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Abstract. In this paper we consider the based loop space ΩM on a simply connected
manifold M . We first prove, only by means of the rational homotopy theory, that the
rational homotopy type of ΩM is determined by the second Betti number b2(M). We further
consider the problem of computation of the rational Pontryagin homology ring H∗(ΩM) when
b2(M) ≤ 3. We prove that H∗(ΩM) is up to degree 5 generated by the elements of degree 1
for b2(M) = 3.

1. Introduction

A based loop space ΩX of a pointed topological space X is an H - space where one
of the possible multiplication is given by loop concatenation. The ring structure in
H∗(ΩX) induced by loop multiplication is called Pontryagin homology ring. In this
paper we consider the rational Pontryagin homology ring of the based loop space ΩM
of a simply connected four-manifold M . We first show, using only the techniques of
the rational homotopy theory, that the rational homotopy type for ΩM is classified
by the second Betti number b2(M). We further compute the rational Pontryagin
homology ring for ΩM with the small second Betti numbers b2(M). When b2(M) = 0
the following well-known result holds:

Lemma 1.1. For b2(M) = 0, the rational Pontryagin homology ring for ΩM is
given by

H∗(ΩM,Q) ∼= T (u), deg u = 3.

For b2(M) = 1, the rational Pontryagin homology ring for ΩM is given by

H∗(ΩM,Q) ∼= ∧(u1)⊗Q[u2], deg u1 = 1, deg u2 = 4.

In the case b2(M) = 2 or b2(M) = 3 we prove the following:
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Proposition 1.2. If b2(M) = 2 the rational Pontryagin homology ring for ΩM is
given by

H∗(ΩM,Q) ∼= T (u1, u2)/〈u21 = −u22〉, deg u1 = deg u2 = 1.

Theorem 1.3. If b2(M) = 3 the rational Pontryagin homology ring for ΩM up to
degree 5 is given by

H∗(ΩM,Q) ∼= T (u1, u2, u3)/〈u21 = −u22 − u23〉,
where deg u1 = deg u2 = deg u3 = 1.

2. The method of the proof

The simply connected four-manifolds are known to be formal in the sense of the
rational homotopy theory [5], implying that their rational homotopy is completely
determined by their rational cohomology structure. In particular, the minimal models
of these manifolds, as defined in rational homotopy theory, can be calculated from
their rational cohomology algebras. The rational cohomology algebras of the simply
connected four-manifolds with a nontrivial second Betti number, are known to be
determined by their intersection forms over Q. These forms can be diagonalized with
±1 as the diagonal elements, implying (see [9])

H∗(M,Q) ∼= Q[x1, . . . , xn]/〈x21 = . . . = x2k = −x2k+1 = . . . = −x2n〉,
where n = b2(M) is the rank of M and 1 ≤ k ≤ n. The common notation is k =
b+2 (M), n−k = b−2 (M), where σ = b+2 (M)−b−2 (M) is known to be the signature for M .
It is the well known result of Pontryagin-Wall [4] that the homotopy type of a simply
connected four-manifold is classified by its integer intersection form. Using techniques
of the rational homotopy theory, it is proved in [9] that the rational homotopy type
of M is determined by its rank and signature, implying that a simply connected four
manifold is rationally homotopy equivalent to connected sum of b+2 copies of CP 2 and

σ copies of CP 2. Further, in [10] it is proved that the rational homotopy groups for
M are determined by the second Betti number b2(M).

Here we are interested in the description of the Pontryagin homology ring for
ΩM . We first prove by Theorem 3.1 that the rational homotopy type for ΩM is
classified by b2(M). Therefore, in describing the rational Pontryagin homology ring
for ΩM one can ignore the signature. In particular, it implies when considering
four-manifolds M with b2(M) = 2 or b2(M) = 3 one can assume their cohomology
algebra to be of the form given by Lemma 3.3 or Lemma 3.4 respectively. Then the
formality condition implies that the minimal models for these manifolds are given by
Lemma 3.3 and Lema 3.4 and consequently their homotopy Lie algebras by Lemma 4.4
and Proposition 4.5. The Milnor-Moore theorem implies that the Lemma 4.8 and
Proposition 4.9 prove the Proposition 1.2 and Theorem 1.3 on the structure of the
rational homology ring for ΩM in these cases.

Remark 2.1. Quite recently the stronger result was proven [1] that the homotopy
type of ΩM is classified by b2(M) for a simply connected four-manifold M , i.e. if M
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and N are simply connected four-manifolds then it holds: ΩM is homotopy equivalent
to ΩN if and only if b2(M) = b2(N). The proof relies on hard homotopy techniques
and constructions.

Remark 2.2. Note that a simply connected four-manifoldM is known to be rationally
elliptic if and only if b2(M) ≤ 2, where the rational ellipticity means that dim(π∗(M)⊗
Q) < ∞. For b2(M) ≥ 3, M is rationally hyperbolic meaning that its rationally
homotopy groups grow exponentially. It implies that the number of generators in the
minimal model for M as well as in its homotopy Lie algebra is infinite and moreover
it grows exponentially. It in particular means that the procedure of the construction
of the minimal model in Lemma 3.4 will never end. Nevertheless, by Theorem 1.3
we proved that in the Pontryagin homology ring for ΩM there are no generators in
degrees 2, 3, 4 and 5.

In the next sections we recall necessary definitions and background from rationally
homotopy theory and prove the statements that lead to the proof of Proposition 1.2
and Theorem 1.3. For the the detailed account on rational homotopy theory see [3]
and for original sources [7, 8].

3. Rational homotopy theory of differential graded algebras

Let A = (A, dA) be a commutative graded differential algebra over the real numbers.
A differential graded algebra (µ, d) is called minimal model for A if
(i) there exists differential graded algebra morphism h : (µ, d) −→ A inducing an
isomorphism in their cohomology algebras (such h is called quasi-isomorphism);
(ii) (µ, d) is a free algebra in the sense that µ = ∧V is an exterior algebra over graded
vector space V ;
(iii) differential d is indecomposable meaning that for a fixed set V = {Pα, α ∈ I} of
free generators of µ for any Pα ∈ V , d(Pα) is a polynomial in generators Pβ with no
linear part.
If in (iii) we omit the condition ”with no linear part“, (µ, d) is just called a Sullivan
model for (A, d).

Two algebras are said to be weakly equivalent if there exists quasi-isomorphism
between them. This is equivalent to say that these algebras have isomorphic minimal
models. The algebra (A, dA) is said to be formal if it is weakly equivalent to the
algebra (H∗(A), 0).

The minimal model of a smooth connected manifold M is by definition the min-
imal model of its de Rham algebra of differential forms ΩDR(M). In the case when
M is simply connected manifold its minimal model completely classifies its rational
homotopy type. The manifold M is said to be formal (in the sense of Sullivan) if
ΩDR(M) is a formal algebra. Note also that the rational homotopy groups for M are
determined by the graded vector space V , that is dim(πk(M)⊗Q) = dimVk, k ≥ 2,
where Vk is the subspace in V consisting of the elements of degree k.

Using rational model techniques we prove:
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Theorem 3.1. The rational homotopy type of the based loop space ΩM for a simply
connected four-manifold M is classified by the second Betti number b2(M).

Proof. The proof directly follows from the construction of the minimal model of the
path space fibration [3] and the result [10] that the generators of the minimal model
for M are determined by b2(M). For the sake of clearness we present it in detail.
Consider the path space fibration ΩM → PM →M , where PM is the path space for
M . Then the Sullivan model PM has the form (∧VM ⊗∧V, d), where (∧VM , d) is the
minimal Sullivan model for M . Moreover, (∧VM ⊗∧V, d) factors to give the minimal
Sullivan model for (∧V, d̄) for the space ΩM . It follows that d0 : VM → V , where d0
is the linear part of the differential d. Moreover, the Sullivan model (∧VM ⊗∧V, d) is
contractible since it can be represented as the product of the minimal model for PM
and contractible algebra, and the minimal model for PM is trivial as it is contractible.
It implies that H∗(VM⊕V, d0) = 0, which means that d0 : VM → V is an isomorphism.
Therefore (∧VM , d̄) is a minimal Sullivan model for ΩM . Since ΩM is an H - space
we have that d̄ = 0. Thus, the rational homotopy type for ΩM is classified by the
isomorphism type of the graded vector space VM , that is by the rational homotopy
groups for M . These are, by the result of [10] determined by b2(M). �

3.1 Construction of minimal model

Let (A, d) be a differential graded algebra which is connected H0(A, d) = R and simply
connected H1(A, d) = 0. We recall the general procedure for computing the minimal
model for a simply-connected commutative differential graded algebra (A, d). It begins

with the choice of µ2 and m2 : (µ2, 0) → (A, d) such that m
(2)
2 : µ2 → H2(A, d) is

an isomorphism. We put µ2 = H2(A) and m2 : (µ2, 0) → (A, d), m2 = id, then

m
(2)
2 : H2(µ2, 0)→ H2(A, d) is an isomorphism.

In the inductive step, supposing that µk andmk : (µk, dk)→ (A, d) are constructed

such that m
(k)
k : Hk(µk, dk)→ Hk(A, d) is an isomorphism, we extend µk and mk to

µk+1 and mk+1 so that m
(k+1)
k+1 : Hk+1(µk+1, dk+1)→ Hk+1(A, d) is an isomorphism.

We define µk+1 i mk+1in the following way:

µk+1 = µk ⊗ L(ui , vi),

where L(ui , vi) denotes the vector space spanned by the elements ui , vi corresponding
to elements yi , zi respectively. The latter are given by:

Hk+1(A) = Immk+1
k ⊕ L(yi), Kermk+2

k = L(zj ).

Then we have that mk(zj ) = dwj , for some wj ∈ A and the homomorphism mk+1 is
defined by: mk+1(ui) = yi ,mk+1(vj ) = wj and dui = 0, dvj = zj .

3.2 Minimal models for some algebras

Following the general construction of the minimal models described above, we provide
the description of the minimal model for some algebras. For the sake of clearness we
start with the results and their proofs for the following simple examples.
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Lemma 3.2. The minimal model for the algebra A = (A, d = 0) is given by

µ = R[x]⊗ ∧(z), dz=x2, where deg x=4,deg z=7 for A = {〈x〉 |x2=0,deg x=4},
µ = R[x]⊗ ∧(z), dz=x3, where deg x=2,deg z=5 for A = {〈x〉 |x3=0,deg x=2}.

Proof. We provide the proof for the second statement, the first one goes in an analo-
gous simple way.

The nontrivial cohomology groups of the algebra (A, d) are H2(A) = L(x) and
H4(A) = L(x2). We define that µ2

∼= H2(A, d) and m2 = id Since the third and fifth
cohomology groups for both µ2 and A are trivial, and their fourth cohomology groups
are isomorphic, we obtain that µ2 = µ3 = µ4. We further have that H6(µ4, d) =
Ker d6/ Im d5 = L(x3) and H6(A, d) = 0, so m6

4 : H6(µ4, d) → H6(A, d) is surjective
and Kerm6

4 = L(x3). In order to make this mapping injective, we introduce the new
generator z of degree 5, with the differential dz = x3 and define the commutative
differential graded algebra µ5 = µ2 ⊗ L(z), deg z = 5, dz = x3. Now, H6(µ5, d) = 0,
so the mapping m6

4 : H6(µ5, d) → H6(A, d) is an isomorphism. Since Hi(µ5, d) = 0,
i ≥ 9 and Hi(A) = 0, i ≥ 7, we complete the construction of the minimal model. �

Lemma 3.3. The minimal model for the algebra A = (A, d = 0), A = {〈x1, x2〉 | x21 =
x22, x1x2 = 0, deg x1 = deg x2 = 2}, is given by

µ = R[x1, x2]⊗ ∧(z1, z2), dz1 = x21 − x22, dz2 = x1x2,

where deg x1 = deg x2 = 2, deg z1 = deg z2 = 3.

Proof. The nontrivial cohomology groups for (A, d) are H2(A) = L(x1, x2) and
H4(A) = L(x21). The first non-trivial cohomology group is H2(A), so we define
µ2
∼= H2(A, d), m2 = id. Since the third cohomology groups for µ2 and A are

both trivial, we consider H4(µ2, d) = L(x21, x
2
2, x1x2) and H4(A, d) = L(x21), so

m4
2 : H4(µ2, d) → H4(A, d) is surjective and Kerm4

2 = L(x21−x22, x1x2). In order
to make this mapping injective, we introduce the new generators z1, z2 of degree 3,
with the differentials dz1 = x21−x22, dz2 = x1x2 and define the new commutative dif-
ferential graded algebra µ3 = µ2 ⊗ L(z1, z2). By simple calculations we arrive at the
conclusion that µ3 = µ4 = µ5. Continuing the process we conclude that µk = µ3 for
k ≥ 6. In this way we obtain that µ3 is the minimal Sullivan algebra that we are
looking for. �

Note that the algebras in the previous lemmas are the polynomial quotients by
the Borel ideals, that is of the form Q[x1, . . . , xn]/〈P1, . . . , Pk〉, where the polynomials
P1, . . . , Pk are without relations in Q[x1, . . . , xn]. It is proved in [2] that the minimal
model for such algebra is given by

Q[x1, . . . , xn]⊗ ∧(y1, . . . , yk), dxi = 0, dyi = Pk,

which confirms the results of our application of the general method. The algebra that
is considered in lemma that follows is the polynomial algebra quietened by the ideal
which is not a Borel ideal any more and one has to apply the general approach for
minimal model construction.
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Lemma 3.4. The generators and their differentials up to degree 6 for the minimal
model of the algebra A = (A, d = 0) for A = {〈x1, x2, x3〉 |x21 = x22 = x23, x

3
1 = x32 =

x33 = 0, x1x2 = x1x3 = x2x3 = 0,deg x1 = deg x2 = deg x3 = 2} are

x1, x2, x3, z1, . . . , z5, y1, . . . , y5, w1, . . . , w10, q1, . . . , q24,

where their differentials are given by the formulas (1), (2), (3) and (4) and deg xi=
2, deg zi = 3, deg yi = 4, degwi = 5 and deg qi = 6.

Proof. The nontrivial cohomology groups for the algebra A are H2(A) = L(x1, x2, x3)
and H4(A) = L(x21). We define µ2

∼= H2(A, d) and m2 = id. The map m3
2 :

H3(µ2, d)→ H3(A, d) is an isomorphism, while for the homomorphismm4
2 : H4(µ2, d)→

H4(A, d) we have that Kerm4
2 = L(x1x2, x1x3, x2x3, x

2
1 − x22, x21 − x23). We want the

homomorphism m4
2 : H4(µ2, d) → H4(A, d) to be an isomorphism, so we introduce

the new generators z1, z2, z3, z4, z5 such that

dz1 = x1x2, dz2 = x1x3, dz3 = x2x3, dz4 = x21 − x22, dz5 = x21 − x23. (1)

Then deg zi = 3, 1 ≤ i ≤ 5 and we define µ3 = µ2 ⊗ L(z1, z2, z3, z4, z5) Now we
consider the homomorphism m4

3 : H4(µ3, d) → H4(A, d). Since H4(µ3, d) = L(x2)
and H4(A, d) = L(x2) we see that m4

3 = id.

In the next step we consider the mapping m5
3 : H5(µ3, d)→ H5(A, d) and need to

determine H5(µ3, d). We first find the cycles cij of degree 5. The general form of the

fifth-degree element in µ3 is cij =
3∑
i=1

5∑
j=1

αijxizj and

d5(cij) =

3∑
i=1

5∑
i=1

αijxidzj

=x1(α11x1x2 + α12x1x3 + α13x2x3 + α14(x21 − x22) + α15(x21 − x23))

+ x2(α21x1x2 + α22x1x3 + α23x2x3 + α24(x21 − x22) + α25(x21 − x23))

+ x3(α31x1x2 + α32x1x3 + α33x2x3 + α34(x21 − x22) + α35(x21 − x23))

=x31(α14 + α15) + x21x2(α11 + α24 + α25) + x21x3(α12 + α34 + α35)

+ x1x
2
2(−α14 + α21) + x1x

2
3(−α15 + α32) + x1x2x3(α13 + α22 + α31)

+ x32(−α24) + x22x3(α23 − α34) + x2x
2
3(−α25 + α33) + x33(−α35).

Then d5(cij) = 0 iff the coefficients αij satisfy the following system:

α14 + α15 = 0 α11 + α24 + α25 = 0 α12 + α34 + α35 = 0

−α14 + α21 = 0 −α15 + α32 = 0 α13 + α22 + α31 = 0

α24 = α35 = 0 α23 − α34 = 0 −α25 + α33 = 0.

The system has five free variables, we put them to be

α14 = a, α34 = b, α33 = c, α13 = d, α22 = e.

Then we have

α21 = −α32 = −α15 = a α23 = −α12 = b

α25 = −α11 = c α31 = −α13 − α22 = −d− e.
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It follows that Ker d5 is given by

L(x1z4 − x1z5 + x2z1 − x3z2,−x1z2 + x2z3 + x3z4,

− x1z1 + x2z5 + x3z3, x1z3 − x3z1, x2z2 − x3z1).

Elements of degree 4 u µ3 have the form xixj , i, j = 1, 2, 3 so d4(xixj) = 0, implying
Im d4 = 0. Therefore, H5(µ3, d) = Ker d5 and since we have that H5(A, d) = 0, we
conclude that Kerm5

3 = H5(µ3, d).

In order to achieve the isomorphism between the fifth cohomology groups for A
and the algebra µ3 we introduce the new generators y1, y2, y3, y4, y5, such that

dy1 = x1z4 − x1z5 + x2z1 − x3z2, dy2 = −x1z2 + x2z3 + x3z4, (2)

dy3 = −x1z1 + x2z5 + x3z3, dy4 = x1z3 − x3z1, dy5 = x2z2 − x3z1.
Therefore, µ4 = µ3 ⊗ L(y1, y2, y3, y4, y5), where obviously deg y1 = deg y2 = deg y3 =
deg y4 = deg y5 = 4.

Now H5(µ4, d) = 0, so m5
4 : H5(µ4, d)→ H5(A, d) is an isomorphism. We further

consider the homomorphism m6
4 : H6(µ4, d) → H6(A, d), where, by the short calcu-

lation, we obtain that H6(A, d) = 0. We are now calculating the sixth cohomology
group for (µ4, d). The general form of the elements of the sixth degree in µ4 is

cij =

3∑
i=1

5∑
j=1

αijxiyj +

5∑
i,j=1

βijzizj +

3∑
i,j,k=1

γijxixjxk.

Similarly, as in the previous step, we obtain that H6(µ4, d) is given by

L(x1y1−x3y2+x2y3+z4z5, z1z2−x1y5, x2y1−z1z4+x1y3−x3y4+x3y5,

z1z3−x2y4, x3y1+z2z5−x1y2+x2y4, x3y3−z3z5−x1y4, x2y5−z2z4+x1y2−x2y4,
z2z3−x3y4+x3y5, x2y2−z3z4−x1y4+x1y5, z1z5−x1y3+x3y4),

and Kerm6
4 = H6(µ4, d).

In order to have the isomorphism between the sixth cohomology groups of A and
µ4 we introduce the new generators w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, such that

dw1 = x1y1 − x3y2 + x2y3 + z4z5, dw2 = x2y1 − z1z4 + x1y3 − x3y4 + x3y5, (3)

dw3 = x3y1 + z2z5 − x1y2 + x2y4, dw4 = x2y5 − z2z4 + x1y2 − x2y4,
dw5 = x2y2 − z3z4 − x1y4 + x1y5, dw6 = x3y3 − z3z5 − x1y4,
dw7 = z1z2 − x1y5, dw8 = z1z3 − x2y4,
dw9 = z2z3 − x3y4 + x3y5, dw10 = z1z5 − x1y3 + x3y4.

Therefore, µ5 = µ4⊗L(w1, w2, w3, w4, w5, w6, w7, w8, w9, w10), where obviously degw1 =
degw2 = · · · = degw10 = 5. Now, H6(µ5, d) = 0, as well as H6(A, d), so m6

5 is iso-
morphism.

Now we are considering m7
5 : H7(µ5, d)→ H7(A, d). We have that H7(A, d) = 0,

and we compute that H7(µ5, d) is given by

L(y3z1+x2w10+x3w8, y2z2+y5z3+x3w8−x3w4, y4z3+x3w8, y1z4−x1w1+x2w2−x3w4,

y1z5−x1w1−x2w10+x3w3, y1z1−x1w2−x1w10−x3w7, y5z2+x3w7, y2z3+x1w9−x3w5,

y3z5+x1w10+x3w6, y1z2−x1w4−x1w3−x2w7, y3z3+x1w8−x2w6, y2z4−x1w4+x2w5,
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y5z1+x2w7, y4z1+x1w8, y5z5−y5z4−x2w4−x2w3+x3w10+x3w2,

y1z3+y5z4−x1w5+x1w6−x2w8+x2w4+x3w9−x3w2, y4z4−y5z4+x1w5−x2w4,

−y5z3+x2w9−x3w8, y2z5+x1w3+x2w6−x3w1, y3z4−x1w2+x2w1+x3w5,

y4z2+x1w9+x3w7, y2z1−y5z4−x1w7+x2w8−x2w4,

y3z2+y5z4+x1w7+x2w4+x2w3+x3w9−x3w2, y4z5+x1w6+x3w10).

Thus, Kerm7
5 = H7(µ5, d) and to have the isomorphism between the seventh coho-

mology groups of A and µ5 we introduce the new generators q1, q2, q3, . . . , q24, such
that

dq1 = y3z1+x2w10+x3w8, dq2 = y2z2+y5z3+x3w8−x3w4, (4)

dq3 = y4z3+x3w8, dq4 = y1z4−x1w1+x2w2−x3w4,

dq5 = y1z5−x1w1−x2w10+x3w3, dq6 = y1z1−x1w2−x1w10−x3w7,

dq7 = y5z2+x3w7, dq8 = y2z3+x1w9−x3w5,

dq9 = y3z5+x1w10+x3w6, dq10 = y1z2−x1w4−x1w3−x2w7,

dq11 = y3z3+x1w8−x2w6, dq12 = y2z4−x1w4+x2w5,

dq13 = y5z1+x2w7, dq14 = y4z1+x1w8,

dq15 = y5z5−y5z4−x2w4−x2w3+x3w10+x3w2,

dq16 = y1z3+y5z4−x1w5+x1w6−x2w8+x2w4+x3w9−x3w2,

dq17 = y4z4−y5z4+x1w5−x2w4, dq18 = −y5z3+x2w9−x3w8,

dq19 = y2z5+x1w3+x2w6−x3w1, dq20 = y3z4−x1w2+x2w1+x3w5,

dq21 = y4z2+x1w9+x3w7, dq22 = y2z1−y5z4−x1w7+x2w8−x2w4,

dq23 = y3z2+y5z4+x1w7+x2w4+x2w3+x3w9−x3w2,

dq24 = y4z5+x1w6+x3w10.

Therefore,µ6 = µ5 ⊗ L(q1, q2, q3, . . . , q24), where deg q1 = deg q2 = · · · = deg q24 = 6.
Now, H7(µ6, d) = 0, as well as H7(A, d) so m7

6 isomorphism. �

4. Homotopy Lie algebra of a minimal Sullivan algebra and universal
enveloping algebra

Definition 4.1. : A Lie algebra L on Q is a graded vector space together with linear
mapping [−,−] : Lp ⊗ Lq → Lp+q such that:

[a, b] = −(−1)deg a·deg b[b, a], [a, [b, c]] = [[a, b], c] + (−1)deg a·deg b[b, [a, c]].

There is a standard procedure which to any minimal Sullivan algebra assigns
a Lie algebra. More precisely, let (∧V, d) be a minimal Sullivan algebra. Define
a graded vector space L by requiring that sL = Hom(V, k), where the suspension
sL is defined by (sL)k = Lk−1. Thus, a pairing 〈, 〉 : V × sL → k is defined by
〈v; sx〉 = (−1)deg vsx(v). Extend this to (k+1)-linear maps ∧kV × sL · · · ×sL→ k by
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setting

〈v1 ∧ · · · ∧ vk; sxk, . . . , sx1〉 =
∑
σ∈Sk

εσ〈vσ(1); sx1〉 · · · 〈vσ(k); sxk〉,

where as usual Sk is the permutation group on k symbols and

vσ(1) ∧ · · · ∧ vσ(k) = εσv1 ∧ · · · ∧ vk.

Definition 4.2. A pair of dual bases for V and for L consists of a basis (vi) for V
and a basis (xj) for L such that

〈vi; sxj〉 =

{
1, if i = j
0, otherwise

We observe now that L inherits a Lie bracket [ , ] from d1. Indeed, a bilinear map
[, ] : L× L→ L is uniquely determined by the formula

〈v; s[x, y]〉 = (−1)deg y+1 < d1v; sx, sy >, x, y ∈ L, v ∈ V. (5)

Here d1 is quadratic part in the differential d for the minimal model (∧V, d) and it is
defined by d− d1 ∈ ∧k≥3V . Thus, if d1v = v1 ∧ v2 for some v1, v2 ∈ V the expression
〈d1v; sx, sy〉 is defined by

〈v1 ∧ v2; sx, sy〉 = 〈v1; sx〉〈v2; sy〉 − 〈v2; sx〉〈v1; sy〉.

The relation v∧w = (−1)deg x deg yw∧v leads at once to [x, y] = −(−1)deg x deg y[y, x]
and an easy computation gives

〈d21v, sx, sy, sz〉 = (−1)deg y〈v; s[x, [y, z]]− s[[x, y], z]− (−1)deg x deg ys[y, [x, z]]〉.
Thus, the Jacobi identity is equivalent to the relation d21 = 0. The Lie algebra L is
called the homotopy Lie algebra of the Sullivan algebra µ = (∧V, d).

On the other hand in the category of topological spaces and continuous maps, it
is defined the Samelson products [f, g] : Sp+q −→ ΩM of maps f : Sp −→ ΩM and
g : Sq −→ ΩM by the composite

Sp ∧ Sq f∧g−→ ΩM ∧ ΩM
c−→ ΩM,

where c is given by the multiplicative commutator, that is, c(x, y) = x · y · x−1 · y−1.
The graded Lie algebra LM = (π∗(ΩM) ⊗ Q; [ , ]) for which the commutator [ , ] is
given by the Samelson product is called the rational homotopy Lie algebra of M .
There is an isomorphism between the rational homotopy Lie algebra LM and the
homotopy Lie algebra L of µ ( [3]).

We describe the homotopy Lie algebras of the minimal Sullivan algebras that we
constructed in the previous chapter.

Lemma 4.3. The homotopy Lie algebra for the algebra A from Lemma 3.2 is given by

1. (for the first case) L = L(v
′

1, v
′

2), [v
′

1, v
′

1] = 2v
′

2, while the other Lie brackets are
trivial and deg v

′

1 = 3,deg v
′

2 = 6.
2. (for the second case) L = L(v

′

1, v
′

2),deg v
′

1 = 1,deg v
′

2 = 4, where all Lie brackets
are trivial.
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Proof. We prove the first statement. the second one goes in an analogous way. The
minimal Sullivan algebra for A is by Lemma 3.2 given by

∧V = Q[x]⊗ ∧(z), deg x = 4, dx = 0,deg z = 7, dz = x2.

For the sake of easy calculation, we will denote elements x and z by a1 and a2. We
first define the vector space Hom(V, k) = L(v1, v2), where v1(a1) = 1, v1(a2) = 0 and
v2(a1) = 0, v2(a2) = 1. Then we have L = L(v

′

1, v
′

2),deg v
′

1 = 3, deg v
′

2 = 6. The
elements v

′

1, v
′

2 are the elements v1, v2 displaced in the graduation by −1. The Lie
brackets are determined by (5):

〈a1, s[v
′

1, v
′

1]〉 = 〈d1a1; sv
′

1, sv
′

1〉 = 0,

〈a2, s[v
′

1, v
′

1]〉 = 〈a21; sv
′

1, sv
′

1〉 = 〈a1; sv
′

1〉〈a1, sv
′

1〉+ 〈a1; sv
′

1〉〈a1, sv
′

1〉 = 2.

So, we can conclude that [v
′

1, v
′

1] = 2v
′

2. For the bracket [v
′

2, v
′

2] we have that
〈a1, s[v

′

2, v
′

2]〉 = 0 and 〈a2, s[v
′

2, v
′

2]〉 = −〈a21; sv
′

2, sv
′

2〉 = 0.
Thus, [v

′

2, v
′

2] = 0. For the Lie bracket [v
′

1, v
′

2] we have that < a1, s[v
′

1, v
′

2] >= 0
and < a2, s[v

′

1, v
′

2] >= 0. So, [v
′

1, v
′

2] = 0. �

Lemma 4.4. The homotopy Lie algebra of the algebra A from Lemma 3.3 is given by

L = L(v
′

1, v
′

2, v
′

3, v
′

4), [v
′

1, v
′

1] = 2v
′

3, [v
′

1, v
′

2] = v
′

4, [v
′

2, v
′

2] = −2v
′

3,

while all others Lie brackets are equal to zero and deg v
′

1 = 1, deg v
′

2 = 1, deg v
′

3 = 2,
deg v

′

3 = 2.

Proof. The minimal minimal Sullivan algebra for A is, according to Lemma 3.3
given by µ = Q(a1, a2, ) ⊗ ∧(a3, a4), da3 = a21 − a22, da4 = a1a2, where deg a1 =
deg a2 = 2, da1 = da2 = 0, deg a3 = deg a4 = 4. We consider the vector space
Hom(V, k) = L(v1, v2, v3, v4), where vi(aj) = 1 iff i = j, i.j = 1, . . . , 4 and define

that L = L(v
′

1, v
′

2, v
′

3, v
′

4), where the graduation is given by deg v
′

1 = deg v
′

2 = 1,
deg v

′

3 = deg v
′

4 = 2.
The Lie brackets on L are determined by the (5). From that formulas we can con-

clude that the Lie bracket [v
′

i, v
′

j ] = 0 iff in there is no generator in the minimal model
whose differential d1 contains element of the form aiaj . When we look at expressions
that represent differentials of the generators of the minimal model, we see that they
do not contain the elements of the form a1a3, a1a4, a2a3, a2a4, a3a3, a3a4, a4a4, so

[v
′

1, v
′

3] = [v
′

1, v
′

4] = [v
′

2, v
′

3] = [v
′

2, v
′

4] = [v
′

3, v
′

3] = [v
′

3, v
′

4] = [v
′

4, v
′

4] = 0.

It remains to determine the Lie bracket [v
′

1, v
′

1], [v
′

1, v
′

2], [v
′

2, v
′

2]. We have that d1a3 =
a21 − a22, implying

〈a3, s[v
′

1, v
′

1]〉 = 2, 〈ai, s[v
′

1, v
′

1]〉 = 0, i 6= 3

〈a3, s[v
′

2, v
′

2]〉 = −2, 〈ai, s[v
′

2, v
′

2]〉 = 0, i 6= 3.

We have that d1a4 = a1a2, so

〈a4, s[v
′

1, v
′

2]〉 = 1, 〈ai, s[v
′

1, v
′

2]〉 = 0, i 6= 4.

It follows that [v
′

1, v
′

1] = 2v
′

3, [v
′

1, v
′

2] = v
′

4, [v
′

2, v
′

2] = −2v
′

3. �
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Proposition 4.5. The homotopy Lie algebra up to degree 5 of the algebra A from
Lemma 3.4 is given by

L = L(v
′

1, v
′

2, . . . , v
′

47), (6)

where deg v
′

i = 1, 1 ≤ i ≤ 3, deg v
′

i = 2, 4 ≤ i ≤ 8, deg v
′

i = 3, 9 ≤ i ≤ 13, deg v
′

i = 4,

14 ≤ i ≤ 23 and deg v
′

i = 5, 24 ≤ i ≤ 47. The non trival Lie brackets on L up to
degree 5 are given by the table below.

Remark 4.6. Note that, since we described in Lemma 3.4 the generators of the
minimal model up to degree 6, we are not able to calculate all the Lie brackets for
elements of L. More precisely, we can calculate the Lie brackets up to degree 5.
For example, [v

′

10, v
′

25] should be an element of degree 7 and can not be described in
terms of the elements in L. Nevertheless, we can calculate the Lie brackets for a lot
of elements in L.

Proof. The minimal model for A is given by Lemma 3.4. Like in the previous ex-
amples, for the sake of simplicity, we will denote elements x1, x2, x3, z1, z2, . . . , q24 by
a1, a2, a3, a4, a5, . . . , a47 and correspondingly write their differentials. We denote by
vi, 1 ≤ i ≤ 47 the duals for ai that is vi(aj) = 1, for i = j and vi(aj) = 0, i 6= j.

We define that L = L(v
′

1, v
′

2, . . . , v
′

47), where the the elements v
′

i are the elements
vi displaced in the graduation by −1.

There are some general rules that we can observe and use for calculating a Lie
bracket. If we want to calculate the Lie bracket [v

′

k, v
′

l ] we are looking for element
an, n ∈ {1, 2, . . . , 47} which contains element akal in his differential d1. If there is
no such an element the Lie bracket is equal to zero. Moreover, for k 6= l and there
is one element an which has element akal in his differential d1, then the Lie bracket
[v

′

k, v
′

l ] is equal to v
′

n or to −v′

n. When v
′

k is odd degree then [v
′

k, v
′

l ] = v
′

n and when

v
′

k is even degree then [v
′

k, v
′

l ] = −v′

n. If in the differential we have an element −akal
the situation is opposite. If there is more then one element whose differential d1
contains akal, for example ap, as, aq then [v

′

k, v
′

l ] is equal to the sum of v
′

p, v
′

s, v
′

q with

appropriate sign for any of the elements v
′

p, v
′

s, v
′

q.

For k = l and v
′

k has even degree, [v
′

k, v
′

k] is equal to zero. If v
′

k has odd degree

then [v
′

k, v
′

k] is equal to 2v
′

n, where an is the only element in the minimal model

whose differential d1 contains the element a
′

ka
′

k. If in the differential d1 of an element

an appears −a′

ka
′

k then [v
′

k, v
′

k] = −2v
′

n. If there is more then one element whose

differential d1 contains the element a
′

ka
′

k, then the rule is same like in case when
k 6= l.

Using these rules, we list the Lie brackets in L which gives the elements up to
degree 5.

[v
′

1, v
′

1] = 2v
′

7 + 2v
′

8 [v
′

1, v
′

2] = v
′

4 [v
′

1, v
′

3] = v
′

5

[v
′

1, v
′

4] = −v
′

11 [v
′

1, v
′

5] = −v
′

10 [v
′

1, v
′

6] = v
′

12

[v
′

1, v
′

7] = v
′

9 [v
′

1, v
′

8] = −v
′

9 [v
′

1, v
′

9] = v
′

14

[v
′

1, v
′

10] = −v
′

16 + v
′

17 [v
′

1, v
′

11] = v
′

15 − v
′

23 [v
′

1, v
′

12] = −v
′

18 − v
′

19
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[v
′

1, v
′

13] = v
′

18 − v
′

20 [v
′

1, v
′

14] = −v
′

27 − v
′

28 [v
′

1, v
′

15] = −v
′

29 − v
′

43

[v
′

1, v
′

16] = −v
′

33 + v
′

42 [v
′

1, v
′

17] = −v
′

33 − v
′

35 [v
′

1, v
′

18] = −v
′

39 + v
′

40

[v
′

1, v
′

19] = v
′

39 + v
′

47 [v
′

1, v
′

20] = −v
′

45 + v
′

46 [v
′

1, v
′

21] = v
′

34 + v
′

37

[v
′

1, v
′

22] = v
′

31 + v
′

44 [v
′

1, v
′

23] = −v
′

29 + v
′

32

[v
′

2, v
′

2] = −2v
′

7 [v
′

2, v
′

3] = v
′

6 [v
′

2, v
′

4] = v
′

9

[v
′

2, v
′

5] = v
′

13 [v
′

2, v
′

6] = v
′

10 [v
′

2, v
′

7] = 0

[v
′

2, v
′

8] = v
′

11 [v
′

2, v
′

9] = v
′

15 [v
′

2, v
′

10] = v
′

18

[v
′

2, v
′

11] = v
′

14 [v
′

2, v
′

12] = v
′

16 − v
′

17 − v
′

21 [v
′

1, v
′

13] = v
′

17

[v
′

2, v
′

14] = v
′

43 [v
′

1, v
′

15] = v
′

27 [v
′

2, v
′

16] = −v
′

38 + v
′

46

[v
′

2, v
′

18] = v
′

35 [v
′

2, v
′

19] = −v
′

34 + v
′

42 [v
′

2, v
′

23] = v
′

24 − v
′

28

[v
′

2, v
′

20] = v
′

31 − v
′

33 [v
′

2, v
′

21] = −v
′

39 + v
′

45 [v
′

2, v
′

22] = v
′

41

[v
′

2, v
′

17] = −v
′

38 + v
′

39 − v
′

40 − v
′

45 + v
′

46

[v
′

3, v
′

3] = −2v
′

8 [v
′

3, v
′

4] = −v
′

12 − v
′

13 [v
′

3, v
′

5] = −v
′

9

[v
′

3, v
′

6] = v
′

11 [v
′

3, v
′

7] = v
′

10 [v
′

3, v
′

8] = 0

[v
′

3, v
′

9] = v
′

16 [v
′

3, v
′

10] = −v
′

14 [v
′

3, v
′

11] = v
′

19

[v
′

3, v
′

12] = −v
′

15 − v
′

22 + v
′

23 [v
′

3, v
′

13] = v
′

15 + v
′

22 [v
′

3, v
′

14] = −v
′

42

[v
′

3, v
′

15] = v
′

38 − v
′

39 − v
′

46 [v
′

3, v
′

16] = v
′

28 [v
′

3, v
′

17] = −v
′

25 − v
′

27

[v
′

3, v
′

18] = −v
′

31 + v
′

43 [v
′

3, v
′

19] = v
′

32 [v
′

3, v
′

20] = −v
′

29 + v
′

30 + v
′

44

[v
′

3, v
′

21] = v
′

24 + v
′

25 + v
′

26 − v
′

41 [v
′

3, v
′

22] = v
′

39 + v
′

46 [v
′

3, v
′

23] = v
′

38 + v
′

47

[v
′

4, v
′

4] = 0 [v
′

4, v
′

5] = −v
′

20

[v
′

4, v
′

6] = −v
′

21 [v
′

4, v
′

7] = v
′

15 [v
′

4, v
′

8] = −v
′

23

[v
′

4, v
′

9] = −v
′

29 [v
′

4, v
′

10] = −v
′

45 [v
′

4, v
′

11] = −v
′

24

[v
′

4, v
′

12] = −v
′

37 [v
′

4, v
′

13] = −v
′

36

[v
′

5, v
′

5] = 0 [v
′

5, v
′

6] = −v
′

22 [v
′

5, v
′

7] = v
′

17

[v
′

5, v
′

8] = −v
′

16 [v
′

5, v
′

9] = −v
′

33 [v
′

5, v
′

10] = −v
′

25

[v
′

5, v
′

11] = −v
′

46 [v
′

5, v
′

12] = −v
′

44 [v
′

5, v
′

13] = −v
′

30

[v
′

6, v
′

6] = 0 [v
′

6, v
′

7] = v
′

18 [v
′

6, v
′

8] = v
′

19

[v
′

6, v
′

9] = −v
′

39 [v
′

6, v
′

10] = −v
′

31 [v
′

6, v
′

11] = −v
′

34

[v
′

6, v
′

12] = −v
′

26 [v
′

6, v
′

13] = −v
′

25 + v
′

41 [v
′

7, v
′

7] = 0

[v
′

7, v
′

8] = −v
′

14 [v
′

7, v
′

9] = −v
′

27 [v
′

7, v
′

10] = −v
′

35
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[v
′

7, v
′

11] = −v
′

43 [v
′

7, v
′

12] = −v
′

40

[v
′

7, v
′

13] = v
′

38 − v
′

39 + v
′

40 + v
′

45 − v
′

46

[v
′

8, v
′

8] = 0 [v
′

8, v
′

9] = −v
′

28 [v
′

8, v
′

10] = −v
′

42

[v
′

8, v
′

11] = −v
′

32 [v
′

8, v
′

12] = −v
′

47 [v
′

8, v
′

13] = −v
′

38.

4.1 Universal enveloping algebra of a homotopy Lie algebra

The universal enveloping algebra for a Lie algebra L is defined by

UL ∼= T (L)/
〈
x⊗ y − (−1)deg x deg yy ⊗ x− [x, y]

〉
.

Milnor and Moore [see Appendix in [6]] showed that for a path connected ho-
motopy associative H-space with unit E, there is an isomorphism of Hopf algebras
U(π∗(E)⊗Q) ∼= H∗(E;Q). As loop multiplication is homotopy associative with unit,
applying the Milnor and Moore theorem to our case, it follows that H∗(ΩM ;Q) ∼= UL,
where UL is the universal enveloping algebra for L. For a more detailed account on
this construction see for example [3], Chapters 12 and 16.

We compute the universal enveloping algebras for the Lie algebras we previously
calculated.

Lemma 4.7. The universal enveloping algebras for the Lie algebras given by Lemma 4.3
are given by T (v

′

1) and T (v
′

1, v
′

2)/〈v′

1 ⊗ v
′

1 = 0, v
′

1 ⊗ v
′

2 = v
′

2 ⊗ v
′

1〉 respectively.

Proof. We determine the universal enveloping algebra UL in the second case. We find
that the generating elements for the ideal I are 2v

′

1 ⊗ v
′

1, v
′

1 ⊗ v
′

2 − v
′

2 ⊗ v
′

1. So, in
UL we have two relations v

′

1 ⊗ v
′

1 = 0 and v
′

1 ⊗ v
′

2 = v
′

2 ⊗ v
′

1. Therefore, the universal
enveloping algebra which we are looking for is:

UL ∼= T (v
′

1, v
′

2)/〈v
′

1 ⊗ v
′

1 = 0, v
′

1 ⊗ v
′

2 = v
′

2 ⊗ v
′

1.〉

Lemma 4.8. The universal enveloping algebra for the Lie algebra given by Lemma 4.4
is T (v

′

1, v
′

2)/〈v′

1 ⊗ v
′

1 = −v′

2 ⊗ v
′

2〉.

Proof. Like in previous examples, the generating elements in I are:

2v
′

1 ⊗ v
′

1 − 2v
′

3, v
′

1 ⊗ v
′

2 + v
′

2 ⊗ v
′

1 − v
′

4, 2v
′

2 ⊗ v
′

2 + 2v
′

3, v
′

1 ⊗ v
′

3 − v
′

3 ⊗ v
′

1,

v
′

1 ⊗ v
′

4 − v
′

4 ⊗ v
′

1, v
′

2 ⊗ v
′

3 − v
′

3 ⊗ v
′

2, v
′

2 ⊗ v
′

4 − v
′

4 ⊗ v
′

2, v
′

3 ⊗ v
′

4 − v
′

4 ⊗ v
′

3.

So, in UL we have three relations v
′

1⊗v
′

1 = v
′

3, v
′

1⊗v
′

2+v
′

2⊗v
′

1 = v
′

4 and v
′

2⊗v
′

2 = −v′

3.
All other relations are consequences of these three relations. The first and the third
relation give us relation v

′

1 ⊗ v
′

1 = −v′

2 ⊗ v
′

2. Therefore, the universal enveloping
algebra is given by: UL ∼= T (v

′

1, v
′

2)/〈v′

1 ⊗ v
′

1 = −v′

2 ⊗ v
′

2〉. �

Proposition 4.9. The universal enveloping algebra up to degree 5 for the Lie algebra
given by Proposition 4.5 is given by UL ∼= T (v

′

1, v
′

2, v
′

3)/〈v′

1⊗v
′

1 = −v′

2⊗v
′

2−v
′

3⊗v
′

3〉.

Proof. From the previous examples we conclude that, if some Lie bracket [v
′

k, v
′

l ] is

equal to some element v
′

n, n ≥ k, l then in the universal enveloping algebra we have
the relation between these three elements, that is we can express element v

′

n using
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elements v
′

k, v
′

l . For example, v
′

1⊗ v
′

2− (−1)v
′

2⊗ v
′

1− [v
′

1, v
′

2] = v
′

1⊗ v
′

2 + v
′

2⊗ v
′

1− v
′

4,

so in UL we have v
′

4 = v
′

1 ⊗ v
′

2 + v
′

2 ⊗ v
′

1. When we look at the list of Lie brackets
given in the proof of Proposition 4.5 we can see that every element v

′

k, k ≥ 4 can
be obtained by the Lie bracket of the generators of the lower degree. So, we can
conclude that every element v

′

k, k ≥ 4 in UL we can express as a linear combination

of the products of the elements v
′

1, v
′

2 and v
′

3. Therefore, in UL we have just elements
v

′

1, v
′

2, v
′

3 and the linear combination of their tensor products. It remains just to see
if there is some relation between v

′

1, v
′

2, v
′

3 in UL. From the list of the Lie brackets we
have that [v

′

1, v
′

1] = −[v
′

2, v
′

2]−[v
′

3, v
′

3]. In UL we have that 2v
′

1⊗v
′

1 = [v
′

1, v
′

1], 2v
′

2⊗v
′

2 =
[v

′

2, v
′

2], 2v
′

3⊗ v
′

3 = [v
′

3, v
′

3], so in UL we have the relation v
′

1⊗ v
′

1 = −v′

2⊗ v
′

2− v
′

3⊗ v
′

3.
Therefore, the universal enveloping algebra which we are looking for is:

UL ∼= T (v
′

1, v
′

2, v
′

3)/〈v
′

1 ⊗ v
′

1 = −v
′

2 ⊗ v
′

2 − v
′

3 ⊗ v
′

3〉
.

In this way we completed the proofs of Proposition 1.2 and Theorem 1.3.
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