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A SIMPLE METHOD FOR FINDING THE INVERSE MATRIX OF
VANDERMONDE MATRIX

E. A. Rawashdeh

Abstract. A simple method for computing the inverse of Vandermonde matrices is
presented. The inverse is obtained by finding the cofactor matrix of Vandermonde matrices.
Based on this, it is directly possible to evaluate the determinant and inverse for more general
Vandermonde matrices.

1. Introduction

The Vandermonde matrices are an essential topic in applied mathematics, natu-
ral science and engineering. For example, they appear in the fields of numerical
analysis, mathematical finance, statistics, geometry of curves and control theory (cf,
e.g., [1,3–5,8,9] and references therein). Moreover, Vandermonde matrices have gained
much interest in wireless communications due to their frequent appearance in numer-
ous applications in signal reconstruction, cognitive radio, physical layer security, and
MIMO channel modeling (cf, e.g., [6, 7, 11,12] and references therein).

In particular, when Rawashdeh et al. [2] studied the numerical stability of colloca-
tion methods for Volteera higher order integro-differential equations, they computed
the eigenvalues of a certain matrix. The key point for the evaluation of such eigenval-
ues is to find the inverse of a Vandermonde matrix. Recently, Vandermonde matrices
and their inverses play an important role to determine logarithmic functions of the
sub-system’s density matrices [13].

In this paper, we present an explicit formula for finding the inverse of Vandermonde
matrices. Then we compute the determinant as well as the inverse of more general
Vandermonde matrices that are obtained by deleting one or two rows and columns of
Vandermonde matrices.
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2. Main Results

It is known that the Vandermonde matrix is defined by

V = V (c1, . . . , cm) =


1 c1 c21 . . . cm−11

1 c2 c22 . . . cm−12
...

...
... . . .

...
1 cm c2m . . . cm−1m


and its determinant is given by

m∏
1≤k<j≤m

(cj − ck).

Therefore, if the numbers c1, c2, . . . , cm are distinct, then V is invertible. Finding
the inverse of the Vandermonde matrix has been investigated by many researchers, for
example Yiu [14] used a technique based on partial fraction decomposition of a certain
rational function to express the inverse of V as a product of two matrices, one of them
being a lower triangular matrix. L. Richard [10] wrote the inverse of the Vandermonde
matrix as a product of two triangular matrices. F. Soto and H. Moya [13] showed
that V −1 = DWL, where D is a diagonal matrix, W is an upper triangular matrix
and L is a lower triangular matrix. However, in all of these techniques V −1 is not
determined explicitly. In this section we present a new, efficient and easy-to-use
method for computing V −1.

First we introduce the following notations.

Sk :=Sk(c1, ..., cm) =

m∑
1≤i1<...<ik≤m

ci1ci2 ...cik , for 1 ≤ k ≤ m,

S0 :=S0(c1, ..., cm) = 1, and Sk = 0 for k /∈ {0, . . . ,m}.
We also define

Sk,j := Sk(c1, ..., cj−1, cj+1, ..., cm), for 1 ≤ k ≤ m− 1, and 1 ≤ j ≤ m.

It is clear that
m∏

k=1

(x− ck) =
m∑

k=0

(−1)m−kSm−kx
k.

The following lemma can be used to compute the cofactor matrix of the Vander-
monde matrices as we will see later.

Lemma 2.1. Let c1, c2, . . . , cm be real numbers and i ∈ {0, 1, . . . ,m}. Then the deter-
minant of the matrix

Vi(c1, c2, . . . , cm) =


1 c1 c21 . . . ci−11 ci+1

1 . . . cm1
1 c2 c22 . . . ci−12 ci+1

2 . . . cm2
...

...
... . . .

...
... . . .

...
1 cm c2m . . . ci−1m ci+1

m . . . cmm


is given by det(Vi(c1, c2, . . . , cm)) = Sm−i

m∏
1≤k<j≤m

(cj − ck).
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Proof. Define the polynomial

f(x) :=

∣∣∣∣∣∣∣∣∣∣∣

1 c1 c21 . . . ci−11 ci1 ci+1
1 . . . cm1

1 c2 c22 . . . ci−12 ci2 ci+1
2 . . . cm2

...
...

... . . .
...

...
... . . .

...
1 cm c2m . . . ci−1m cim ci+1

m . . . cmm
1 x x2 . . . xi−1 xi xi+1 . . . xm

∣∣∣∣∣∣∣∣∣∣∣
.

Since f(x) is the determinant of the Vandermonde matrix V (c1, c2, . . . , cm, x), we
have

f(x) =

m∏
k<j

(cj − ck)

m∏
j=1

(x− cj) =

m∏
k<j

(cj − ck)

m∑
k=0

(−1)m−kSm−kx
k.

The coefficient of xi in f(x) is (−1)m+i+2 det(Vi(c1, c2, . . . , cm)) which is equal to

(−1)m−iSm−i
m∏

k<j

(cj − ck). Hence, det(Vi(c1, c2, . . . , cm)) = Sm−i
m∏

1≤k<j≤m
(cj − ck). �

The proof presented here is short and straightforward, unlike the alternative proof
presented by Rawashdeh et al. [2] based on the mathematical induction on the size of
matrices.

Now we are in the position to find a simple formula for computing the inverse
of V .

Lemma 2.2. Let c1, c2, . . . , cm be distinct real numbers and

V = V (c1, . . . , cm) =


1 c1 c21 . . . cm−11

1 c2 c22 . . . cm−12
...

...
... . . .

...
1 cm c2m . . . cmm−1


be the Vandermonde matrix. Then the inverse of V is the matrix whose elements are
given by

(V −1)i,j = (−1)i+j Sm−i,j
m∏
l<k

(ck − cl)
with l = j or k = j, where i, j = 1, . . . ,m.

Proof. It is known that V −1 = Adj(V )
det(V ) , where Adj(V ) is the transpose of the cofactor

matrix of V . From Lemma 2.1, the entries of Adj(V ) are given by

(Adj(V ))i,j =(−1)i+j det(Vi(c1, . . . , cj−1, cj+1, . . . , cm))

=(−1)i+jSm−i,j

m∏
l<k(l,k 6=j)

(ck − cl),

where Vi(c1, . . . , cj−1, cj+1, . . . , cm) is the matrix obtained from the matrix V by eras-
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ing the i-th column and j-th row. Thus

(V −1)i,j = (−1)i+j

m∏
l<k(l,k 6=j)

(ck − cl)

m∏
l<k

(ck − cl)
Sm−i,j = (−1)i+j Sm−i,j

m∏
l<k

(ck − cl)
with l = j or k = j,

where i = 1, . . . ,m and j = 1, . . . ,m. This completes the proof. �

Example 2.3. If V =


1 c1 c21 c31
1 c2 c22 c32
1 c3 c23 c33
1 c4 c24 c34

, then V −1 has the form:


c2c3c4

(c4−c1)(c3−c1)(c2−c1)
−c1c3c4

(c4−c2)(c3−c2)(c2−c1)
c1c2c4

(c4−c3)(c3−c2)(c3−c1)
−c1c2c3

(c4−c3)(c4−c2)(c4−c1)
−c2c3+c2c4+c3c4

(c4−c1)(c3−c1)(c2−c1)
c1c3+c1c4+c3c4

(c4−c2)(c3−c2)(c2−c1)
−c1c2+c1c4+c2c4

(c4−c3)(c3−c2)(c3−c1)
c1c2+c1c3+c2c3

(c4−c3)(c4−c2)(c4−c1)
c2+c3+c4

(c4−c1)(c3−c1)(c2−c1)
−c1−c3−c4

(c4−c2)(c3−c2)(c2−c1)
c1+c2+c4

(c4−c3)(c3−c2)(c3−c1)
−c1−c2−c3

(c4−c3)(c4−c2)(c4−c1)
−1

(c4−c1)(c3−c1)(c2−c1)
1

(c4−c2)(c3−c2)(c2−c1)
−1

(c4−c3)(c3−c2)(c3−c1)
1

(c4−c3)(c4−c2)(c4−c1)

 .

In the next lemma, we find the determinant as well as the inverse of more general
Vandermonde matrices of the form

Vi1,i2,...,im(c1, c2, . . . , cm) =


ci11 ci21 . . . cim1
ci12 ci22 . . . cim2
...

... . . .
...

ci1m ci2m . . . cimm

 ,

where {i1, i2, . . . , im} is an increasing sequence of non negative integers and satisfying
{i1, i2, . . . , im} ⊆ {0, 1, . . . ,m + 1} or {i1, i2, . . . , im} ⊆ {0, 1, . . . ,m + 2}.

Lemma 2.4. Let c1, c2, . . . , cm be real numbers.

(I) The determinant of the matrix

Vi,j(c1, c2, . . . , cm) =


1 c1 c21 . . . ci−1

1 ci+1
1 . . . cj−1

1 cj+1
1 . . . cm+1

1

1 c2 c22 . . . ci−1
2 ci+1

2 . . . cj−1
2 cj+1

2 . . . cm+1
2

...
...

...
...

...
...

...
...

...
...

...
1 cm c2m . . . ci−1

m ci+1
m . . . cj−1

m cj+1
m . . . cm+1

m


is given by det(Vi,j(c1, c2, . . . , cm)) =

m∏
k<j

(cj−ck)(Sm−iSm−j+1−Sm−i+1Sm−j) where

{i, j} ⊆ {0, 1, . . . ,m + 1} and i < j.

(II) The determinant of the matrix

Vi,j,r(c1, c2, . . . , cm) =
1 c1 c21 . . . ci−1

1 ci+1
1 . . . cj−1

1 cj+1
1 . . . cr−1

1 cr+1
1 . . . cm+2

1

1 c2 c22 . . . ci−1
2 ci+1

2 . . . cj−1
2 cj+1

2 . . . cr−1
2 cr+1

2 . . . cm+2
2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 cm c2m . . . ci−1
m ci+1

m . . . cj−1
m cj+1

m . . . cr−1
m cr+1

m . . . cm+2
m


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is given by

det(Vi,j,r(c1, c2, . . . , cm)) =

m∏
k<j

(cj − ck)((Sm−iSm−j+1 − Sm−i+1Sm−j)Sm−r+2)

−(Sm−iSm−j+2 − Sm−i+2Sm−j)Sm−r+1 + (Sm−i+1Sm−j+2 − Sm−i+2Sm−j+1)Sm−r)

where {i, j, r} ⊆ {0, 1, . . . ,m + 2} and i < j < r.

Proof. (I) Define the polynomial

f(x) :=

∣∣∣∣∣∣∣∣∣∣∣

1 c1 c21 . . . ci−11 ci+1
1 . . . cj−11 cj1 cj+1

1 . . . cm+1
1

1 c2 c22 . . . ci−12 ci+1
2 . . . cj−12 cj2 cj+1

2 . . . cm+1
2

...
...

...
...

...
...

...
...

...
...

...
...

1 cm c2m . . . ci−1m ci+1
m . . . cj−1m cjm cj+1

m . . . cm+1
m

1 x x2 . . . xi−1 xi+1 . . . xj−1 xj xj+1 . . . xm+1

∣∣∣∣∣∣∣∣∣∣∣
.

Then it is clear that f(x) = (a1x + a0)
m∑

k=0

(−1)m−kSm−kx
k. The leading coefficient

of f(x) is a1 and from Lemma 2.1, we have

a1 = det(Vi(c1, c2, . . . , cm)) = Sm−i

m∏
k<j

(cj − ck).

The constant term of f(x) is (−1)mSma0 which is equal to (−1)m+2 det(B), where

B =


c1 c21 . . . ci−11 ci+1

1 . . . cj−11 cj1 cj+1
1 . . . cm+1

1

c2 c22 . . . ci−12 ci+1
2 . . . cj−12 cj2 cj+1

1 . . . cm+1
2

...
...

...
...

...
...

...
...

...
...

...
cm c2m . . . ci−1m ci+1

m . . . cj−1m cjm cj+1
m . . . cm+1

m

 .

Again from Lemma 2.1, we have det(B) = c1c2 . . . cm det(Vi−1(c1, c2, . . . , cm)) =

SmSm−i+1

m∏
k<j

(cj − ck), thus a0 = Sm−i+1

m∏
k<j

(cj − ck).

Hence, we have

f(x) =

m∏
k<j

(cj − ck)

m∑
k=0

(−1)m−kSm−kx
k(Sm−ix + Sm−i+1).

Since (−1)m+1+j det(Vi,j(c1, c2, . . . , cm)) is the coefficient of xj in f(x) which is
m∏

k<j

(cj − ck)((−1)m−jSm−i+1Sm−j + (−1)m−j+1Sm−iSm−j+1),

we obtain det(Vi,j(c1, c2, . . . , cm)) =

m∏
k<j

(cj − ck)(Sm−iSm−j+1 − Sm−i+1Sm−j).

(II) Define the polynomial f(x) = det(Vi,j(c1, c2, . . . , cm, x)). Then f(x) is a polyno-
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mial of degree less than or equal to m + 2 and it is clear that

f(x) = (a2x
2 + a1x + a0)

m∑
k=0

(−1)m−kSm−kx
k.

The leading coefficient of f(x) is a2 and from part (I), we have

a2 = det(Vi,j(c1, c2, . . . , cm)) = (Sm−iSm−j+1 − Sm−i+1Sm−j)

m∏
k<j

(cj − ck).

The constant term of f(x) is (−1)mSma0 which is equal to

(−1)m+2Sm det(Vi−1,j−1(c1, c2, . . . , cm)),

so from part (I), a0 =
m∏

k<j

(cj − ck)(Sm−i+1Sm−j+2 − Sm−i+2Sm−j+1).

Now the coefficient of xj is zero, so

(−1)m−j+2a2Sm−j+2 + (−1)m−j+1a1Sm−j+1 + (−1)m−ja0Sm−j = 0,

and substituting the values of a2 and a0, yields
m∏

k<j

(cj − ck)
(
(Sm−iSm−j+1 − Sm−i+1Sm−j)Sm−j+2

+ (Sm−i+1Sm−j+2 − Sm−i+2Sm−j+1)Sm−j
)
− a1Sm−j+1 = 0.

Thus we have a1 =
m∏

k<j

(cj − ck)(Sm−iSm−j+2 − Sm−i+2Sm−j). Hence,

f(x) =

m∏
k<j

(cj − ck)

m∑
k=0

(−1)m−kSm−kx
k
(

(Sm−iSm−j+1 − Sm−i+1Sm−j)x
2

+(Sm−iSm−j+2 − Sm−i+2Sm−j)x + (Sm−i+1Sm−j+2 − Sm−i+2Sm−j+1)
)
.

Since (−1)m+1+r−1 det(Vi,j,r(c1, c2, . . . , cm) is the coefficient of xr in f(x) which is

(−1)m−r+2a2Sm−r+2 + (−1)m−r+1a1Sm−r+1 + (−1)m−ra0Sm−r,

we obtain

det(Vi,j,r(c1, c2, . . . , cm)) =

m∏
k<j

(cj − ck)
(

(Sm−iSm−j+1 − Sm−i+1Sm−j)Sm−r+2

−(Sm−iSm−j+2 − Sm−i+2Sm−j)Sm−r+1

+(Sm−i+1Sm−j+2 − Sm−i+2Sm−j+1)Sm−r

)
.

Remark 2.5. Lemmas 2.1 and 2.4 can be used to find the determinants and co-
factor matrices of the matrices Vi(c1, . . . , cm) and Vi,j(c1, . . . , cm). Thus computing
the inverses of these matrices is easy to determine, provided that Vi(c1, . . . , cm) and
Vi,j(c1, . . . , cm) are invertible. However, finding the cofactor matrix as well as the
inverse of the matrix Vi,j,r(c1, . . . , cm) are still needed to be evaluated. In view of
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Lemmas 2.1 and 2.4, it will be interesting to find the inverse of the matrix

Vi1,i2,...,im(c1, c2, . . . , cm) =


ci11 ci21 . . . cim1
ci12 ci22 . . . cim2
...

... . . .
...

ci1m ci2m . . . cimm

 ,

where {i1, i2, . . . , im} is an increasing sequence of non-negative integers, which we
plan to discuss in a forthcoming paper.
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