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Abstract. In this paper we introduce and consider the hyperbolic sets for the flows on
pseudo-Riemannian manifolds. If A is a hyperbolic set for a flow ®, then we show that at
each point of A we have a unique decomposition for its tangent space up to a distribution
on the ambient pseudo-Riemannian manifold. We prove that we have such decomposition
for many points arbitrarily close to a given member of A.

1. Introduction

Hyperbolic sets for vector fields and discrete dynamical systems on Riemannian man-
ifolds have been considered deeply by many mathematicians and physicists [1,3,5-8,
11-13], and nowadays it is one of the main tools for considering qualitative behavior
of dynamical systems [3,6]. We have extended this notion for discrete dynamical
systems created by a diffeomorphism from a finite dimensional pseudo-Riemannian
manifold to itself in [10], and here we present an extension of this notion for the flows
on finite dimensional pseudo-Riemannian manifolds. We prove that the hyperbolic
behavior creates a unique decomposition for the tangent space at each point of a
hyperbolic set (see Theorem 2.2) with the exponential behavior on two components
of this decomposition. By using a connection which preserves the pseudo-metric on
parallel transition we find a kind of convergence of suitable bases of the decomposition
of a sequence of points to suitable bases of their limit point (see Theorem 3.1).

2. Hyperbolic behavior on a set

We assume that M is a finite dimensional smooth manifold with a smooth pseudo-Rie-
mannian metric g. If p € M, then the vectors in the tangent space T), M are divided
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118 Hyperbolic sets for the flows

into three classes named timelike, spacelike, and null classes. A vector v € T, M
belongs to timelike class, spacelike class or null class if g,(v,v) < 0, g,(v,v) > 0, or
gp(v,v) = 0 respectively. The nondegeneracy of g implies that its matrix in a local
coordinate has no zero eigenvalues. The number of positive eigenvalues minus the
number of negative eigenvalues of the matrix g at p € M is called the signature of
g at p. Since g is continuous on M then its eigenvalues vary continuously, so the
nondegeneracy of g implies that they are nonzero continuous functions on M. Hence
if M is a connected manifold then the signature of g is constant at each point of M.

We assume that ® = {¢! : t € R} is a C'-flow on M, i.e., the map (¢, p) — ¢'(p)
is a C'-map, ¢ is the identity map, and ¢ o ¢* = ¢!** for all t,5s € R. A subset A
of M is called an invariant set for ® if ¢*(A) = A for all t € R.

DEFINITION 2.1. An invariant set A for ® is called a hyperbolic set for ® up to a
distribution p — E"™(p), if there exist positive constants a and b with b < 1 and a
decomposition T, M = E°(p) & E*(p) & E*(p) & E™(p) for each p € C such that:

(i) Each non-zero vector in the subspace E*(p) or the subspace E"(p) is timelike or
spacelike, each vector of E™(p) is a null vector, and E°(p) is the subspace generated
by the vector X (p) = £¢"(p)]i=o;

(i) D¢'(p)E*(p) = E*(¢'(p)) and D¢'(p)E"(p) = E*(¢'(p)) for all t € R;

(iii) if v € E*(p) and ¢t > 0 then |g4e () (D" (p)(v), D' (p)(v))| < abl|gy(v,v)| and
limy 00 gt (p) (D9' (p) (v), D' (p)(w)) = 0 for each non-null vector w € T, M with the
following property: |ggt(p) (D¢ (p)(w), D¢ (p)(w))| < ab’|gy(w,w) for all t > 0;

(iv) if v € E(p) and ¢ > 0 then |ge ) (D6 (0)(v), DS (p)(v))] = a~ 1], (v, V)]
In the case of Riemannian manifolds we put the compactness condition in the

definition of a hyperbolic set, but here we remove this condition. Since the spheres
in pseudo-Riemannian manifolds may not be compact, we cannot use this tool here.

THEOREM 2.2. If A is a hyperbolic set for ® up to a distribution p — E™(p), then
for each p € A, the tangent space of M at p has a unique decomposition with the
properties described in Definition 2.1.

Proof. Suppose that for a given p € A we have
T,M = E°(p) ® E (p) © EY (p) ® E"(p) = E°(p) @ E5(p) @ E3(p) © E"(p),
where Ef(-), and E¥(-) satisfy the axioms of Definition 2.1. Then Ej(p) ® Ej(p) =

E5(p) @ E¥(p). Hence a given u € Ef(p) can be written as v = v+w, where v € E3(p)
and w € E¥(p). Since w € EY(p) then for each ¢ > 0 we have

a” b gp(w, w)| < |gg(p) (D' (p)(w), D' (p)(w))
= 194t () (DS (p)(u = v), D¢ (p) (u — v))
= |94t (p) (D8 (p) (1), DS (p) (1)) + got () (D" (p) (v), D& (p)(v))
— 294t () (D¢ (p) (w), D¢ (p)(v))]
< gt (p) (D' () (), D' (p) ()] + |ggt () (DB (p) (v), D (p) (v))]
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+ 2|94t () (D' (p) (), D' (p) (v))]
< ab|gp(u, w)| + ab'|gy (v, )] + 2|ggt () (D' (p) (), D' (p) (v))].
Axiom (iii) of Definition 2.1 implies that the right-hand side of the former inequality
tends to zero when ¢ tends to infinity. Thus |g,(w,w)| = 0. Hence w € E"(p) N
E¥(p) = {0}. Therefore E{(p) C E3(p). By replacing E$(p) with E3(p) we have
Es5(p) C E{(p). Thus E5(p) = Ej(p), and this implies E¥(p) = E}(p). Hence we
have a unique decomposition for T, M. O

We now give an example of a hyperbolic set up to a pseudo-Riemannian metric
on R? which is not a hyperbolic set with any Riemannian metric on R2.

EXAMPLE 2.3. R? with the metric g((a,b), (c,d)) = ac — bd is a Lorentzian manifold.
Let ® be the flow of the smooth vector field X (a,b) = (—ab + b?, —ab + a?). The
set A = {(z,z) : x > 0} is a hyperbolic set for ® up to the distribution E™(-) =
{(a,a) : a € R}. Since X(z,2) = {(0,0)}, then E°(z,z) = {(0,0)}. For = > 0 we
have E*(z,z) = {(0,0)}, E%(z,2) = {(—z,z) : = € R} and T, , R* = E%(z,2) &
E*(z,x) @ E%(z,x) ® E"(x,x) (see Figure 1).
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Figure 1: A = {(x,2) : © > 0} is a hyperbolic set for the flow of X (a,b) = (—ab+b*, —ab+a?).

3. Hyperbolic decomposition

Now we assume that V is a Levi-Civita connection on a pseudo-Riemannian manifold
M, i.e., it is a torsion free pseudo-Riemannian connection on M compatible with the
metric g. This means that in a local coordinate of p € M we have Vj,0; = Ffjak,
where {0; : i =1,...,m} is a basis for T, M, and the Christoffel symbols Ffj are
determined by the following equations [9]: £(0;qii + Digij — O19;) = glkaj, where
9ij = 9(9;, 0;).
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The reader has to pay attention at this point that we use Einstein’s summation
convention.

If v : (—e,e) = M is a smooth curve passing through p, then a smooth map
X : (—€,€) = TM is called a smooth vector field along v if X (t) € T4 M. A vector
field Y along ~ is called a parallel vector field if [le/
derivative of Y which is defined in a local chart by

DY YJ Y7

L= T, + v 9%, = T 00, + vHOr O @)a, (1)
where Y = Y*9,. If we take v € oM then the existence and uniqueness theorem
for ordinary differential equations implies that equation (1) with the initial condition
Y (0) = v has a unique solution Y (t). We denote the parallel vector field Y (¢) deduced
from the initial condition Y'(0) = v by Pi(v) or v(t). As in [10], if v € T4 M and
E is a subspace of T, M with the basis B, where t,s € (—¢,¢), then d(v, Bg)
is defined by d(v, Bg) = inf{|g,((v(s —t) —w,v(s —t) —w)| : w € Bg}. For
s,t € (—¢,¢€), if E and F are two subspaces of T'(5)M and T ;)M with the basis Bg
and Bp, respectively, then d(Bg, Br) is defined by d(Bg, Br) = max{a,b}, where
a = max{d(v, Br) : v € Bg}, and b = max{d(u, Bg) : u € Br}. We now assume that
A is a hyperbolic set for the flow @ up to an r-dimensional distribution ¢ — E™(q), and
v : (—€,€) = M is a smooth curve passing through p € A. With these assumptions
we have the next theorem.

= 0, where % is the covariant

THEOREM 3.1. Suppose {t,} is a sequence withy(t,) € A andt,, — 0. If P.(E°(p)) =
E%(~(t)), then for a subsequence {s,} of {tn}, there exist bases Bgs(y(s,)) and Bgu(s(s,))
for E%(y(sn)) and E"(y(sn)), and bases Bgs(y,)y and Bgu(y,) for E*(p) and E*(p) so
that d(BES(a(sn))v BEs(p)) — 0, and d(BE”(a(sn))a BEu(p)) — 0.

Proof. Since 0 < dim(E*(y(t,))) < m = dimM for all n € N, then there exist
a subsequence {s, € [~5,5] : n € N} of {t,} and a constant k& € N such that
dim(E*(y(s,)) = k for all n € N. We take a pseudo-orthonormal basis Bgs(y(s,)) =
{vi1,v12,...,v15} for E*(v(s1)). The pseudo-orthonormal basis is a basis with
|9~(s1) (V135 v15)| = d45. Clearly Bge(y(s,)) = {Vn1 = v11(8n—51), Un2 = v12(8p—51), - - -,
Unk = U1x(8p—51)} is a pseudo-orthonormal basis for E*(v(s,)). If we fix 4, then the
sequence {v,; } is a convergence sequence in 7'M, and its limit is v; = lim;,,— 00 01 (S5 —
s1) = v1;(—s1). Since g is a smooth tensor, then its continuity implies that v; ¢ E™(p)
Moreover, the condition P,(E°(p)) = E°(y(t)) implies v; ¢ E°(p), so v; € E*(p) &
E*(p). Hence v; = u+ w with u € E*(p) and w € E¥(p). If ¢ > 0, then

a0 gp(w, w)| < |gytp) (D' (p)(w), D' (p)(w)))|
= 194t () (D' (p) (vi — ), D' (p) (vi — u))]
< |96t () (D' (P) (v3), DS" (p) (v:))] + gt (o) (D' (p) (), D' (p) (w))]
+ 2|94t () (D' (p) (v3), D' (p) ()|
= 1m |94t (y(s,,)) (D¢ (7(50)) (Uni), DY' ((5)) (vni))]

+ |9¢f<p (D¢*(p)(u), D¢' (p)(u))|

/\\_/
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+2 Hm 9ot (y(s,)) (DD (¥(50)) (Uni), DS' (7(5n)) (u(50)))]
< ( lim ab' Gt (y(s,)) (Vnis Vni)) + ab’ gy (u, u)

+2 Hm g (y(s,)) (D' (¥(50)) (i), D' (7(50)) (u(s0))]|
= ab'g,(vi,v;) + ab' g, (u, u)

+2 Hm [y (y(s,) (D" (v(5n)) (vni), DO" (7(sn)) (u(sn)) -

We have Moo [got (y(s0)) (DO (V(sn))(Uni), DO (v(sn))(u(sn))| = 0. Hence the
above inequality is valid if |g,(w,w)| = 0, and this implies that w = 0, and v; €
E*(p). Therefore {vq,va,...,v;} is a pseudo-orthonormal subset of E®(p). Hence
dim(E*(p)) > k. The similar calculations imply that dim(E"*(p)) > m —r —k. There-
fore dim(E*(p)) = k and dim(E"(p)) = m—r—k. Asaresult Bgs () = {v1,v2,..., 0%}
is a basis for £°(p), and we have d(Bgs(+(s,.)), Be+(p)) — 0, when n — co. The similar
calculations imply that d(Bgu(a(s,)), Beu(p)) = 0. O
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Figure 2: A = {(0,a) : a > 0} is a partial hyperbolic set for the flow of X (a,b) = (=22, %)
on the Lorentzian manifold R2.

4. Conclusion

We see that if we separate the null vectors via a null distribution then we can detect the
hyperbolic dynamics on pseudo-Riemannian manifolds. In Example 2.3 we see that
a set of stationary points of a vector field is a hyperbolic set by the given Lorentzian
metric. This set is not a hyperbolic set in the case of Riemannian metrics.

The notion of partial hyperbolic set as another main object in smooth dynamical
systems on Riemannian manifolds [2,4] can be extended for a C! flow ® = {¢* : t € R}
on a pseudo-Riemannian manifolds via the results of this paper. In fact we say that
an invariant set A is a partial hyperbolic set for @ if for each p € A there exist
a splitting T,M = E, ® F,, ® G,, and positive real numbers a,b < 1, ¢ with the
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following properties:
(i) D' (p)Ey = Egt(py, Do'(p)Fp = Fye (), and D' (p)Gp, = Gy (p) for all p € A;

(ii) E, # {0}, F, # {0} and there is no any non-zero null vector in E, U F);
(iii) if v € E, and t > 0 then [gg () (D¢ (p)(v), D' (p)(v))| < ab|gy(v,v)| and

limy 00 got (p) (D' (p)(v), D! (p)(w)) = 0 for each non-null vector w € T,M with
the following property [gyt () (D¢' (p)(w), D¢ (p)(w))| < ab’|gy(w,w)] for all ¢ > 0;

(iv) if 0 # v € E,, 0# w € F, and t > 0 then
19615 (D¢' (P) (v), D' () (0)) 1951 () (DS ™" (p) (w), D" (p) (w))]
< cb|gp (v, 0)|lgp(w, w)];

(v) each vector of G, is a null vector.

We see that any hyperbolic set is a partially hyperbolic set (in this case ¢ = a?),
but the converse is not true. For example with the space of Example 2.3 the set
A = {(0,a) : a € Rand a > 0} is a partially hyperbolic set for the flow of the

vector field X(a,b) = (*T“b, %) on R?, but it is not a hyperbolic set up to any null
distribution on R? (see Figure 2).

The consideration of partially hyperbolic sets in pseudo-Riemannian manifolds
can be a topic for further research.

We conclude this paper by posing a problem on hyperbolic sets: Suppose A is a
hyperbolic set for a flow ® on M with the metric g. Is there any other metric g on M
such that A is also a hyperbolic set with the metric § and in Definition 2.1, a takes

the value one?
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