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Hamsa Nayak, Syam Prasad Kuncham and Babushri Srinivas Kedukodi

Abstract. In this paper, we introduce the notion of ΘΓ N -group as a generalization of
algebraic structures of N -group and gamma nearring. We present motivating examples of
ΘΓ N -groups and prove classical isomorphism theorems.

1. Introduction

A nearring (N,+, ·) is an algebraic system with binary operations addition and mul-
tiplication satisfying the axioms of a ring, except commutativity of addition and one
of the distributive laws. A natural example of nearring is the set of all mappings
from a group (G,+) to itself under addition and composition of mappings. Groe-
newald [18], Veldsman [36] introduced different types of prime ideals of nearrings
such as completely prime, 3-prime and equiprime ideals. Equiprime ideals gave rise
to a Kurosh-Amitsur prime radical for nearrings (see [13]). Veljko [37, 38] gave defi-
nitions of nilpotency, nilty, nil-radical, nilpotent-radical and nearring homomorphism
of a general (non associative and non distributive) nearring and studied its affine
endomorphism. N -groups are modules over nearrings (see [33]). Juglal, Groenewald
and Lee [22] introduced characterizations of prime modules of zero symmetric near-
ring. Groenewald, Juglal and Meyer [19] discussed relations between primeness of zero
symmetric nearring and its group nearring. Nobusawa [32] introduced Γ-ring, a gen-
eralization of ring. Barnes [3] studied notions of Γ-homomorphism, prime and (right)
primary ideals, m-systems, radical of an ideal in Γ-rings. Sapanci and Nakajimaz [35]
gave the condition for commutative property in gamma rings. Bell and Argac [4]
studied derivations, product of derivations in nearrings and obtained commutativity
results under suitable conditions.

Bhavanari [7] introduced gamma nearrings, a generalization of both nearrings and
gamma-rings. This concept was further studied in [5, 6, 11, 27] and several results
were proved. Booth and Groenewald [12, 14] introduced equiprime gamma nearrings
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and radicals of gamma nearrings. Jun, Sapanci and Ozturk [23] studied fuzzy ideals
of gamma nearrings. Bhavanari and Kuncham [10] introduced the notion of a fuzzy
coset in gamma nearring and obtained related important fundamental isomorphism
theorems. Booth, Groenewald and Olivier [15] defined general regularity for gamma
rings and explored ways of generating such regularities. Kedukodi, Kuncham and
Bhavanari [24, 25] studied equiprime, 3-prime and c-prime fuzzy ideals of nearrings.
As an application of equiprime ideals, in [26] the notion of reference point in rough
sets was introduced. In [8], the same authors also studied graph theoretic aspects
nearrings. Jagadeesha, Kedukodi, Kuncham [21] defined interval valued L-fuzzy ideals
of nearrings based on t-norms and t-conorms and in [28], they studied homomorphic
images of interval valued L-fuzzy ideals and proved isomorphism theorems.

In this paper, we introduce the notion of ΘΓ N -group which is a generalization
of N -group and gamma nearring. A ΘΓ N -group is an algebraic structure where
the operations belonging to the set Θ satisfy the right distributive property and the
quasi associative property. We place on record the starting step where the idea of ΘΓ
N -group arose. In the real number system, we know that the operations of subtrac-
tion and division are not associative. This is unlike their respective counterparts of
addition and multiplication. However, we note that the operations subtraction and
division are near associative operations. Consider the abelian group (R,+) and take
a, b, c ∈ R. Corresponding to usual subtraction, we can define an operation “subc” by
a subc b = (a− 2c)− b. Then we have (a− b)− c = a subc(b− c). We name this near
associativity as the quasi associative property. In Example 3.6 of this paper, we show
that a similar quasi associative property is satisfied by usual division operation.

2. Preliminaries

We refer to [30,31] for basic definitions, and for recent developments in nearrings, we
refer to [29]. Computations in nearrings can be done using SONATA [1].

Definition 2.1. [33] Let (G,+) be a group with additive identity 0. G is said to
be an N -group if there exist a nearring (N,+, ·), and a mapping N × θ × G → G
(the image (n, g) ∈ N × θ ×G is denoted by nθg where θ is an operation), satisfying
(n + m)θg = nθg + mθg and (nm)θg = nθ(mθg), for all g ∈ G and n,m ∈ N . We
denote this N -group by NG.

Definition 2.2. [9] Let (M,+) be a group (not necessarily abelian) and Γ be a non-
empty set. Then M is said to be a Γ-nearring if there exists a mapping
M ×Γ×M →M (denote the image of (m1, α1,m2) by m1α1m2 for m1,m2 ∈M and
α1 ∈ Γ) satisfying the following conditions:

(m1 +m2)α1m3 = m1α1m3 +m2α1m3 and (m1α1m2)α2m3 = m1α1(m2α2m3),

for all m1,m2,m3 ∈M and for all α1, α2 ∈ Γ.

Definition 2.3. [16] A nearring (N,+, ·) is said to be non-associative if (N, ·) is not
a semigroup.
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Definition 2.4. [33] Let N be a nearring and a, b ∈ N . a ≡ b⇔ ∀n ∈ N : na = nb.
N is said to be planar nearring if |N/≡| ≥ 3 and if every equation xa = xb+ c (a 6= b)
has a unique solution (in N).

Definition 2.5. [39] A double planar nearring (N,+, ∗, ·) is an ordered quadruple
where each of the ordered triples (N,+, ∗) and (N,+, ·) is a nearring, and where ∗
and · are each left distributive over the other. That is, a ∗ (b · c) = (a ∗ b) · (a ∗ c) and
a · (b ∗ c) = (a · b) ∗ (a · c), for all a, b, c ∈ N . If each of the nearrings (N,+, ∗) and
(N,+, ·) is planar, then (N,+, ∗, ·) is a double planar nearring.

For further concepts in planar nearrings we refer to [2, 40].

3. ΘΓ N-group

Definition 3.1. Let (G,+G) be a group. G is called a ΘΓ N -group if there exists
a nearring (N,+, ·) and there exist maps Θ(N × Θ × G → G), Γ(N × Γ ×N → N)
containing nearring multiplication ·, ∆Γ(N ×∆Γ × G → G) satisfying the following
conditions.

1. θ is right distributive: (n+m)θg = nθg+Gmθg, for all n,m ∈ N, g ∈ G, θ ∈ Θ;

2. θ is quasi associative: for every n,m ∈ N, γ ∈ Γ, there exists δγ ∈ ∆Γ such that
(nγm)θg = nδγ(mθg), for all g ∈ G, θ ∈ Θ.

Example 3.2. Let G = Z6 = {0, 1, 2, 3, 4, 5}. Then (Z6,+6) is a group under addition
modulo 6. Take a nearring N = {0, 2, 4} with + and · defined in Table 1. Let
Θ = {θ1, θ2}, Γ = {γ1 = ·, γ2}, ∆Γ = {δγ1 , δγ2} be given by the tables in Figure 1. It
can be verified that Z6 is a ΘΓ N -group.

+ 0 2 4

0 0 2 4

2 2 4 0

4 4 0 2

· 0 2 4

0 0 0 0

2 0 2 0

4 0 4 0

Table 1: Binary operations + and · Figure 1: Θ,Γ,∆Γ from Example 3.2
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Example 3.3 (Symmetries of a square). It is well known that symmetries of a square
form a group known as the Dihedral groupD4. Consider a square as shown in Figure 2.

Let e denote no change in the square. Let R1 be the rotation of the square by
90 degrees, R2 be the rotation by 180 degrees, R3 be the rotation by 270 degrees (all
rotations in anti-clockwise direction based on the centroid). Let V be the vertical
flip, H be the horizontal flip, D1 and D2 be the diagonal flips.

Take G = {e,R1, R2, R3, V,H,D1, D2}. Then G is a group with the binary oper-
ation +G given in Figure 3.

A B

CD

H

V D2  D1  

Figure 2: Symmetries of a square Figure 3: Binary operation +G

Let N = (Z8,+8, ·8). Define Θ = {θ1, θ2, θ3}, Γ = {γ1, γ2, γ3} and ∆Γ =
{δγ1 , δγ2 , δγ3} as in Figure 5. Take γ1 = ·8.

Using the tables from Figure 5, it can be verified that G is a ΘΓ N -group.

R1: Rotation by 90 
degrees 

A B

D C

B C

DA

C D

B A

D A

C B
R3 = R2 +R1. Rotation by 
270 degrees 

R2= R1 +R1. Rotation by 180 
degrees

R0: Square ABCD with no 
rotations applied

Figure 4: Some geometrical interpretations of computations
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Figure 5: Θ,Γ,∆Γ from Example 3.3

Consider (5γ17)θ1R3 +G (3γ12)θ1R3. This expression is equal to 3θ1R3 +G 6θ1R3.
Note that 3θ1R3 is the rotation of the square ABCD by 270 degrees in anti-clockwise
direction repeated three times, which yields R1. Similarly, we obtain 6θ1R3 = R2.
Then 3θ1R3 +G 6θ1R3 = R1 +G R2 = R3.

Now let us consider (5γ17 +8 3γ12)θ1R3 = (3 +8 6)θ1R3 = 1θ1R3 = R3. Thus we
get, (5γ17 +8 3γ12)θ1R3 = (5γ17)θ1R3 +G (3γ12)θ1R3.

Remark 3.4. Under similar operations, we can show that the group formed by sym-
metries of an equilateral triangle is a ΘΓ N -group.
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To give the next example of ΘΓ N -group, we require some basic definitions and
notations from lambda calculus. The lambda calculus is a theory of functions as
formulas. In this system functions are written as expressions. Lambda calculus was
introduced by Alonzo Church [17] in 1936 to formalize the concept of effective com-
putability. We refer to [20] for the following definitions. The set of λ-terms (notation
Λ) is built up from an infinite set of variables V = {v, v′

, v”, . . .} using application
and (function) abstraction:

x ∈ V → x ∈ Λ, M,N ∈ Λ⇒ (MN) ∈ Λ, M ∈ Λ, x ∈ V ⇒ (λxM) ∈ Λ,

where M and N are expressions.

If f and x are lambda terms, and n > 0 a natural number, write fnx for the term
f(f(. . . (fx) . . .)), where f occurs n times. For each natural number n, we define a
lambda term n, called the n-th Church numeral, as n = λfx.fnx. Here are the first
few Church numerals:

0 = λfx.x, 1 = λfx.fx, 2 = λfx.f(fx), 3 = λfx.f(f(fx)), . . .

The successor function in [34] is defined as + ≡ λwyx.y(wyx) and the product function
is defined as ∗1 ≡ (λxyz.x(yz)).

Example 3.5. Let G = {0, 1, 2, . . .}. We will form a ΘΓ N -group from G. First, we
prove that (G, ∗1) is a semigroup.

We show that, (a+ b) ∗1 c = a ∗1 c+ a ∗1 b.
Let a, b, c ∈ G. We claim that (a+ b) = λyx.ya+bx. We have

a+ b = λsh.sahSλsh.sbh = (λsh.sah)(λwyx.y(wyx))(λsh.sbh)

= (aλwyx.y(wyx))(λsh.sbh)

= ((a− 1)λwyx.y(wyx))λwyx.y(wyx)(λsh.sbh)

= ((a− 1)λwyx.y(wyx))(λyx.y(λsh.sbh)yx)

= ((a− 1)λwyx.y(wyx))(λyx.y(yb(x)))

= ((a− 1)λwyx.y(wyx))(λyx.yb+1(x)).

Continuing, we get a + b = (λwyx.y(wyx))(λyx.ya+b−1x), and operating once more
a+ b = λyx.ya+bx. Clearly, we have a+ b = b+ a.

Now we claim that (a+ b) ∗1 c = λzh.z(a+b)ch. We have

(a+ b) ∗1 c = (λsh.sa+bh).(λsh.sch) = (λz.(a+ b)(cz))

= λz.(λsh.sa+bh)((λsh.sch)z = λz.(λsh.sa+bh)(λh.zch)

= λz.(λh.(a+ b)λh.zc(h)h) = λz.(λh.z(a+b)c(h)) = λzh.z(a+b)ch (1)

Now, consider

a ∗1 c+ b ∗1 c = λzh.z(ac)h+ λzh.z(bc)h

= (λzh.z(ac)h)(λwyx.y(wyx))(λzh.z(bc)h)

= (ac)(λwyx.y(wyx))(λzh.z(bc)h)

= (ac− 1)(λwyx.y(wyx))(λwyx.y(wyx))(λzh.z(bc)h)
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= (ac− 1)(λwyx.y(wyx))(λyx.y(λzh.z(bc)h)yx)

= (ac− 1)(λwyx.y(wyx))(λyx.y(y(bc)(x)))

= (ac− 1)(λwyx.y(wyx))(λyx.y(bc+1)(x)).

Continuing, we get a ∗1 c+ b ∗1 c = (λwyx.y(wyx))(λyx.y(bc+ac−1)(x)) and operating
once more

a ∗1 c+ b ∗1 c = (λyx.y(bc+ac)(x)) = (λyx.y(a+b)c(x)). (2)

Thus by (1) and (2) we get (a + b) ∗1 c = a ∗1 c + b ∗1 c. Similarly, we get
a ∗1 (b+ c) = a ∗1 b+ a ∗1 c.

Now we prove that ∗1 is associative. We have, (a ∗1 b) ∗1 c = (λzh.z(ab)h) ∗1
(λzh.z(c)h) = λzh.z(abc)h and a∗1 (b∗1 c) = (λzh.z(a)h)∗1 (λzh.z(bc)h) = λzh.z(abc)h.
Hence (a ∗1 b) ∗1 c = a ∗1 (b ∗1 c).

Now, we show that G can be extended to a ΘΓ N -group. To obtain this, Church
pair can be used which is formed by extending Church Numerals to signed numbers.
A Church pair contains Church numerals representing a positive and a negative value.
Let Ĝ denote the set of signed numbers. On the set Ĝ, addition and subtraction are
naturally defined as follows:

x+ y = [xp, xn] + [yp, yn] = [xp + yp, xn + yn],

x− y = [xp, xn]− [yp, yn] = [xp + yn, xn + yp].

Define ~1 as x~1 y = [xp, xn]~1 [yp, yn] = [xp ∗1 yp + xp ∗1 yn, xn ∗1 yp + xn ∗1 yn],

for all x, y ∈ Ĝ. Note that (Ĝ, +) is a group. We will show that N=(Ĝ,+, ~1) is a
nearring. We prove that (x+ y)~1 z = x~1 z + y ~1 z. We have

(x+ y)~1 z = [xp + yp, xn + yn]~1 [zp, zn]

= [(xp + yp) ∗1 zp + (xp + yp) ∗1 zn,
(xn + yn) ∗1 zp + (xn + yn) ∗1 zn], (3)

x~1 z + y ~1 z = [xp ∗1 zp + xp ∗1 zn, xn ∗1 zp + xn ∗1 zn]

+ [yp ∗1 zp + yp ∗1 zn, yn ∗1 zp + yn ∗1 zn]

= [xp ∗1 zp + xp ∗1 zn + yp ∗1 zp + yp ∗1 zn,
xn ∗1 zp + xn ∗1 zn + yn ∗1 zp + yn ∗1 zn]

= [(xp + yp) ∗1 zp + (xp + yp) ∗1 zn,
(xn + yn) ∗1 zp + (xn + yn) ∗1 zn]. (4)

From (3) and (4) we get (x+ y)~1 z = x~1 z + y ~1 z.

Now, we prove that (x~1 y)~1 z = x~1 (y ~1 z). We have

(x~1 y)~1 z = [xp ∗1 yp + xp ∗1 yn, xn ∗1 yp + xn ∗1 yn] ∗1 [zp, zn]

= [(xp ∗1 yp + xp ∗1 yn) ∗1 zp + (xp ∗1 yp + xp ∗1 yn) ∗1 zn,
(xn ∗1 yp + xn ∗1 yn) ∗1 zp + (xn ∗1 yp + xn ∗1 yn) ∗1 zn]

= [xp ∗1 yp ∗1 zp + xp ∗1 yn ∗1 zp + xp ∗1 yp ∗1 zn + xp ∗1 yn ∗1 zn,
xn ∗1 yp ∗1 zp + xn ∗1 yn ∗1 zp + xn ∗1 yp ∗1 zn + xn ∗1 yn ∗1 zn]
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= [xp ∗1 (yp ∗1 zp + yp ∗1 zn) + xp ∗1 (yn ∗1 zp + yn ∗1 zn),

xn ∗1 (yp ∗1 zp + yp ∗1 zn) + xn ∗1 (yn ∗1 zp + yn ∗1 zn)]

= [xp, xn]~1 [yp ∗1 zp + yp ∗1 zn, yn ∗1 zp + yn ∗1 zn]

= x~1 (y ~1 z).

Now, define ∗2 ≡ (λxyz.y(xz)) and ~2 as

x~2 y = [xp, xn]~2 [yp, yn] = [xp ∗2 yp + xp ∗2 yn, xn ∗2 yp + xn ∗2 yn].

Take Θ = {~2}, Γ = {~1} and ∆Γ = {~1}. We will prove that Ĝ is a ΘΓ N -group.
Now, we claim that:

(i) ~2 is right distributive.

(x+ y)~2 z = [xp + yp, xn + yn]~2 [zp, zn]

= [(xp + yp) ∗2 zp + (xp + yp) ∗2 zn,
(xn + yn) ∗2 zp + (xn + yn) ∗2 zn], (5)

x~2 z + y ~2 z = [xp ∗2 zp + xp ∗2 zn, xn ∗2 zp + xn ∗2 zn]

+ [yp ∗2 zp + yp ∗2 zn, yn ∗2 zp + yn ∗2 zn]

= [xp ∗2 zp + xp ∗2 zn + yp ∗2 zp + yp ∗2 zn,
xn ∗2 zp + xn ∗2 zn + yn ∗2 zp + yn ∗2 zn]

= [(xp + yp) ∗2 zp + (xp + yp) ∗2 zn,
(xn + yn) ∗2 zp + (xn + yn) ∗2 zn]. (6)

From (5) and (6) we have (x+ y)~2 z = x~2 z + y ~2 z.

(ii) ~2 is quasi associative.

(x~1 y)~2 z = [xp ∗1 yp + xp ∗1 yn, xn ∗1 yp + xn ∗1 yn] ∗2 [zp, zn]

= [(xp ∗1 yp + xp ∗1 yn) ∗2 zp + (xp ∗1 yp + xp ∗1 yn) ∗2 zn,
(xn ∗1 yp + xn ∗1 yn) ∗2 zp + (xn ∗1 yp + xn ∗1 yn) ∗2 zn]

= [xp ∗1 yp ∗2 zp + xp ∗1 yn ∗2 zp + xp ∗1 yp ∗2 zn + xp ∗1 yn ∗2 zn,
xn ∗1 yp ∗2 zp + xn ∗1 yn ∗2 zp + xn ∗1 yp ∗2 zn + xn ∗1 yn ∗2 zn]

= [xp ∗1 (yp ∗2 zp + yp ∗2 zn) + xp ∗1 (yn ∗2 zp + yn ∗2 zn),

xn ∗1 (yp ∗2 zp + yp ∗2 zn) + xn ∗1 (yn ∗2 zp + yn ∗2 zn)]

= [xp, xn]~1 [yp ∗2 zp + yp ∗2 zn, yn ∗2 zp + yn ∗2 zn]

= x~1 (y ~2 z).

Hence (x~1 y)~2 z = x~1 (y ~2 z). Thus Ĝ is a ΘΓ N -group.

Example 3.6. Let (R,+) be the group of real numbers. Take N = (R,+, ·) and
a, b, c ∈ R. Define

a div b =

{
0 if b = 0,
a
b if b 6= 0.

Corresponding to the operation div, define divc by a divcb = a div (bc2).
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Let Θ = {·, div}, Γ = Θ and ∆Γ = {·, divc}. Clearly, the operations in Θ are right
distributive. Note that the multiplication operation · in Θ is associative. We have

a divc(b div c) = a div ((b div c)c2) =
a

b
c · c2

= (a div b) div c.

This implies that div is quasi associative. Hence the operations in Θ are quasi asso-
ciative. Therefore R is a ΘΓ N -group.

Proposition 3.7. 1. A non associative nearring induced by a nearring forms a
ΘΓ N -group.

2. A double planar nearring induced by a nearring forms a ΘΓ N -group.

Proof. 1. Let (N,+, .) be a nearring and k : N → End(N,+) be a mapping.
Define ∗ : N × N → N by a ∗ b = k(b)(a).b = f(a).b, where f = k(b) is an
endomorphism for each b. Then (N,+, ∗) is a non associative nearring. For,

(a+ b) ∗ c = k(c)(a+ b).c = f(a+ b).c = (f(a).c+ f(b).c) = (a ∗ c) + (b ∗ c).

Let f(k) ∈ End(N,+, .) be such that for a, b, c ∈ N a ∗f(k) b = f(k)(a).b. We
will prove: (a ∗ b) ∗ c = a ∗k(c)◦k(b) (b ∗ c). We have

(a ∗ b) ∗ c = (k(b)(a).b) ∗ c = k(c)(k(b)(a).b).c = [k(c)k(b)(a).k(c)(b)].c

= [k(c)k(b)(a)].[k(c)(b).c] = [k(c) ◦ k(b)](a).(b ∗ c) = a ∗k(c)◦k(b) (b ∗ c).
Hence N forms a ΘΓ N -group with Θ = {∗}, Γ = {∗}, and ∆Γ = {∗k(c)◦k(b)}.

2. Let N be a nearring. Define a ∗ b = a |b| and

a ◦ b =

{
0 if b = 0,
a b
|b| if b 6= 0.

Then (N,+, ∗), (N,+, ◦) are planar nearrings. We have (a∗b)◦c = (a◦c)∗(b◦c),
(a ◦ b) ∗ c = (a ∗ c) ◦ (b ∗ c). Now, (N,+, ∗, ◦) is a double planar nearring. Define
aδc◦b = (a∗c)◦(b) and aδc∗b = (a◦c)∗b. Now, (a◦b)∗c = (a∗c)◦(b∗c) = aδc◦(b∗c),
and (a ∗ b) ◦ c = (a ◦ c) ∗ (b ◦ c) = aδc∗(b ◦ c). Hence N forms a ΘΓ N -group with
Θ = {∗, ◦}, Γ = {∗, ◦}, and ∆Γ = {δc∗, δc◦}.

Proposition 3.8. 1. Every N -group is a ΘΓ N -group.

2. Every gamma nearring is a ΘΓ N -group.

Proof. 1. Take Θ = {θ}, Γ = {·} and ∆Γ = {θ}.

2. Take N = G, Θ = Γ and ∆Γ = Γ.

Proposition 3.9. Let G be a group and N be nearring. Then for all g ∈ G, n ∈ N :

1. 0Nθg = 0G, for all θ ∈ Θ.

2. (−n)θg = −nθg, for all θ ∈ Θ.

3. For γ ∈ Γ, nγ0N = 0N ⇒ nδγ0G = 0G.
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4. Let N = Nc. Then for γ ∈ Γ, θ ∈ Θ, (nγm)θg = nδγ0G.

Proof. 1. (0N + 0N )θg = 0Nθg + 0Nθg. Then 0Nθg = 0Nθg + 0Nθg. Hence
0Nθg = 0G.

2. 0G = 0Gθg = (−n+ n)θg = (−n)θg + nθg. This gives (−n)θg = −nθg.

3. (nγ0N )θg = nδγ(0Nθg) = nδγ0G =⇒ nδγ0G = (nγ0N )θg = 0Nθg = 0G.

4. (nγm)θg = (nγ0Nγm)θg = (nγ0N )θg = nδγ(0Nθg) = nδγ0G.

Definition 3.10. Let G be a ΘΓ N -group. A subgroup (H,+) of (G,+) is said to
be a ΘΓ N -subgroup of G if NΘH ⊆ H.

Definition 3.11. Let N be a nearring and G, G
′

be ΘΓ N -groups. Then h : G→ G
′

is called a ΘN -homomorphism if it satisfies

1. h(x+ y) = h(x) + h(y) and

2. h(nθx) = nθh(x) for all n ∈ N , x, y ∈ G and θ ∈ Θ.

The set of all ΘN -homomorphisms is denoted by HomΘ(G,G
′
).

Definition 3.12. Ker h = {x ∈ G|h(x) = 0
′}.

Definition 3.13. A normal subgroup H of a ΘΓ N -group (G,+) is called a ΘN -ideal
of G if nθ(x+ a)− nθx ∈ H for all n ∈ N , x ∈ G, a ∈ H and θ ∈ Θ.

Remark 3.14. Let H be a ΘΓ N -subgroup of (G,+). Then the following two condi-
tions are equivalent:

1. H is a Θ-N ideal of the ΘΓ-N group G; and

2. x ≡ y(mod H), a ≡ b(mod H)⇒ x+a ≡ y+b(mod H), and nθx ≡ nθy(mod H).

Verification:
1 ⇒ 2: Suppose that x1 ≡ x

′

1(mod H) and x2 ≡ x
′

2(mod H). This implies
that x1 − x

′

1 ∈ H,x2 − x
′

2 ∈ H. Now we show that x1 + x2 ≡ x
′

1 + x
′

2(mod H)
and nθx1 ≡ nθx

′

1(mod H). Now (x1 + x2) − (x
′

1 + x
′

2) = x1 + (x2 − x
′

2) − x
′

1 =
x1 + (x2 − x

′

2) + x1 − x1 − x
′

1 = (x1 + (x2 − x
′

2) − x1) − (x
′

1 − x1) ∈ H (since H
is normal, and x2 − x

′

2 ∈ H). This implies (x1 + x2) ≡ (x
′

1 + x
′

2)(mod H). Now
nθx1 − nθx

′

1 = nθ(x1 − x
′

1 + x
′

1) − nθx′

1 ∈ H (since x1 − x
′

1 ∈ H and H is an ideal
of G). This means that nθx1 ≡ nθx

′

1(mod H).
2 ⇒ 1: First we show that H is a normal subgroup of G. Let x ∈ G and h ∈ H.

We know that x ≡ x(mod H) and h ≡ 0(mod H). By the assumed condition,
x + h ≡ x + 0(mod H). This implies x + h ≡ x(mod H). Thus x + h − x ∈ H. Let
n ∈ N . We know that n ≡ n(mod H) and x + h ≡ x(mod H). By the assumed
condition, nθ(x+ h) ≡ nθx(mod H). This implies that nθ(x+ h)− nθx ∈ H. Hence
H is an ideal of G.
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Remark 3.15. Let G be a ΘΓ N -group and H a normal subgroup of (G,+).
Then the following two conditions are equivalent:

1. nθ(x+ a)− nθx ∈ H, for all n ∈ N, x ∈ G, a ∈ H and θ ∈ Θ, and

2. nθ(b+ x)− nθx ∈ H, for all n ∈ N, x ∈ G, b ∈ H and θ ∈ Θ.

Verification:
1⇒ 2 : nθ(b+ x)− nθx = nθ(x− x+ b+ x)− nθx = nθ(x+ a)− nθx ∈ H (by 1).
The proof of 2⇒ 1 is similar.

Proposition 3.16. If I EΘN G then G/I = {g + I | g ∈ G} is a ΘΓ N -group.

Proof. First, we define operations +, θ on G/I as follows:

(g1 + I) + (g2 + I) = (g1 + g2) + I, nθ(g1 + I) = nθg1 + I.

It is easy to show that + is well-defined.
We will prove that θ is well-defined. Let nθ(g1 +I) = nθ(g′1 +I) and x ∈ nθg1 +I.

Then x = nθg1+i = nθ(g1+0G)+i = nθ(g′1+i′1)+i = i′+nθg′1+i = 0G+i′+nθg′1+i =
(nθg′1 − nθg′1) + i′ + nθg′1 + i = nθg′1 + (−nθg′1 + i′ + nθg′1) + i ∈ nθg′1 + I. Hence
nθg1 + I ⊆ nθg′1 + I. Similarly, nθg′1 + I ⊆ nθg1 + I. Hence nθg1 + I = nθg′1 + I.

To show that G/I is a ΘΓ N -group, we will prove for n,m ∈ N, γ ∈ Γ, there
exists δγ ∈ ∆Γ such that (nγm)θ(g+I) = nδγ(mθ(g+I)). Consider (nγm)θ(g+I) =
((nγm)θg) + I. Then there exists δγ ∈ ∆Γ such that (nγm)θg = nδγ(mθg). Then
(nδγ(mθg)) + I = nδγ(mθg + I) = nδγ(mθ(g + I)). Therefore (nγm)θ(g + I) =
nδγ(mθ(g + I)). Hence θ is quasi associative.

Clearly θ is right distributive. Hence G/I is a ΘΓ N -group. �

Definition 3.17. Let I EΘN G. Then G/I = {g + I | g ∈ G} is called a factor ΘΓ
N -group.

Proposition 3.18. Let f : G → G′ be a ΘN -homomorphism. Then Ker f is a
ΘN -ideal of G. Conversely, every ΘN -ideal is the kernel of a ΘN -homomorphism.

Proof. We have f(0) = 0′. Hence 0 ∈ Ker f . Let g ∈ G,n ∈ N, a ∈ Ker f . Then
f(a) = 0′. Now,

f(g + a− g) = f(g) + f(a)− f(g) = 0′ ⇒ g + a− g ∈ Ker f,
f(nθ(x+ a)− nθx) = f(nθ(x+ a))− f(nθx) = nθf(x+ a)− nθf(x)

= nθ(f(x) + f(a))− nθf(x) = 0′ ⇒ nθ(x+ a)− nθx ∈ Ker f.
Hence Ker f is a ΘN -ideal of G. To prove the converse, define φ : G → G/I by
φ(g) = g + I. We prove that φ is well defined and one-one. We have, g1 = g2

⇔ g1 + I = g2 + I ⇔ φ(g1) = φ(g2). Let g+ I ∈ G/I. Then φ(g) = g+ I. Hence φ is
onto. φ is a homomorphism because

φ(g1 + g2) = (g1 + g2) + I = g1 + I + g2 + I = φ(g1) + φ(g2),

φ(nθg) = nθg + I = nθ(g + I) = nθφ(g).

Now, Ker φ = {x ∈ G | φ(x) = 0+I} = {x ∈ G | g+I = 0+I} = I. Hence ΘN -Ideal
is the kernel of a ΘN -homomorphism. �
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Theorem 3.19. Let f : G → G′ be an onto Θ N -homomorphism and K = kerf .
Then K is an ideal of G and G/K ∼= G′.

Proof. Define φ : G/K → G′ by φ(a+K) = f(a). We will show that φ is well defined
and one-one. Let a, b ∈ G. We have a+K = b+K ⇔ a− b ∈ K ⇔ f(a− b) = 0⇔
f(a) − f(b) = 0 ⇔ f(a) = f(b) ⇔ φ(a + K) = φ(b + K). Now, we prove that φ is
onto. Let y ∈ G′. As f is onto, y = f(a) for some a ∈ G. Now a + K ∈ G/K and
φ(a+K) = f(a) = y. Now we prove that φ is homomorphism. We have

φ((a+K) + (b+K)) = φ((a+ b) +K) = f(a+ b) = f(a) + f(b)

= φ(a+K) + φ(b+K),

φ(nθ(a+K)) = φ(nθa+K) = f(nθa) = nθf(a) = nθφ(a+K).

Thus G/K ∼= G′. �

Theorem 3.20. 1. Let f : G → G′ be an onto Θ N -homomorphism and H =
Ker f . If K ′ is ΘΓ N -subgroup (resp. ΘN -ideal) of G and K = {x ∈ G :
f(x) ∈ K ′} = f−1(K ′), then K is a ΘΓ N -subgroup(resp. ΘN -ideal) of G by
H ⊆ K and G/K ∼= G′/K ′.

2. Let H and K be ΘN -ideals of ΘΓ N -group G by H ⊆ K. Then G/K ∼=
(G/H)/(K/H).

Proof. 1. Define φ : G → G′/K ′ by φ(x) = f(x) + K ′. First, we show that φ
is a homomorphism. Let a, b ∈ G. We have φ(a + b) = f(a + b) + K ′ =
(f(a) + f(b)) +K ′. We claim (f(a) + f(b)) +K ′ = (f(a) +K ′) + (f(b) +K ′).
Note that x ∈ (f(a)+f(b))+K ′ ⇒ x = f(a)+f(b)+k′1 = f(a)+0+f(b)+k′1 ⇒
x ∈ f(a) +K ′ + f(b) +K ′ ⇒ (f(a) + f(b)) +K ′ ⊆ (f(a) +K ′) + (f(b) +K ′).
Let y ∈ (f(a) + K ′) + (f(b) + K ′). Hence there exist k′1, k

′
2 ∈ K ′ such that

y = f(a) + k′1 + f(b) + k′2. Then y = f(a) + f(b) − f(b) + k′1 + f(b) + k′2
∈ f(a) + f(b) + K ′ ⇒ (f(a) + K ′) + (f(b) + K ′) ⊆ (f(a) + f(b)) + K ′. Hence
φ(a+ b) = (f(a) + f(b)) +K ′ = (f(a) +K ′) + (f(b) +K ′) = φ(a) + φ(b). Now,
φ(nθa) = nθf(a) + K ′ = nθ(f(a) + K ′) = nθφ(a). Now we prove that φ is
onto. Let a′ + K ′ ∈ G′/K ′, a′ ∈ G′. Since f is onto, there exists a ∈ G such
that f(a) = a′. Hence φ(a) = f(a) + K ′ = a′ + K ′. By Theorem 3.18, we get
G/Ker φ ∼= G′/K ′. Now, we have

Ker φ = {x | φ(x) = e+K ′} = {x | f(x)+K ′ = e+K ′} = {x | f(x) ∈ K ′} = K.

Let x ∈ G, k ∈ K,n ∈ N . As φ(k) = 0, we get

φ(x+ k − x) = φ(x) + φ(k)− φ(x) = 0⇒ x+ k − x ∈ K;

φ(nθk) = nθφ(k) = nθ0 = 0⇒ nθk ∈ K;

φ(nθ(x+ k)− nθx) = φ(nθ(x+ k))− φ(nθx)

= nθ(φ(x) + φ(k))− nθφ(x) = 0⇒ nθ(x+ k)− nθx ∈ K.
Hence K is ΘΓ N -subgroup (resp. ΘN -ideal) of G and G/K ∼= G′/K ′. Let
x ∈ H. Then we have, f(x) = e′ ∈ K ′. This implies φ(x) = f(x) + K ′ =
e′ +K ′ = K ′. We get x ∈ Ker φ = K. Hence H ⊆ K.
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2. H is a normal subgroup of G and K is a normal subgroup of G containing H.
Hence K/H and G/H are factor ΘΓ N -groups.

First, we prove that K/H is a normal subgroup of G/H. Define f : G/H →
G/K by f(x+H) = x+K. We prove that f is well-defined. We have x+H =
y +H ⇒ x− y ∈ H ⇒ x− y ∈ K ⇒ x+K = y +K ⇒ f(x+H) = f(y +H).
We now show that f is an onto homomorphism with Ker f = K/H. We have

f [(x+H) + (y +H)] = f [(x+ y) +H] = (x+ y) +K

= (x+K) + (y +K) = f(x+H) + f(y +H), and

f(nθ(x+H)) = f(nθx+H) = nθx+K = nθ(x+K) = nθf(x+H).

Let x+K ∈ G/K. Then there exists x+H ∈ G/H such that f(x+H) = x+K.
We have, Ker f = {g+H|f(g+H) = e+K} = {g+H|g ∈ K} = K/H. Hence
K/H is a normal subgroup of G/H. By Theorem 3.19, (G/H)/Ker f ∼= G/K.
Thus, (G/H)/(K/H) ∼= G/K.

�

4. Conclusion

We have introduced the algebraic structure of ΘΓ N -group as a natural extension
of N -group and gamma nearring. We have shown that the lambda calculus sys-
tem induces a ΘΓ N -group. Other examples of ΘΓ N -group include non associative
nearrings and double planar nearrings. We have defined the concept of ideal of ΘΓ
N -group and proved isomorphism theorems. Different prime ideal notions and corre-
sponding radicals of ΘΓ N -group can be studied as future work.
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