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Abstract. Simplicial complexes K, in relation to their Alexander dual K̂ , can be classified
as self-dual (K = K̂), sub-dual (K ⊆ K̂), super-dual (K ⊇ K̂), or transcendent (neither
sub-dual nor super-dual). We explore a connection between sub-dual and self-dual complexes
providing a new insight into combinatorial structure of self-dual complexes. The root operator
(Definition 4.3) in Section 4 associates with each self-dual complex K a sub-dual complex√
K on a smaller number of vertices. We study the operation of minimal restructuring

of self-dual complexes and the properties of the associated neighborhood graph, defined on
the set of all self-dual complexes. Some of the operations and relations, introduced in the
paper, were originally developed as a tool for computer-based experiments and enumeration
of self-dual complexes.

1. Introduction

The terminology used in this paper is mostly standard and the reader is referred
to [16] for all undefined concepts.
We emphasize that, for a given simplicial complex K ⊆ 2S , the set of vertices
V ert(K) = {v ∈ S | {v} ∈ K} of K can in general be a proper subset of the
ambient set S. This distinction is important as visible already in the definition of the
Alexander dual of a simplicial complex.

Definition 1.1. The Alexander dual (or simply the dual) of a complex K ⊆ 2S is

the simplicial complex K̂ ⊆ 2S given by K̂ = {S\A | A /∈ K}.

When we want to emphasize the ambient set S, the Alexander dual of the complex
K is denoted by K̂S .
Using the relation “being a subcomplex” we can classify all simplicial complexes in
the given ambient in the following way.
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Definition 1.2. Let K ⊆ 2S be a simplicial complex. We say that the complex K is:
(i) sub-dual in the ambient S if K ⊆ K̂S ;

(ii) super-dual in the ambient S if K̂S ⊆ K;

(iii) self-dual in the ambient S if K = K̂S ;

(iv) transcendent in the ambient S if K and K̂S are not comparable.

Self-dual simplical complexes appear in many different branches of mathematics and
provide a link between areas as distant as algebraic topology, game theory, hypergraph
theory, and combinatorial optimization, to name just a few.
For illustration, the “Bottleneck theorem” of Edmonds and Fulkerson [8] is a classical
result of optimization theory which implies that for each self-dual complex K ⊂ 2[n]

and each function f : [n]→ R,

max
A∈C

min
x∈A

f(x) = min
B∈C

max
y∈B

f(y),

where C is the collection of complements P c of all maximal simplices P in K.
In combinatorial (algebraic) topology, self-dual simplicial complexes provide funda-
mental examples of triangulated geometrical objects which are not embeddable in an
Euclidean space of prescribed dimension. More explicitly, see [16, Section 5], self-dual
complexes on n vertices cannot be embedded in an Euclidean space of dimension
n − 3. Moreover, as demonstrated by S. A. Melikhov [17, Theorem 1.12,3], self-dual
complexes are subset-minimal examples of simplicial complexes which are not embed-
dable in Rn−3 in the sense that every proper subcomplex of a self-dual subcomplex
of 2[n] can be embedded in Rn−3.

Figure 1: The hemi-icosahedron.

Notable examples of self-dual complexes are the 6-vertex triangulation of the real
projective plane (hemi-icosahedron, exhibited in Figure 1) and the unique 9-vertex
triangulation of the complex projective plane, see [1, 2, 9, 10].
Motivated in part by algorithmic, computational, and enumerative aspects of the
theory of self-dual complexes, we explore their combinatorial structure and study
their faithful representation which are as simple as possible. For example we show
that each self-dual complex K ⊂ 2[n] can be uniquely reconstructed from its sub-dual
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“root”
√
K ⊂ 2[n−1] which will be introduced in Section 4. This in turn allows us a

more efficient enumeration and classification of self-dual complexes as illustrated by
the following results.

Theorem 1.3. The number of self-dual simplicial complexes in the ambient [n] is
equal to the number of sub-dual complexes in the ambient [n− 1].

Theorem 1.4. Self-dual simplicial complexes K and L in the ambients S and S′

respectively, where |S| = |S′|, are isomorphic iff there exist vertices {v} ∈ K and
{w} ∈ L such that Lk({v}) and Lk({w}) are isomorphic.

In the comment for [17, Theorem 1.11], S. Melikhov observed that new self-dual
simplicial complexes can be obtained by exchanging a pair of complementary faces
of a given self-dual complex. Using this property, we describe a simple procedure
for minimal restructuring (minimal modification) of self-dual simplicial complexes.
More explicitly, the result of a minimal modification of K ⊂ 2[n], based on a maximal
simplex A ∈ K, is the complex mmA(K) :=

(
K\{A}) ∪ {Ac} obtained by removing

from K the maximal simplex A and adding the associated minimal non-simplex Ac,
where Ac := [n]\A.

We say that two self-dual complexes K and L are neighbors if one can be obtained
from the other by a minimal modification, L = mmA(K) and K = mmAc(L). The
associated neighborhood graph NGn (Section 3) provides a convenient ecological niche
for the classification and study of self-dual complexes.

It is not difficult to see that the graph NGn is always connected. Nevertheless it is
instructive to analyze more carefully the paths in this graph (see Propositions 3.1 and
3.2). For illustration each closed cycle in the neighborhood graph NGn has an even
length (Proposition 3.3) which immediately implies that the graph NGn is bipartite.

The complex ∆n−2 := 2[n−1] (as a self-dual subcomplex of 2[n]) is somewhat excep-
tional. It has only one maximal simplex (A = [n − 1]) and consequently only one
neighbor in NGn, the complex

mm[n−1](∆
n−2) =

(
2[n−1]\

{
[n− 1]

})
∪
{
{n}

}
= ∂∆n−2 ]∆0.

In Section 4 we focus on paths in the neighborhood graph NGn, emanating from
the simplicial complex ∆n−2. This analysis leads to the construction of the operation√

: D[n] → SD[n−1], referred to as the root operator, where D[n] (respectively SD[n−1])
is the collection of all self-dual (respectively sub-dual) complexes in 2[n] (respectively
sub-dual 2[n−1]). It turns out that the operator

√
is invertible which immediately

implies that the number of self-dual simplicial complexes on n vertices is equal to
number of sub-dual simplicial complexes on n− 1 vertices, (Theorem 1.3).

In Section 5 we briefly discuss the relevance of Theorem 1.3 for estimating Dedekind
numbers. In Section 6 we give a more geometric interpretation of the root operator
and its inverse, the dual upgrade operator Λ. The central is Proposition 6.2 expressing
the root as a link of the vertex n,

√
K = Lk({n}).

Section 7 describes a new method for checking combinatorial equivalence (Defini-
tion 7.1) of two self-dual simplicial complexes. The main result is Theorem 1.4 stat-
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ing that it is sufficient to check combinatorial equivalence of the links of two chosen
vertices.
In the concluding section (Section 8), we use the Combinatorial Alexander Duality
(Theorem 8.1) to analyze the homology of self-dual upgrades in relation to its root sub-
dual root complex and introduce a new technique for constructing self-dual complexes
with prescribed homology.

2. Basic properties of self-dual, sub-dual and super-dual complexes

Here are some elementary properties of the duality operator.

Lemma 2.1. Let K,L ⊆ 2S be any simplicial complexes.

(i) If K ⊆ L then L̂ ⊆ K̂. (ii)
(̂
K̂
)

= K

Interesting results can be obtained in a more general setting for iterated duality,
especially when the ambient for the second dual is increased.
The family of all sub-dual complexes in the ambient S will be denoted by SDS and
the family of all self-dual complexes in the ambient S will be denoted by DS . It is
immediate from Lemma 2.1 that K is super-dual in the ambient S iff K̂S is sub-dual
in the ambient S.

Example 2.2. Let
(
[n]
k

)
be the k − 1-skeleton of the complex ∆n−1 = 2[n]. Then, by

Definition 1.1 its Alexander dual in the ambient [n] is(̂
[n]

k

)
= {[n]\A | |A| > k} = {A | |A| ≤ n− k − 1} =

(
[n]

n− k − 1

)
.

Therefore, the complex
(
[n]
k

)
is sub-dual iff 2k + 1 ≤ n, super-dual iff 2k + 1 ≥ n,

and self-dual iff 2k + 1 = n. Specially, if k = 2 we obtain the complex
(
[5]
2

)
= K5, a

complete graph on 5 vertices shown in Figure 2.

Figure 2: Graph K5.

Using Lemma 2.1 we conclude that if a given simplicial complex is sub-dual in the
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ambient S, all of its subcomplexes must also be sub-dual in the ambient S. Therefore,
using Example 2.2, we obtain the following proposition.

Proposition 2.3. A simplicial complex K of dimension k is always sub-dual in the
ambient S where |S| > 2k + 3.

The following theorem provides an efficient criterion for verifying sub, super and
self-duality of a given simplicial complex.

Theorem 2.4. Let K ⊆ 2S be a simplicial complex. In the ambient S the complex
K is:
(i) sub-dual iff there is no simplex A ⊆ S such that A ∈ K and S\A belong to K;

(ii) super-dual iff there is no simplex A ⊆ S such that A and S\A are not in K;

(iii) self-dual iff for arbitrary A ⊆ S exactly one of the simplexes A or S\A belongs
to K or equivalently (∀A ⊆ S)A ∈ K ⇐⇒ S\A /∈ K.

Proof. (i)(⇒) Let K ⊆ K̂ and let A ⊆ S such that A,S\A ∈ K. Then, because K is

a subcomplex of K̂, we have S\A,A ∈ K̂ which by Definition 1.1 implies that A and
S\A do not belong to K contradicting our assumption.
(⇐) Suppose there is no simplex A ⊆ S such that A and S\A are in K. Then, for
arbitrary B ∈ K, the simplex S\B is not in K which implies that S\(S\B) = B is in

K̂. Therefore K ⊆ K̂.
(ii) Following Lemma 2.1, complex K will be super-dual iff K̂ is sub-dual and by
statement(i) this will happen iff there is no simplex A ⊆ S such that A and S\A
belong to K̂ which, by Definition 1.1 is equivalent to A,S\A /∈ K.
(iii) Complex K will be self-dual iff it is sub-dual and super-dual. Therefore, for an
arbitrary simplex A ⊆ S, if A ∈ K for (i) to be true, the simplex S\A must not be in
K. Also, if A /∈ K, then from (ii) we have S\A ∈ A. �

The following example illustrates how the ambient space affects the duality of simpli-
cial complexes.

Example 2.5. The complex ∆n−1 = 2[n] is super-dual in the ambient [n], self-dual
in the ambient [n+ 1] and sub-dual in the ambient [n+ 2].
Indeed, the following Theorem 2.4, for arbitrary A ⊆ [n], both A and [n]\A are
contained in 2[n], which confirms (ii). Also, for arbitrary A ⊆ [n+ 1], the set A does
not contain the vertex {n+1} iff [n+1]\A contains {n+1} or equivalently, A ∈ 2[n] iff
[n+ 1]\A /∈ 2[n]. This confirms (iii). Finally, ∆n−1 = 2[n] ⊂ 2[n+1], so, by Lemma 2.1

we have 2̂[n+1]
[n+2]

= 2[n+1] ⊂ 2̂[n]
[n+2]

and this implies ∆n−1 ⊂ ∆̂n−1
[n+2]

.

This example illustrates that enlargement of the ambient set, in the case of the com-
plex ∆n−1, increases its Alexander dual, which is also true for an arbitrary simplicial
complex. Namely, if K ⊆ 2[n] is a simplicial complex then, by Lemma 2.1, we have

2̂[n]
[n+1]

⊆ K̂ [n+1] and by Example 2.5 we have K ⊆ 2[n] ⊆ K̂ [n+1]. This allows us
to conclude that every simplicial complex K in the ambient S is sub-dual in every
ambient S′ where S ⊂ S′.
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Proposition 2.6. Only simplicial complexes that are self-dual in the ambient S and
do not contain all vertices {v} ⊂ S are 2S\{v}.

Proof. From Example 2.5 we know that 2S\{v} is self-dual in the ambient S. Sup-
pose K ⊆ 2S is self-dual and that the vertex {v} does not belong to K. Then, by
Theorem 2.4 part (iii) the simplex S\{v} must be in K. Thus, K = 2S\{v}. �

So, following Example 2.6, we observe that there are exactly n self-dual simplicial
complexes in the ambient [n], which do not contain all singletons as simplices.

Remark 2.7. Theorem 2.4 states that a simplicial complex K is super-dual iff for
every partition A,B of the ambient set S into disjoint subsets, at least one of the
simplexes A or B belongs to S. The complexes with this property are also called
2-unavoidable, a special case of r−unavoidable complexes which where introduced
in [5]. In this setting, the self-dual simplicial complexes correspond to minimal
2−unavoidable complexes. For an in-depth study of combinatorial properties of
r-unavoidable complexes see [13,14].

3. Minimal modification of self-dual complexes

In this section we take a closer look at the method of minimal modifications (minimal
restructuring) of self-dual simplicial complexes K ⊂ 2S in a fixed ambient set S.
Recall that A ∈ K is a maximal simplex of a simplicial complex K ⊆ 2S if A is not a
face of any other simplex of the complex K i.e. if (∀B ∈ K)A 6⊂ B. Equivalently, a
simplex A ∈ K is maximal iff K\{A} is a simplicial complex.
The operation of minimal modification mmA(K) of self-dual simplicial complexes
is closely related to the operation of bistellar operations of Bier spheres, described
in [16].

Proposition 3.1. Let K ⊆ 2S be a self-dual simplicial complex and let A ∈ K be
a maximal simplex in K. Then mmA(K) := (K\{A}) ∪ {S\A} is also a self-dual
simplicial complex.

Proof. K\{A} is a simplicial complex because A is maximal. Let B ⊂ S\A be
arbitrary. This implies that A ⊂ S\B, and because A is maximal for K, we have
S\B /∈ K therefore B must be in K because K is self-dual (Theorem 2.4). Thus, we
have shown that K\{A} contains all proper faces of the simplex S\A, so (K\{A}) ∪
{S\A} is a simplicial complex. Moreover, the complex (K\{A}) ∪ {S\A} clearly
satisfies part (iii) of Theorem 2.4. �

We say that the self-dual complex L = mmA(K) = (K\{A}) ∪ {S\A} is obtained
by a minimal modification or minimal restructuring of the self-dual complex K. The
following proposition shows that any self-dual complex can be obtained from any
other self-dual complex by successive minimal restructurings.
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Proposition 3.2. Let K and L be any pair of self-dual simplicial complexes in the
ambient set S. Then the complex L can be obtained from K by successive minimal
modifications based on simplexes belonging to the set K\L.

Proof. Let K\L={A1, A2, . . . , An} where simplexes Ai are ordered decreasingly by
dimension (meaning that |Ai|≥|Ai+1|). Let K0=K and Ki=(Ki−1\{Ai}) ∪ {S\Ai}.
To show that K0,K1, . . . ,Kn is a well defined sequence of successive minimal modi-
fications it is sufficient to show that Ai is a maximal simplex of complex Ki−1.
First, note that A1 is a maximal simplex in K0=K. Otherwise, there exists a simplex
B ∈ K such that A1 ⊂ B and this simplex will belong to L because |B| > |Ai| for
all i ∈ [n]. Since L is a simplicial complex, we have that A1 is also in L which is not
possible. So, A1 can be used for a minimal modification and by Proposition 3.1 the
complex K1 is self-dual.
Suppose inductively that Ai−1 is maximal in Ki−2. This by Proposition 3.1 implies
that Ki−1 is a self-dual simplicial complex.
If Ai is not maximal in Ki−1=(K\{A1, . . . , Ai−1}) ∪ {S\A1 . . . , S\Ai−1}, then there
exists a simplex B ∈ Ki−1 such that Ai ⊂ B. We know that Ai /∈ L so, B also must
not be in L because L is a simplicial complex. Therefore, B is a simplex from K\L
such that |B| > |Ai| and, by construction this means that B is one of the simplexes
A1, . . . , Ai−1, however these simplices are not in Ki−1.
Finally, since K and L are self-dual, by Theorem 2.4 we have:

A ∈ K\L⇔ A ∈ K ∧A /∈ L⇔ (S\A) /∈ K ∧ (S\A) ∈ L⇔ (S\A) ∈ L\K.
Therefore, L\K = {S\Ai | i ∈ [n]} and we have:

Kn = (K\{A1, . . . , An}) ∪ {S\A1 . . . , S\An} =
(
K\(K\L)

)
∪ (L\K) = L.

Propositions 3.1 and 3.2 allow us to introduce a new combinatorial object we will
refer to as the restructuring graph (D[n],NGn) (or the neighborhood graph NGn for
short). The nodes of this graph are all self-dual simplicial complexes in the ambient
[n] and complexes K,L ∈ D[n] are neighbors in the graph iff L can be obtained from
K by a minimal restructuring, or equivalently if K can be obtained from L by a
minimal restructuring (based respectively on simplices A and [n]\A).
Note that two self-dual complexesK and L can be connected by a path of length |K\L|
and we will show that there are no shorter paths connecting K and L. Moreover, the
degree of a node K is equal to the number of its maximal simplices since minimal
modifications based on different maximal simplexes yield different self-dual complexes.

Proposition 3.3. The graph NGn has the following properties.
(i) For an arbitrary path {K0,K1, . . . ,Km} connecting complexes K and L we have
m ≥ |K\L| and m ≡ |K\L| mod 2.

(ii) All the loops in the graph NGn are of an even length.

Proof. Let {K = K0,K1, . . . ,Km = L} be a sequence of minimal restructurings based
on the simplexes {A1, . . . , Am}. Then, Kn=(K0\{A1, . . . , Am})∪{[n]\A1 . . . , [n]\Am}
so the set K\L must be contained in {A1, . . . , Am} proving that |K\L| ≤ m. Also, if
for some i the simplex Ai is not one of the simplexes in K\L then the set {A1, . . . , Am}
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must contain [n]\Ai because otherwise Km = L will also contain [n]\Ai which is
not possible. This proves the statement (i) and the statement (ii) is an immediate
consequence. �

Figure 3: Graphs NG3 and NG4, the nodes are labeled with their maximal simplexes

Therefore, we have shown that all the loops in the graph NGn have an even length
proving the following proposition.

Corollary 3.4. The neighborhood graph NGn is bipartite for all n ∈ N.

Graphs NG3 and NG4 are shown in Figure 3. Studying graph NGn can reveal many
useful properties of self-dual simplicial complexes, specially the number of different
self-dual complexes in the ambient [n].

4. The root operator

In this section we introduce the root operator, as our main tool for analyzing self-dual
complexes.
Proposition 3.2 says that each pair of self-dual simplicial complexes can be connected
in the neighborhood graph NGn by a sequence of self-dual simplicial complexes. In
this section we focus on such sequences starting from the complex ∆n−2 = 2[n−1].

Figure 4: Operator C5 applied on 2[3].
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The standard “complement” operator Cn : 22
[n] → 22

[n]

is defined by

Cn(K) = {[n]\A | A ∈ K} (1)

If we view 2[n] as a family partially ordered by inclusion, then the operator Cn is
naturally interpreted as the symmetry with respect to the center of the poset, as
shown on Figure 4.
The following elementary lemma is recorded for the further reference.

Lemma 4.1. Suppose that K and L are arbitrary families of sets in the ambient [n].
The operator Cn has the following properties:
(i) If K ⊆ L then Cn(K) ⊆ Cn(L).

(ii) For arbitrary operation � ∈ {∪,∩, \} we have Cn(K � L) = Cn(K) �Cn(L).

(iii) Family K is a simplicial complex iff (∀A ∈ Cn(K))(∀B ⊆ [n])A ⊆ B ⇒
B ∈ Cn(K).

(iv) Cn
(
Cn(K)

)
= K.

(v) Cn(2[n]\K) = 2[n]\Cn(K).

(vi) For m ≥ n, the Alexander dual K̂ [m] of a simplicial complex K is equal to
Cm(2[m]\K).

Proof. Properties (i) through (iv) are elementary consequences of (1).
For property (v), we deduce from (ii) that Cn(2[n]\K) = Cn(2[n])\Cn(K) and obvi-
ously Cn(2[n]) = 2[n].
For property (vi), from Definition 1.1, we see that the Alexander dual of the complex
K in the ambient [m] is equal to {[m]\A | A ∈ 2[m]\K} which is by (1) equal to
Cm(2[m]\K). �

Note that, following from the part (v) of Lemma 4.1, the Alexander dual of the
complex K in the ambient [m] is also equal to 2[m]\Cm(K).
Proposition 3.2 shows that the symmetrical difference of arbitrary self-dual simplicial
complexes K and L in the ambient [n] is equal to (L\K) ∪Cn(L\K). Instead of the
complex L, let us use the complex ∆n−2 = 2[n−1], which is by Example 2.5 self-dual
in the ambient [n]. We now analyze families of simplexes which arise as the difference
2[n−1]\K for some K ∈ D[n].

Proposition 4.2. Let K be a self-dual simplicial complex in the ambient [n]. Then,
the family of simplexes Cn−1(2[n−1]\K) is a sub-dual simplicial complex in the am-
bient [n− 1].

Proof. Let A ∈ 2[n−1]\K be arbitrary and B ⊆ [n− 1] such that A ⊆ B. Then, since
A is not in K and K is a simplicial complex, B also does not belong to K, which
implies that B ∈ 2[n−1]\K. This by Lemma 4.1, properties (iii) and (iv), proves that
Cn−1(2[n−1]\K) is a simplicial complex.
To prove that this complex is sub-dual, let us check property (i) of Theorem 2.4. Let
A ⊆ [n− 1] be a simplex such that both A and [n− 1]\A belong to Cn−1(2[n−1]\K).
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If we apply the operator Cn−1 on the inclusion {A, [n− 1]\A} ⊂ Cn−1(2[n−1]\K), by
properties (i) and (iv) of Lemma 4.1 we get {[n−1]\A,A} ⊂ 2[n−1]\K, which implies
that both A and [n − 1]\A do not belong to K. Because K is a simplicial complex,
this means that A ∪ {n} and ([n− 1]\A) ∪ {n} = [n]\(A ∪ {n}) do not belong to K,
which in turn contradicts the assumption that K is self-dual in the ambient [n]. �

Summarizing, we can associate a sub-dual complex in the ambient [n − 1] to every
self-dual simplicial complex in the ambient [n].

Definition 4.3. The root operator is a map
√

: D[n] → SD[n−1] given by
√
K = Cn−1(2[n−1]\K). (2)

Notice that, in light of the property (vi) of Lemma 4.1, the root complex of a self-dual
simplicial complex in the ambient [n] can be understood as its Alexander dual in a
smaller ambient [n− 1]. It is obvious from (2) that the root operator is injective. To
prove that this operator is bijective we describe its inverse.
In light of Proposition 3.2, the complement set of an arbitrary sub-dual simplicial
complex is supposed to be the difference 2[n]\K for some complex K ∈ D[n]. This
observation leads to the following proposition.

Proposition 4.4. For a given sub-dual simplicial complex K in the ambient [n− 1],
the family L =

(
2[n−1]\Cn−1(K)

)
∪ Cn

(
Cn−1(K)

)
is a self-dual simplicial complex

in the ambient [n].

Proof. As in the proof of Proposition 3.2, since 2[n−1] is self dual in the ambient
[n], it is sufficient to show that L can be obtained from 2[n−1] by successive minimal
restructurings based on the simplexes belonging to Cn−1(K).
First, note that Cn

(
Cn−1({A})

)
= {[n]\([n − 1]\A)} = {A ∪ {n}}. Let Cn(K) =

{[n − 1]\A1, . . . , [n − 1]\Ak} where |Ai+1| ≤ |Ai| for all i ∈ [k − 1]. Let K0 = 2[n−1]

and Ki =
(
Ki−1\{[n− 1]\Ai}

)
∪
{
Ai ∪ {n}

}
. Thus we have

Ki =
(
K\{[n− 1]\A1, . . . , [n− 1]\Ai}

)
∪
{
A1 ∪ {n}, . . . , Ai ∪ {n}

}
.

Let us show that the simplex [n − 1]\Ai is maximal in Ki−1. Note that, [n − 1]\Ai

is a simplex of Ki−1. Since A1 = ∅, we have [n− 1]\A1 = [n− 1] and this simplex is
maximal in K0. Suppose [n − 1]\Ai is not maximal Ki−1 meaning that there exists
B ∈ Ki such that [n− 1]\Ai ⊂ B. Because K is a simplicial complex, by Lemma 4.1
property (iii), all simplexes from 2[n−1] containing Ai are in {[n − 1]\A1, . . . , [n −
1]\Ai−1} and we know that |B| > |[n]\Ai| ≥ |[n]\Aj | for every j ∈ [i− 1]. Therefore
B /∈ 2[n−1] so B must be one of the simplexes A1 ∪ {n}, . . . , Ai−1 ∪ {n}. If [n]\Ai ⊂
Aj ∪ {n} for j < i, we get that Ai ⊃ [n]\(Aj ∪ {n}) and since n /∈ Aj we have
Ai ⊃ [n − 1]\Aj . Because Ai ∈ K, this implies that [n − 1]\Aj must also be in K.
Therefore both Aj and [n− 1]\Aj belong to K, but this by Theorem 2.4 contradicts
the assumption that K is sub-dual.
Therefore, Ai is maximal in Ki−1 which by Proposition 3.1 proves that all complexes
Ki are self-dual in the ambient [n] including Kk = L. �

The following “upgrade operator” will turn out to be the inverse of the root operator.
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Definition 4.5. The upgrade operator is a map Λ : D[n−1] → D[n] given by

ΛK =
(
2[n−1]\Cn−1(K)

)
∪Cn

(
Cn−1(K)

)
.

The complex ΛK will be also referred to as the dual upgrade of the simplicial complex
K. Later, we will give another, possibly more elegant descriptions of operators

√
and

Λ, see Propositions 6.4 and 6.2.
Let us show that Λ : SD[n−1] → D[n] is the inverse of the root operator

√
.

Let K ∈ D[n] be arbitrary. Using Lemma 4.1 we have the following array of equalities:

Λ ◦
√

(K) = Λ
(
Cn−1(2[n−1]\K)

)
=
[
2[n−1]\Cn−1(Cn−1(2[n−1]\K)

)]
∪Cn

[
Cn−1(Cn−1(2[n−1]\K)

)]
=
(
2[n−1]\(2[n−1]\K)

)
∪Cn(2[n−1]\K) = (K ∩ 2[n−1]) ∪Cn(2[n−1]\K)

Since 2[n−1] and K are self-dual complexes in the ambient [n], by Theorem 2.4 we
have

A ∈ Cn(2[n−1]\K) ⇐⇒ [n]\A ∈ 2[n−1]\K ⇔ ([n]\A ∈ 2[n−1] ∧ [n]\A /∈ K)

⇐⇒ (A /∈ 2[n−1] ∧A ∈ K)⇔ A ∈ K\2[n−1]

Therefore Cn(2[n−1]\K) = K\2[n−1] and we get Λ◦
√

(K) = (K∩2[n−1])∪(K\2[n−1]) =
K. So, the composition Λ◦

√
is the identity map. Before we analyze the composition√

◦ Λ, let us introduce few more properties of the complement operator Cn.

Lemma 4.6. Let K ⊆ 2[n] be an arbitrary family of sets. Then for every m≥n we have:
(i) Cm ◦Cn(K) = {A ∪ ([m]\[n]) | A ∈ K}; (ii) Cn ◦Cm ◦Cn = Cn.

Proof. (i) Cm
(
Cn(K)

)
={[m]\([n]\A)|A ∈ K}={[m]\

(
[m]\

[
(A ∪ ([m]\[n])

])
|A ∈ K}

={A ∪ ([m]\[n])|A ∈ K}
(ii) Cn ◦

(
Cm ◦Cn(K)

)
={[n]\

(
A∪ ([m]\[n])

)
|A ∈ K}={([n]\A)∩

(
[n]\([m]\[n])

)
|A ∈

K}={([n]\A) ∩ [n]|A ∈ K}={[n]\A|A ∈ K}=Cn(K). �

Now, let K ∈ SD[n−1] be an arbitrary simplicial complex. Using Lemmas 4.1 and 4.6
we have

√
◦ Λ(K) = Cn−1(2[n−1]\Λ(K)

)
= 2[n−1]\Cn−1(Λ(K)

)
= 2[n−1]\Cn−1[(2[n−1]\Cn−1(K)

)
∪Cn

(
Cn−1(K)

)]
= 2[n−1]\

[
Cn−1(2[n−1]\Cn−1(K)

)
∪Cn−1(Cn(Cn−1(K))

)]
= 2[n−1]\

[
2[n−1]\Cn−1(Cn−1(K)

)
∪Cn−1(K)

]
= 2[n−1]\

[
(2[n−1]\K) ∪Cn−1(K)

]
=
[
2[n−1]\(2[n−1]\K)

]
∩
[
2[n−1]\

(
Cn−1(K)

)]
= K ∩ K̂ [n−1] = K.

The last equality holds because by Definition 1.2 the complex K is a subset of K̂ [n−1].
Summarizing, we have established the following proposition.

Proposition 4.7. The root operator
√

: D[n] → SD[n−1] is invertible and its inverse

is the upgrade operator Λ : SD[n−1] → D[n].

Therefore
√

: D[n] → SD[n−1] is a bijection and thus we have proved Theorem 1.3.
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5. Duality and Dedekind numbers

In this section we examine the relevance of Theorem 1.3 for the study of Dedekind
numbers.
Recall that the Dedekind number D(n) was introduced in [7] by Richard Dedekind
as the number of different monotone Boolean functions on n variables. A formula
for computing D(n) was discovered by Kisielewicz in [15]. Despite this discovery, the
exact value of D(n) is known only for values n ≤ 8 and many efforts have been made
to estimate D(n) for greater values of n.
It is easy to see that each monotone Boolean function on n variables corresponds to
a unique simplicial complex in the ambient [n]. Thus, D(n) can be calculated as a
number of simplicial complexes with at most n vertices.
Let K[n] be a family of all simplicial complexes in the ambient set [n]. Also, let SPD[n]

be the family of all-super dual complexes in the ambient [n] and T [n] a family of all
transcendent complexes in the ambient [n].

n |SD[n]| |D[n]| |T [n]| D(n)
1 2 1 0 3
2 4 2 0 6
3 12 4 0 20
4 81 12 18 168
5 2646 81 2370 7581

Table 1: Dedekind numbers

Since every complex K ∈ K[n] is either sub-dual, super-dual or transcendent, and
transcendent complexes cannot be super or self-dual, we have a following formula:

|K[n]| = |SD[n]|+ |SPD[n]| − |SD[n] ∩ SPD[n]|+ |T [n]|.

By Lemma 2.1 we see that the operator ̂[n] : SD[n] → SPD[n] is its own inverse,
hence a bijection, implying that |SD[n]| is equal to |SPD[n]|. Also, we know by
Definition 1.2 that the complex is self-dual iff it is sub-dual and super-dual. This,
together with Theorem 1.3 shows that,

D(n) = 2|D[n+1]| − |D[n]|+ |T [n]| (3)

Table 1, obtained by an elementary computer assisted calculation, illustrates the use
of the formula (3) for small values of n.
The equation (3) implies that the number of self-dual complexes on n vertices provides
a lower bound to D(n). Also, since all complexes in the ambient [n] are sub-dual in
the ambient [n + 1], Theorem 1.3 allows us to give an upper bound to the number
D(n) as follows,

2|D[n+1]| − |D[n]| ≤ D(n) < |D[n+2]| (4)

Studying the neighborhood graph NGn using tools developed in Section 3 can reveal
the number of different self-dual simplicial complexes which in turn, using (4), can give
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an estimation of D(n). In order to fully determine D(n) using this method, one needs
to further analyze combinatorial properties of transcendent simplicial complexes.

6. Geometrical descriptions of operators
√

and Λ

In this section we return to the study of operators
√

and Λ, this time emphasizing a
different, more geometrical, point of view.

Definition 6.1. For a given simplicial complex K ⊆ 2S , the link of a simplex A ⊆ S,
labeled Lk(A), is defined by Lk(A) = {B ∈ K | A 6⊆ B,B ∪A ∈ K}.

It is easy to show that Lk(A) is a subcomplex of the simplicial complex K. If A /∈ K,
then Lk(A) = ∅.

Proposition 6.2. For an arbitrary self-dual complex K in the ambient [n],
√
K =

Lk({n}).

Proof. Let K ⊆ 2[n] be a self-dual simplicial complex and let A ∈
√
K be an arbitrary

simplex. Then, by (2), A ∈ Cn−1(2[n−1]\K). Moreover, A = [n − 1]\B where
B ⊂ [n − 1] and B /∈ K. Since K is self-dual in the ambient [n] and B /∈ K,
by Theorem 2.4 we have that [n]\B ∈ K and because K is a simplicial complex,
[n − 1]\B = A ∈ K. Since, A ⊆ [n − 1] we have {n} 6⊆ A. So, the simplex A has
the property that {n} 6⊆ A and A ∪ {n} = ([n − 1]\B) ∪ {n} = [n]\B ∈ K. This by
Definition 6.1 implies that A ∈ Lk({n}) and we have

√
K ⊆ Lk({n}).

Let A ∈ Lk({n}) be arbitrary. This, by Definition 6.1 means that A ∈ K satisfies
{n} 6⊆ A and A∪{n} ∈ K. Since K is self-dual in the ambient [n], by Theorem 2.4 the
simplex [n]\(A∪{n}) = [n− 1]\A does not belong to K. Thus, [n− 1]\A ∈ 2[n−1]\K
and by (1) we have A ∈ Cn−1(2[n−1]\K) =

√
K. Therefore Lk({n}) ⊆

√
K. �

Definition 6.3. Let K ⊆ 2S and L ⊆ 2S
′

be simplicial complexes. The join of
complexes K and L is a simplicial complex in the ambient S ] S′ given by K ∗ L =
{A ]B | A ∈ K,B ∈ L}.

Note, if the ambient sets S and S′ for complexes K and L are disjoint, then the
complex K ∗L is obtained by taking the union of all pairs (A,B) of simplexes where
A ∈ K and B ∈ L. Specially, when the complex L is point-complex L =

{
∅, {v}

}
then L ∗K is called the cone of K, and denoted by CK.

Proposition 6.4. If K is an arbitrary sub-dual simplicial complex in the ambient
[n− 1] then ΛK = K̂ [n−1] ∪ CK.

Proof. Let K be an arbitrary sub-dual simplicial complex in the ambient [n−1]. Then,
by Definition 4.5 we have that ΛK = (2[n−1]\Cn−1(K)) ∪Cn(Cn−1(K)). Following

Lemma 4.1 (property (vi)) the first part of the union 2[n−1]\Cn−1(K) is K̂ [n−1], the
Alexander dual of complex K in the ambient [n − 1]. The second part of the union,
Cn(Cn−1(K)) is by Lemma 4.6 equal to {A ∪ {n} | A ∈ K}. Finally, since K is
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sub-dual in the ambient [n− 1] meaning K ⊂ K̂ [n−1], the self-dual complex ΛK can
be expressed as:

ΛK = K̂ [n−1] ∪ {A ∪ {n} | A ∈ K} ∪K

= K̂ [n−1] ∪ {A ∪ {n} | A ∈ K} ∪ {A ∪ ∅ | A ∈ K}

= K̂ [n−1] ∪K ∗ {∅, {n}}.

We conclude that the operator Λ also has a simple form. Note that since K ⊆ K̂,
the dual upgrade of the complex K is a simplicial complex K̂ [n−1] ∪ CK, which is
homotopic to the factor space K̂/K.

7. Combinatorial structure of self-dual complexes

In this section we record for the future reference more invariant versions of the funda-
mental relations from Propositions 6.4 and 6.2, which are sometimes more convenient
for immediate applications.

Definition 7.1. Let K ⊆ 2S and L ⊆ 2S
′

be simplicial complexes. We say that
complexes K and L are isomorphic (or combinatorially equivalent) if there exists a
bijection σ : S → S′ such that (∀A ⊆ S)A ∈ K ⇔ σ(A) ∈ L.

From Definition 7.1 we see that ambient sets of isomorphic simplicial complexes must
be of the same cardinality. For convenience, the ambient sets are supposed to be
minimal.
Let K be an arbitrary simplicial complex in the ambient S where |S| = n. Then, for
any vertex {v} ∈ S there exists a bijection σ : S → [n] which sends v to n. Thus,
the simplicial complex σ(K) = {σ(A) | A ∈ K} is a complex in the ambient [n],
isomorphic to the complex K. If we suppose that the complex K is sub-dual (self-
dual) in the ambient S, then the simplicial complex σ(K) is also sub-dual (self-dual)
in the ambient [n]. This simple observation allows us to extend all the results from
Section 4, about the complex σ(K) to the complex K. In particular, any vertex v ∈ S
can play the role of the exceptional vertex n.

Corollary 7.2. Let K be a self-dual simplicial complex in the ambient S. Then, for
any vertex {v} ⊂ S, Lk({v}) is a sub-dual simplicial complex in the ambient S\{v}.

Corollary 7.3. If K is a sub-dual simplicial complex in the ambient S then K̂S∪CK
is a self-dual simplicial complex in the ambient S]{v} where {v} is the vertex of CK.

By Proposition 4.7 we know that the root and upgrade operators are inverse to each
other. This is true in any ambient set S which allows us to describe the main structural
property of self dual simplicial complexes.

Corollary 7.4. For every self-dual simplicial complex K in the ambient S and

every vertex {v} ⊂ S we have K = ̂Lk({v})
S\{v}

∪ C Lk({v}) where C Lk({v}) =
Lk({v}) ∗

{
∅, {v}

}
.
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The following example serves as an illustration of Corollary 7.4.

Example 7.5. We know from Example 2.2 that
(
[2k+1]

k

)
is a self-dual simplicial com-

plex in the ambient [2k + 1]. For this complex, by Definition 6.1 we have that

Lk({2k + 1}) = {A ⊂ [2k] | |A ∪ {2k + 1}| ≤ k} =

(
[2k]

k − 1

)
.

Example 2.2 also shows that
(̂
[2k]
k−1
)[2k]

=
(

[2k]
2k−(k+1)−1

)
=
(
[2k]
k

)
. For Lk({2k + 1}) ∗{

∅, {2k + 1}
}

we get
(
[2k]
k−1
)
∪ {A ∪ {2k − 1} | A ⊂ [2k], |A| < k − 1} =

(
[2k]
k−1
)
∪ {A ∈(

[2k+1]
k

)
| {2k + 1} ∈ A}. Therefore

̂Lk({2k + 1})
[2k]
∪ C Lk({2k + 1}) =

(
[2k + 1]

k

)
.

An interesting consequence of Corollary 7.4 is that any self-dual simplicial complex
is completely determined by the link of any of its simplexes.

Proof (Theorem 1.4). Let K and L be self-dual complexes in the ambients S and S′

respectively and let |S| = |S′|.
(⇒) Let π : S → S′ be an isomorphism of complexes K and L. Then, for an arbitrary
v ∈ S, the map π is an isomorphism of complexes Lk({v}) ⊆ K and π

(
Lk({v})

)
⊆ L.

Using Definitions 7.1 and 6.1 we get the following array of equivalences:

π(A) ∈ π
(

Lk({v})
)
⇐⇒ A ∈ K ∧ v /∈ A ∧A ∪ {v} ∈ K
⇐⇒ π(A) ∈ L ∧ π(v) /∈ π(A) ∧ π(A) ∪ π({v}) ∈ L
⇐⇒ π(A) ∈ Lk

(
π({v})

)
.

Therefore π
(

Lk({v})
)

= Lk
(
π({v})

)
which proves that simplicial complexes Lk({v})

and Lk
(
π({v})

)
are isomorphic.

(⇐) Let {v} ∈ K and {w} ∈ L and let π : S\{v} → S′\{w} be an isomorphism
of complexes Lk({v}) ⊆ K and Lk({w}) ⊆ L. Then, by Corollary 7.4 we have that

K = ̂Lk({v})
S\{v}

∪
{
A ∪ {v} | A ∈ Lk({v})

}
and L = ̂Lk({w})

S′\{w}
∪
{
A ∪ {w} |

A ∈ Lk({w})
}

.
We define a bijection Λπ : S → S′ with

Λπ(s) =

{
π(s), s 6= v,
w, s = v.

We will show that Λπ is an isomorphism of complexes K and L.

Let A ∈ K be arbitrary. If A ∈ ̂Lk({v})
S\{v}

then (S\{v})\A is not in Lk({v}).
Because π is an isomorphism of Lk({v}) and Lk({w}), we have that π

(
(S\{v})\A

)
=

(S′\{w})\π(A) /∈ Lk({w}) implying that π(A) ∈ ̂Lk({w})
S′\{w}

. Since v /∈ A, we
have shown that Λπ(A) = π(A) belongs to the complex L.
If A ∈

{
A ∪ {v} | A ∈ Lk({v})

}
we have A = B ∪ {v} for some B ∈ Lk({v}). Then,

π(B) ∈ Lk({w}) which proves that simplex Λπ(A) = Λπ(B ∪ {v}) = π(B) ∪ {w}
belongs to

{
A ∪ {w} | A ∈ Lk({w})

}
⊆ L.
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Thus, we have shown that Λπ is a simplicial map of complexes K and L. Similarly,
(λπ)−1 is a simplicial map of complexes L and K. �

Theorem 1.4 significantly simplifies the combinatorial classification of self dual com-
plexes. Indeed, in order to establish a combinatorial equivalence one has to find a
bijection of ambient sets which satisfies Definition 7.1. If the cardinality of the ambi-
ent set is n there are n! such bijections. Since the link of vertex {v} does not contain
{v}, Theorem 1.4 reduces the number of potential bijections to (n− 1)!. Of course, it
is sufficient to find a vertex of the given self-dual complex whose link has the smallest
number of vertices and compare it to the vertex-link from the second complex with
the same number of vertices. This typically simplifies the classification problem.

8. Homology and cohomology of dual upgrades

In this section we study the relationship between the homology and cohomology of a
given simplicial complex and its self-dual upgrade, described in Corollary 7.3. For an
introduction into simplicial (co)homology theory the reader is referred to [12, Chapters
2 and 3].
The following theorem, originally introduced in [18], is known as the Combinatorial
Alexander Duality. For a simplified and transparent proof the reader is referred to [4].

Theorem 8.1. Let K be a simplicial complex in the ambient S where |S| = n. Then

Hi(K) = Hn−3−i(K̂) where Hi and Hj represent the reduced homology and cohomol-
ogy groups over integers.

Let K be a simplicial complex in the ambient S. By Example 2.5 we may assume
that K is sub-dual in S since sub-duality can be achieved by enlarging the ambient
S. Let us consider the dual upgrade ΛK = K̂ ∪ CK of the complex K.
By Corollary 7.3 we know that the dual upgrade of a simplicial complex is self-dual
in the ambient S ∪ {v}, so as a consequence of Theorem 8.1 we obtain the following
corollary.

Corollary 8.2. Let K be a sub-dual simplicial complex in the ambient S where
|S| = n. Then, for its dual-upgrade ΛK we have the following relation, Hi

(
Λ(K)

)
=

Hn−i−2(Λ(K)
)
.

We now turn our attention to the pair (Λ(K), K̂). Our goal is to describe the homology
of the complex ΛK in terms of the homology of K. From the long exact sequence of
reduced homology groups we have:

· · · → Hk

(
K̂
) i∗−−→ Hk

(
ΛK

) q∗−−→ Hk

(
ΛK, K̂

) ∂−−→ Hk−1
(
K̂
)
→ · · · (5)

Since a simplicial complex and its subcomplex always form a good pair, we know that
the group Hk

(
ΛK, K̂

)
is isomorphic to Hk

(
ΛK/K̂

)
where the factor space ΛK/K̂ is

actually
(
K̂∪CK

)
/K̂. Note that, by Corollary 7.3, K̂ ∩CK=K. So, the factor space

ΛK/K̂ is homeomorphic to CK/K and this space is homotopy equivalent to SK, the
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suspension of the simplicial complex K. It is a well know that the group Hk(SK) is

isomorphic to Hk−1(K), hence by replacing Hk

(
Λ(K), K̂

)
by Hk−1(K) in (5) we get

· · · → Hk

(
K̂
) i∗−−→ Hk

(
ΛK

) q′∗−−→ Hk−1(K)
∂′−−→ Hk−1

(
K̂
)
→ · · · (6)

By Theorem 8.1, and the Universal Coefficient Theorem, connecting the homology
and the cohomology of a given simplicial complex, the groups Hk

(
K̂
)

are easily deter-
mined. More explicitly, to each Z summand of Hk(K) corresponds a Z summand of

Hn−3−i
(
K̂
)

and to each Zp summand of Hk(K) there is a corresponding Zp summand

of Hn−4−k
(
K̂
)
.

It follows that for the determination of Hk

(
Λ(K)

)
it is sufficient to know the homo-

morphisms q′∗ and ∂′. By construction these homomorphisms are closely related and
can be recovered from the homomorphsims q∗ and ∂ from (5).
However, there is a more direct and simpler description of q′∗ and ∂′. Indeed, let us

consider the long exact sequence for a pair (K̂,K).

· · · → Hk

(
K̂
) qo∗−−→ Hk

(
K̂,K

) ∂o

−−→ Hk−1(K)
io∗−−→ Hk−1

(
K̂
)
→ · · · (7)

Here, Hk

(
K̂,K

)
is isomorphic to Hk

(
K̂/K

)
and the factor space K̂/K has the same

homotopy type as K̂ ∪CK, which is precisely ΛK. Therefore, by comparing (6) and

(7), we conclude that ∂′ is induced by the inclusion i0 : K → K̂ and q′∗ is induced by
the boundary operator ∂o.

Example 8.3. Let K be a pentagonal cycle shown in Figure 5. Since K is one-
dimensional, it is by Proposition 2.3 sub-dual in the ambient [5], so its dual upgrade
is a self-dual simplcial complex in the ambient [6]. Since minimal non simplices of K

are diagonals of K, the maximal simplexes of K̂ are their complements. Therefore,
K̂ is a triangulation of the Möebious band with boundary K, as shown in Figure 5.

Figure 5: Pentagonal cycle and its dual, the Möebius band.

Since Hi(K) ≈ H5−i−3(K̂) and these groups are trivial for k 6= 1 and Z for k = 1, by

using (6) we obtain that Hk

(
Λ(K)

)
= 0 for k 6= 1. Since the boundary of K̂ wraps two

times around the cycle generating H1

(
K̂
)
, we conclude that io∗ is the multiplication

by 2. Therefore, the only non-trivial part of (6) is 0→ Z 2−−→ Z i∗−−→ H1

(
Λ(K)

)
→ 0.

Since i∗ is a surjection, the group H1

(
Λ(K)

)
is isomorphic to Imi∗/Keri∗ = Imi∗/Imi

o
∗

= Z/2Z ≈ Z2.
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We conclude that ΛK is a two dimensional simplicial complex on 6 vertices with Z2

homology in dimension 1, which is in agreement with the fact that it represents a
self-dual triangulation of the real projective plane.

This example also shows that (6) can be used to construct self-dual simplicial com-
plexes with prescribed homology groups. Of course, the homology groups need to
have the structure described in Theorem 8.1.

Theorem 8.4. Let K be a simplicial complex of dimension k in the ambient S where
|S| ≥ 2k + 3. Then ΛK has the same homology and cohomology groups as the space

K̂ ∨ SK where ∨ is the wedge sum of spaces.

Proof. By Proposition 2.3 the complex K is self dual in the ambient S.
Moreover, since the dimension of K is k, all groups Hi(K) are trivial for i > k. Also,
if |S| = n and n ≥ 2k+ 3, then by Theorem 8.1 and the universal coefficient theorem,

the only possibly non trivial homology groups of K̂ are in dimensions n − 3, n −
4, . . . , n− k− 3 (note that Hk(K) torsion-free). Since n− k− 3 ≥ 2k+ 3− k− 3 = k,

we conclude that in the long exact sequence (6) for the pair (Λ(K), K̂) groups Hi

(
K̂
)

and Hi−1
(
K̂
)

are trivial or Hi(K) and Hi−1(K) are trivial. This implies that Hi

(
ΛK

)
is isomorphic to Hi−1(K) or Hi

(
K̂
)
, respectively which completes the proof. �
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