special case of Theorem 3.1.

Theorem 1.1. Let f : R→ R be a non-negative continuous function such that

36

∫ 2

0

f(x) dx <

∫ 3

0

f(x) dx

and lim sup
|ξ|→+∞

∫ ξ
0
f(x) dx

ξ2
≤ 0.

Then, for each

λ ∈
( 90∫ 3

0
f(x) dx

,
5

2
∫ 2

0
f(x) dx

)
,

the problem {
−u′′ + u = λf(u) in (0, 1),

u(0) = u(1) = 0

admits at least three classical solutions.

Moreover, the following result is a consequence of Theorem 3.6.

Theorem 1.2. Let f : R→ R be a non-negative continuous function such that

75

∫ 4

0

f(x) dx < 2

∫ 5

0

f(x) dx

and 3

∫ 40

0

f(x) dx < 4

∫ 5

0

f(x) dx.

Then, for each

λ ∈
( 375∫ 5

0
f(x) dx

,min
{ 10∫ 4

0
f(x) dx

,
500∫ 40

0
f(x) dx

})
,

the problem {
−u′′ + u = λf(u) in (0, 1),

u(0) = u(1) = 0

admits at least three classical solutions.
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2. Preliminaries

We now state two critical point theorems from Bonanno and coauthors [4,6] which are
the main tools for proving our results. The first result has been obtained in [6] and it
is a more precise version of Theorem 3.2 in [4]. The second one has been established
in [4]. In the first one the coercivity of the functional Φ−λΨ is required, while in the
second a suitable sign hypothesis is assumed.

Theorem 2.1 ( [6, Theorem 2.6]). Let X be a reflexive real Banach space; Φ : X → R
be a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux dif-
ferentiable functional whose Gâteaux derivative admits a continuous inverse on X∗,
Ψ : X → R be a sequentially weakly upper semicontinuous, continuously Gâteaux dif-
ferentiable functional whose Gâteaux derivative is compact, such that Φ(0) = Ψ(0) =
0 . Assume that there exist r > 0 and x̄ ∈ X, with r < Φ(x̄) such that

(i) supΦ(x)≤r Ψ(x) < rΨ(x̄)/Φ(x̄),

(ii) for each λ in

Λr :=
(Φ(x̄)

Ψ(x̄)
,

r

supΦ(x)≤r Ψ(x)

)
,

the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr the functional Φ− λΨ has at least three distinct critical points
in X.

Theorem 2.2 ( [4, Theorem 3.2]). Let X be a reflexive real Banach space;
Φ : X → R be a convex, coercive and continuously Gâteaux differentiable functional
whose Gâteaux derivative admits a continuous inverse on X∗, Ψ : X → R be a
continuously Gâteaux differentiable functional whose Gâteaux derivative is compact,
such that infX Φ = Φ(0) = Ψ(0) = 0 . Assume that there exist two positive constants
r1, r2 > 0 and x̄ ∈ X, with 2r1 < Φ(x̄) < r2

2 , such that

(i)
supΦ(x)≤r1 Ψ(x)

r1
<

2

3

Ψ(x̄)

Φ(x̄)
,

(ii)
supΦ(x)≤r2 Ψ(x)

r2
<

1

3

Ψ(x̄)

Φ(x̄)
,

(iii) for each λ in Λ∗r1,r2 :=
(3

2

Φ(x̄)

Ψ(x̄)
,min

{ r1

supΦ(x)≤r1 Ψ(x)
,

r2

2 supΦ(x)≤r2 Ψ(x)

})
and for every x1, x2 ∈ X,which are local minima for the functional Φ− λΨ,

and such that Ψ(x1) ≥ 0 and Ψ(x2) ≥ 0, one has inf
t∈[0,1]

Ψ(tx1 + (1− t)x2) ≥ 0.

Then, for each λ ∈ Λ∗r1,r2 the functional Φ − λΨ has at least three distinct critical
points which lie in Φ−1(]−∞, r2[).
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Let us introduce some notation which will be used later. Define

H1
0 ([0, 1]) :=

{
u ∈ L2([0, 1]) : u′ ∈ L2([0, 1]), u(0) = u(1) = 0

}
.

Take X = H1
0 ([0, 1]) endowed with the usual norm defined as follows:

‖u‖ :=

(∫ 1

0

|u′(x)|2 dx
)1/2

.

Let g : R → R be a Lipschitz continuous function with the Lipschitz constant
L > 0, i.e. |g(t1)−g(t2)| ≤ L|t1−t2|, for every t1, t2 ∈ R, and g(0) = 0, h : [0, 1]×R→
[0,+∞) be a bounded and continuous function with m := inf(x,t)∈[0,1]×R h(x, t) > 0,
and f : [0, 1]× R→ R be an L1-Carathéodory function.

We recall that f : [0, 1]× R→ R is an L1-Carathéodory function if

(i) the mapping x 7−→ f(x, ξ) is measurable for every ξ ∈ R;

(ii) the mapping ξ 7−→ f(x, ξ) is continuous for almost every x ∈ [0, 1];

(iii) for every ρ > 0 there exists a function lρ ∈ L1([0, 1]) such that for almost every
x ∈ [0, 1] : sup|ξ|≤ρ |f(x, ξ)| ≤ lρ(x).

Corresponding to f, g and h we introduce the functions F : [0, 1]×R→ R, G : R→ R
and H : [0, 1]× R→ [0,+∞), respectively, as follows

F (x, t) :=

∫ t

0

f(x, ξ) dξ, G(t) := −
∫ t

0

g(ξ) dξ,

H(x, t) :=

∫ t

0

(∫ τ

0

1

h(x, δ)
dδ

)
dτ

for all x ∈ [0, 1] and t ∈ R.
In the following, let M := sup(x,t)∈[0,1]×R h(x, t) and suppose that the Lipschitz

constant L > 0 of the function g satisfies the condition LM < 4.
We say that a function u ∈ X is a weak solution of problem (2) if∫ 1

0

(∫ u′(x)

0

1

h(x, τ)
dτ

)
v′(x) dx− λ

∫ 1

0

f(x, u(x))v(x) dx−
∫ 1

0

g(u(x))v(x) dx = 0

holds for all v ∈ X.
By standard regularity results, if f is continuous in [0, 1]×R, then weak solutions

of problem (2) belong to C2([0, 1]), thus they are classical solutions.
For other basic notations and definitions, we refer the reader to [8, 11,13,15].

3. Main results

Put

A :=
4− LM

8M
, B :=

4 + Lm

8m
,

and suppose that B ≤ 4A. We formulate our main results as follows.
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Theorem 3.1. Assume that there exist two positive constants c and d with c <
√

2d,
such that

(A1) F (x, t) ≥ 0 for all (x, t) ∈
(

[0,
1

4
] ∪ [

3

4
, 1]

)
× [0, d];

(A2)

∫ 1

0
max|t|≤c F (x, t) dx

c2
<

1

8

∫ 3/4

1/4
F (x, d) dx

d2
;

(A3) lim sup
|ξ|→+∞

supx∈[0,1] F (x, ξ)

ξ2
≤ 4A

B

∫ 1

0
max|t|≤c F (x, t) dx

c2
.

Then, for every λ in

Λ :=
( 8Bd2∫ 3/4

1/4
F (x, d) dx

,
Bc2∫ 1

0
max|t|≤c F (x, t) dx

)
,

problem (2) has at least three distinct weak solutions.

Proof. Fix λ as in the conclusion. Our aim is to apply Theorem 2.1 to our problem.
To this end, for every u ∈ X, we introduce the functionals Φ,Ψ : X → R by setting

Φ(u) :=

∫ 1

0

H(x, u′(x)) dx+

∫ 1

0

G(u(x)) dx,

Ψ(u) :=

∫ 1

0

F (x, u(x)) dx

and put Iλ(u) := Φ(u)− λΨ(u), ∀ u ∈ X.
Note that the weak solutions of (2) are exactly the critical points of Iλ. It is well known
that the functionals Φ,Ψ are well defined and continuously differentiable functionals
whose derivatives at the point u ∈ X are the functionals Φ′(u),Ψ′(u) ∈ X∗, given by

Φ′(u)(v) =

∫ 1

0

(∫ u′(x)

0

1

h(x, τ)
dτ

)
v′(x) dx−

∫ 1

0

g(u(x))v(x) dx,

Ψ′(u)(v) =

∫ 1

0

f(x, u(x))v(x) dx

for any v ∈ X. Also, the functionals Φ and Ψ satisfy all regularity assumptions
imposed in Theorem 2.1 (for more details, see the proof of [9, Theorem 2.1]).

Since g is Lipschitz continuous and satisfies g(0) = 0, while h is bounded away
from zero, the inequality

max
x∈[0,1]

|u(x)| ≤ 1

2
‖u‖ for all u ∈ X (3)

(see, e.g. [14]) yields for any u ∈ X the estimate

A‖u‖2 ≤ Φ(u) ≤ B‖u‖2. (4)

We will verify (i) and (ii) of Theorem 2.1. Put r = Bc2. Taking (3) into account,
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for every u ∈ X such that Φ(u) ≤ r, one has maxx∈[0,1] |u(x)| ≤ c. Consequently,

sup
Φ(u)≤r

Ψ(u) ≤
∫ 1

0

max
|t|≤c

F (x, t) dx,

that is,
supΦ(u)≤r Ψ(u)

r
≤
∫ 1

0
max|t|≤c F (x, t) dx

Bc2
.

Hence,
supΦ(u)≤r Ψ(u)

r
<

1

λ
. (5)

Put

w(x) =


4dx, x ∈ [0, 1

4 [,

d, x ∈ [ 1
4 ,

3
4 ],

4d(1− x), x ∈] 3
4 , 1].

It is easy to verify that w ∈ X and, in particular, ‖w‖2 = 8d2. So, taking (4) into
account, we deduce 8Ad2 ≤ Φ(w) ≤ 8Bd2. Hence, from c <

√
2d and B ≤ 4A, we

obtain r < Φ(w).

Since 0 ≤ w(x) ≤ d for each x ∈ [0, 1], assumption (A1) ensures that∫ 1/4

0

F (x,w(x)) dx+

∫ 1

3/4

F (x,w(x)) dx ≥ 0,

and so Ψ(w) ≥
∫ 3/4

1/4

F (x, d) dx.

Therefore, we obtain

Ψ(w)

Φ(w)
≥ 1

8

∫ 3/4

1/4
F (x, d) dx

Bd2
>

1

λ
. (6)

Therefore, from (5) and (6), condition (i) of Theorem 2.1 is fulfilled. Now, to prove
the coercivity of the functional Iλ, due to (A3), we have

lim sup
|ξ|→+∞

supx∈[0,1] F (x, ξ)

ξ2
<

4A

λ
.

So, we can fix ε > 0 satisfying

lim sup
|ξ|→+∞

supx∈[0,1] F (x, ξ)

ξ2
< ε <

4A

λ
.

Then, there exists a positive constant θ such that

F (x, t) ≤ ε|t|2 + θ ∀x ∈ [0, 1], ∀t ∈ R .
Taking into account (3) and (4), it follows that

Iλ(u) = Φ(u)− λΨ(u) ≥ A‖u‖2 − λε‖u‖2L2[0,1] − λθ ≥
(
A− λε

4

)
‖u‖2 − λθ

for all u ∈ X. So, the functional Iλ is coercive. Now, the conclusion of Theorem 2.1
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can be used. It follows that, for every

λ ∈ Λ ⊆
(Φ(w)

Ψ(w)
,

r

supΦ(u)≤r Ψ(u)

)
,

the functional Iλ has at least three distinct critical points in X, which are the weak
solutions of the problem (2). This completes the proof. �

Now, we point out the following consequence of Theorem 3.1.

Corollary 3.2. Let α ∈ L1([0, 1]) be a non-negative and non-zero function and let

γ : R→ R be a continuous function. Put α0 :=
∫ 3/4

1/4
α(x)dx, ‖α‖1 :=

∫ 1

0
α(x) dx and

Γ(t) =
∫ t

0
γ(ξ)dξ for all t ∈ R, and assume that there exist two positive constants c

and d with c <
√

2d, such that

(A1′) Γ(t) ≥ 0 for all t ∈ [0, d]

(A2′)
max|t|≤c Γ(t)

c2
<

1

8

α0

‖α‖1
Γ(d)

d2
;

(A3′) lim sup
|ξ|→+∞

Γ(ξ)/ξ2 ≤ 0.

Then, for every

λ ∈
( 8Bd2

α0Γ(d)
,

Bc2

‖α‖1 max|t|≤c Γ(t)

)
,

the problem {
−u′′ = [λα(x)γ(u) + g(u)]h(x, u′) in (0, 1),

u(0) = u(1) = 0
(7)

has at least three weak solutions.

Proof. The proof follows from Theorem 3.1 by choosing f(x, t) := α(x)γ(t) for all
(x, t) ∈ [0, 1]× R. �

Remark 3.3. Clearly, if γ is non-negative then assumption (A1′) is verified and (A2′)
becomes

Γ(c)

c2
<

1

8

α0

‖α‖1
Γ(d)

d2
.

Remark 3.4. Theorem 1.1 from the introduction is an immediate consequence of
Corollary 3.2, by choosing g(u) = −u, h ≡ 1, c = 2 and d = 3.

Lemma 3.5. Assume that f(x, t) ≥ 0 for all (x, t) ∈ [0, 1]×R. If u is a weak solution
of (2), then u(x) ≥ 0 for all x ∈ [0, 1].

Proof. Arguing by contradiction, if we assume that u is negative at a point of [0, 1],
the set Ω := {x ∈ [0, 1] : u(x) < 0} is non-empty and open. Moreover, let us consider
v̄ := min{u, 0}, one has, v̄ ∈ X. So, taking into account that g is a Lipschitz continuous



278 Existence of three weak solutions for a Dirichlet problem

function, g(0) = 0, u is a weak solution and by choosing v = v̄, one has

0 ≥ λ
∫

Ω

f(x, u(x))u(x) dx

=

∫
Ω

(∫ u′(x)

0

1

h(x, τ)
dτ

)
u′(x) dx−

∫
Ω

g(u(x))u(x) dx

≥ 4− LM |Ω|
4M

‖u‖2H1
0 (Ω),

where |Ω| is the Lebesgue measure of the set Ω. Therefore, ‖u‖H1
0 (Ω) = 0 which is

irrational. Hence, the conclusion is achieved. �

Our other main result is as follows.

Theorem 3.6. Assume that there exist three positive constants c1, c2 and d with c1 <
d < c2/4, such that

(B1) f(x, t) ≥ 0 for all (x, t) ∈ [0, 1]× [0, c2];

(B2)

∫ 1

0
F (x, c1) dx

c21
<

1

12

∫ 3/4

1/4
F (x, d) dx

d2
;

(B3)

∫ 1

0
F (x, c2) dx

c22
<

1

24

∫ 3/4

1/4
F (x, d) dx

d2
.

Let Λ′ :=
( 12Bd2∫ 3/4

1/4
F (x, d) dx

,B min
{ c21∫ 1

0
F (x, c1) dx

,
c22

2
∫ 1

0
F (x, c2) dx

})
.

Then, for every λ ∈ Λ′ the problem (2) has at least three weak solutions ui, i = 1, 2, 3,
such that 0 < ‖ui‖∞ ≤ c2.

Proof. Without loss of generality, we can assume f(x, t) ≥ 0 for all (x, t) ∈ [0, 1]×R.
Fix λ as in the conclusion and take X,Φ and Ψ as in the proof of Theorem 3.1. Put
w as in Theorem 3.1, r1 = Bc21 and r2 = Bc22. Therefore, one has 2r1 < Φ(w) < r2

2
and we have

1

r1
sup

Φ(u)<r1

Ψ(u) ≤ 1

Bc21

∫ 1

0

F (x, c1) dx <
1

λ
<

1

12

∫ 3/4

1/4
F (x, d) dx

Bd2
≤ 2

3

Ψ(w)

Φ(w)
,

and
2

r2
sup

Φ(u)<r2

Ψ(u) ≤ 2

Bc22

∫ 1

0

F (x, c2) dx <
1

λ
<

1

12

∫ 3/4

1/4
F (x, d) dx

Bd2
≤ 2

3

Ψ(w)

Φ(w)
.

So, conditions (i) and (ii) of Theorem 2.2 are satisfied. Finally, let u1 and u2 be two
local minima for Φ − λΨ. Then, u1 and u2 are critical points for Φ − λΨ, and so,
they are weak solutions for the problem (2). Hence, owing to Lemma 3.5, we obtain
u1(x) ≥ 0 and u2(x) ≥ 0 for all x ∈ [0, 1]. So, one has Ψ(su1 + (1− s)u2) ≥ 0 for all
s ∈ [0, 1]. From Theorem 2.2 the functional Φ−λΨ has at least three distinct critical
points which are weak solutions of (2). This complete the proof. �

Now, we point out the following consequence of Theorem 3.6.
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Corollary 3.7. Let α ∈ L1([0, 1]) be such that α(x) ≥ 0 a.e. x ∈ [0, 1], α 6≡ 0, and

let γ : R → R be a continuous function. Put α0 :=
∫ 3/4

1/4
α(x)dx, ‖α‖1 :=

∫ 1

0
α(x) dx

and Γ(t) =
∫ t

0
γ(ξ)dξ for all t ∈ R, and assume that there exist three positive constants

c1, c2 and d with c1 < d < c2/4, such that

(B1′) γ(t) ≥ 0 for all t ∈ [0, c2];

(B2′)
Γ(c1)

c21
<

1

12

α0

‖α‖1
Γ(d)

d2
;

(B3′)
Γ(c2)

c22
<

1

24

α0

‖α‖1
Γ(d)

d2
.

Then, for every

λ ∈
( 12Bd2

α0Γ(d)
, Bmin

{ c21
‖α‖1Γ(c1)

,
c22

2‖α‖1Γ(c2)

})
,

the problem (7) has at least three weak solutions ui, i = 1, 2, 3, such that 0 < ‖ui‖∞ ≤
c2.

Proof. The proof follows from Theorem 3.6 by choosing f(x, t) := α(x)γ(t) for all
(x, t) ∈ [0, 1]× R. �

Remark 3.8. Theorem 1.2 from the introduction is an immediate consequence of
Corollary 3.7, by choosing g(u) = u, h ≡ 1, c1 = 4, c2 = 40 and d = 5.

Finally, we present the following examples to illustrate the results.

Example 3.9. Let f : R→ R be a function defined as follows

f(t) :=


1 if |t| ≤ 1,

t10 if 1 < |t| ≤ 2,

212 t−2 if |t| > 2.

Put g(t) = −t and h(x, t) = (2 + x + cos t)−1 for all x ∈ [0, 1] and t ∈ R and choose
c = 1 and d = 2. Therefore, according to Corollary 3.2, for each λ ∈ [0.8, 2], the
problem {

−u′′(2 + x+ cosu′) + u = λf(u) in (0, 1),

u(0) = u(1) = 0

admits at least three weak solutions.

Example 3.10. Consider the problem{
−u′′(3 + sinu′)− u = λf(u) in (0, 1),

u(0) = u(1) = 0,
(8)

where f be the function defined as in the Example 3.9. Setting g(t) = t and h(x, t) =
(3 + sin t)−1 for all x ∈ [0, 1] and t ∈ R, we see that (B2’) and (B3’) are satisfied
with c1 = 1, d = 2 and c2 = 64. According to Corollary 3.7, for each λ ∈ [1.09, 2],
the problem (8) admits at least three classical solutions ui, i = 1, 2, 3, such that
0 < ‖ui‖∞ ≤ 64.
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[11] A. Kristály, V. Rădulescu, C. Varga, Variational Principles in Mthematical Physics, Geom-
etry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems,
Encyclopedia Math. Appl. 136, Cambridge Univ. Press, Cambridge, 2010.

[12] Y. Naito, S. Tanaka, On the existence of multiple solutions of the boundary value problem for
nonlinear second-order differential equations, Nonlinear Anal. 56 (2004), 919–935.

[13] B. Ricceri, Nonlinear eigenvalue problems, in: D. Y. Gao and D. Motreanu (eds.), Handbook
of Nonconvex Analysis and Applications, Int. Press, Someerville, MA, 2010, 543–595.

[14] G. Talenti, Some inequalities of Sobolev type on two-dimensional spheres, in: W. Walter(ed.),
General Inequalities, Vol. 5, Int. Ser. Numer. Math. 80, Birkhäuser, Basel, 1987, 401–408.
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