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Abstract. In this paper, we study the Ricci-Bourguignon flow on higher dimensional
classical Heisenberg nilpotent Lie groups and construct a solution of this flow on Heisenberg
and quaternion nilpotent Lie groups. In the end, we investigate the deformation of spec-
trum and length spectrum on compact nilmanifolds obtained of Heisenberg and quaternion
nilpotent Lie groups.

1. Introduction and preliminaries

Geometric flow is an evolution of a geometric structure under a differential equation
associated with some curvature and it is an important topic in many branches of
mathematics and physics. A geometric flow is related to dynamical systems in the
infinite-dimensional space of all metrics on a given manifold.

Let M be an n-dimensional manifold with a Riemannian metric g0, the family g(t)
of Riemannian metrics on M is called a Ricci-Bourguignon flow when it satisfies the
equations

d

dt
g(t) = −2Ric(g(t)) + 2ρR(g(t))g(t) = −2(Ric− ρRg), g(0) = g0 (1)

where Ric is the Ricci tensor of g(t), R is the scalar curvature and ρ is a real con-
stant. In fact the Ricci-Bourguignon flow is a system of partial differential equations
which was introduced by Bourguignon for the first time in 1981 (see [3]). For closed
manifolds, short time existence and uniqueness for solution to the Ricci-Bourguignon
flow on [0, T ) have been shown by Catino et al. in [5] for ρ < 1

2(n−1) . When ρ = 0, the

Ricci-Bourguignon flow is the Ricci flow. Also, when ρ = 1
2 , ρ = 1

n and ρ = 1
2(n−1) ,

the tensor Ric−ρRg is the Einstein tensor, the traceless Ricci tensor and the Schouten
tensor, respectively.

A Riemannian metric g on the Lie group N is left invariant if the left translations
Lp’s are isometries for all p ∈ N . We will use 〈·, ·〉 to denote both the inner product
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on N = TeN and the corresponding left invariant metric on N . Let Z be the center
of N ; we denote the orthogonal complement of Z in N by V and we write N = V⊕Z.
Define a linear transformation j : Z → SO(V) by j(Z)X = (adX)∗Z for Z ∈ Z and
X ∈ V. Equivalently, for each Z ∈ Z, j(Z) : V → V is the skew-symmetric linear
transformation defined by 〈(adX)∗Z, Y 〉 = 〈Z, (adX)Y 〉, for all X,Y ∈ V. Here
adX(Y ) = [X,Y ] for all X,Y ∈ N , and (adX)∗ denotes the (metric) adjoint of adX.

A 2-step nilpotent Lie algebra N is said to be of Heisenberg type if j(Z)
2

= − |Z|2 Id
for all Z ∈ Z, for instance, the classical Heisenberg Lie group Hn and quaternion Lie
group Qn with special metrics are of Heisenberg type (see [7, 8, 12]).

The collection of lengths of smoothly closed geodesics in Riemannian manifold
(M, g) are called length spectrum and the collection of eigenvalues of the Laplace
operator are called the Laplace spectrum of M . A major open question in spectral
geometry is whether there can exist examples of two Riemannian manifolds with
different periods in the length spectrum in which their Laplace spectra coincide. In [6],
Verdière using the heat kernel showed that the Laplace spectrum determines the
length spectrum. In [4,13,14], it was shown that two closed Riemannian surface have
same Laplace spectra if and only if they have the same length spectrum.

Lauret in [15], studied the Ricci soliton on homogenous nilmanifolds and then
Payne in [17, 18] investigated the Ricci flow and the soliton metrics on nilmanifollds
and nilpotent Lie groups. Also, Williams in [19] funded the explicit solution for
the Ricci flow on some nilpotent Lie groups, for instance, the classical Heisenberg
Lie group Hn of dimension (2n + 1). The author and Razavi studied in [1] the
eigenvalue variations of Heisenberg and quaternion Lie groups under the Ricci flow
and investigated the deformation of some characteristics of compact nilmanifolds Γ\N
under the Ricci flow, where N is a simply connected 2-step nilpotent Lie group with
a left invariant metric and Γ is a discrete cocompact subgroup of N , in particular
Heisenberg and quaternion Lie groups.

Motivated by the above works, in this paper, the Ricci-Bourguignon flow on higher
dimensional classical Heisenberg and quaternion nilpotent Lie groups will be inves-
tigated and specially, the deformation of spectrum and length spectrum of compact
nilmanifold will be found.

1.1 Curvature of Lie groups

We recall some properties about the geometry of Lie groups with left-invariant metrics,
and derive the formula for the Ricci tensor (see [2, 12, 16]). Suppose that 〈·, ·〉 is a
left-invariant metric on a Lie group N , which is equivalent to an inner product on
the Lie algebra N . Let ∇ denote the Levi-Civita connection for the metric, and let
X,Y, Z ∈ N . We shall recall the following useful theorems and propositions about
the Ricci tensor of a Lie group (see [2]).

Proposition 1.1. Let 〈·, ·〉 be a left-invariant metric on a Lie group N and ∇ the
connection for this metric. For X,Y, Z,W ∈ N , we have:
(i) ∇XY = 1

2

{
(adX)Y − (adX)

∗
Y − (adY )

∗
X
}

,

(ii) 〈R(X,Y )Z,W 〉 = 〈∇XZ,∇YW 〉 − 〈∇Y Z,∇XW 〉 − 〈∇[X,Y ]Z,W 〉.
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Besides, the maps (X,Y ) 7→ (adX)Y, (X,Y ) 7→ (adX)
∗
Y , from N × N to N

are bilinear maps. We define

U : N ×N → N U(X,Y ) = −1

2

{
(adX)

∗
Y + (adY )

∗
X
}
,

which is bilinear and symmetric.

Proposition 1.2. The Riemannian curvature tensor on N is given by

4〈R(X,Y )Z,W 〉 = 2〈[X,Y ] , [Z,W ]〉+ 〈[X,Z] , [Y,W ]〉 − 〈[X,W ] , [Y,Z]〉
− 〈[[X,Y ], Z],W 〉+ 〈[[X,Y ],W ], Z〉 − 〈[[Z,W ], X], Y 〉
+ 〈[[Z,W ], Y ], X〉+ 4〈U(X,Z), U(Y,W )〉 − 4〈U(X,W ), U(Y,Z)〉.

In particular,

〈R(X,Y )Z,X〉 =
1

4

∥∥(adX)
∗
Y + (adY )

∗
X
∥∥2 − 〈(adX)

∗
X, (adY )

∗
Y 〉

− 3

4
‖[X,Y ]‖2 − 1

2
〈[[X,Y ], Y ], X〉 − 1

2
〈[[Y,X], X], Y 〉.

Now, suppose that {ei} is a basis for the Lie algebra N ; then we write:

(adei) ej = Ckijek, (adei)
∗
ej = akijek, 〈ei, ej〉 = gij .

This yields the following corollary.

Corollary 1.3. (i) akij = Cmil gjmg
kl,

(ii) If ∇eiej = γkijek then γkij = 1
2g
kl
(
Cmij glm − Cmil gjm − Cmjl gim

)
.

(iii) The components of the Riemann curvature tensor satisfy

4Rijkl = 2CpijC
q
klgpq + CpikC

q
jlgpq − C

p
ilC

q
jkgpq − C

p
ijC

q
pkgql + CpijC

q
plgpk − C

p
klC

q
pigqj

+ CpklC
q
pjgqi + (apik + apki)

(
aqjl + aqlj

)
gpq − (apil + apli)

(
aqjk + aqkj

)
gpq.

(iv) The components of the Ricci curvature tensor satisfy

4Rij =
{

2CpkiC
q
jmgpq + CpkjC

q
imgpq − C

p
kmC

q
ijgpq − C

p
kiC

q
pjgqm

+ CpkiC
q
pmgqj − C

p
jmC

q
pkgqi + CpjmC

q
pjgqk

+
(
apjk + apkj

)
(aqim + aqmi) gpq − (apkm + apmk)

(
aqij + aqji

)
gpq} gkm.

1.2 Heisenberg Lie group

We now recall the construction and properties of the higher-dimensional, classical
Heisenberg Lie group. Let Hn be a (2n + 1)-dimensional Heisenberg Lie group. Let
x = (x1, . . . , xn), y = (xn+1, . . . , x2n). If q = (x, y, z) ∈ Hn and q = (x′, y′, z′) ∈ Hn

then the group multiplication is (x, y, z) ◦ (x′, y′, z′) = (x+ x′, y + y′, z + z′ + x · y′),
where x · y′ is the usual inner product of vectors x ∈ Rn and y′ ∈ Rn. With respect
to this multiplication, we have the following frame of left invariant vector fields,

ei = ∂i, en+i = ∂n+i + xi∂2n+1, e2n+1 = ∂2n+1, for all 1 ≤ i ≤ n,
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and the only nontrivial Lie bracket relation is [ei, en+i] = e2n+1, for all 1 ≤ i ≤ n.
The dual coframe is θi = dxi, θn+i = dxn+i, θ2n+1 = dx2n+1, for all 1 ≤ i ≤ n.

Set V = span{ei, en+i| 1 ≤ i ≤ n} and Z = span{e2n+1}. With the above
multiplication V ∪ Z is an orthonormal basis for Hn, then Hn = V ⊕ Z and the
Heisenberg Lie group is of Heisenberg type.

1.3 The Ricci-Bourguignon flow on the Heisenberg Lie group

In this section, we study solutions of the Ricci-Bourguignon flow (1) starting at some
initial metric g0 on Heisenberg Lie group. Any one-parameter family of left invariant
metrics g(t) on Hn which is a solution of the Ricci-Bourguignon flow, can be written
as g(t) = gIJ(t)θI ⊗ θJ .

In [19], Williams, using Propositions 1.1, 1.2 and Corollary 1.3, showed that the
Ricci tensor of Hn is as follows:

Rij(t) = − 1
2g
i+n,j+n(t)gNN (t) + 1

2giN (t)gjN (t)
∑
, if 1 ≤ i, j ≤ n;

Ri,j+n(t) = 1
2g
i+n,j(t)gNN (t) + 1

2giN (t)gj+n,N (t)
∑
, if 1 ≤ i, j ≤ n;

RiN (t) = 1
2giN (t)gNN (t)

∑
, if 1 ≤ i ≤ n;

Ri+n,j+n(t) = − 1
2g
ij(t)gNN (t) + 1

2gi+n,N (t)gj+n,N (t)
∑
, if 1 ≤ i, j ≤ n;

Ri+N,N (t) = 1
2gi+n,N (t)gNN (t)

∑
, if 1 ≤ i ≤ n;

RNN (t) = 1
2g

2
NN (t)

∑
,

where
∑

=

n∑
k,m=1

gkm(t)gk+n,m+n(t)−
n∑
k=1

2n∑
m=n+1

gkm(t)gk+n,m−n(t), and N = 2n+ 1.

We assume that the Riemannian metric initial is diagonal. From now on, we only use
single subscripts for the metric components: g1(t), . . . , gN (t). This implies that the
Ricci tensor stays diagonal under the Ricci-Bourguignon flow, and the Ricci tensor is
as follows: 

Rij(t) =

{
− 1

2g
i+n(t)gN (t) if i = j

0 if i 6= j
, if 1 ≤ i, j ≤ n;

Ri,j+n(t) = 0, if 1 ≤ i, j ≤ n;

RiN (t) = 0, if 1 ≤ i ≤ n;

Ri+n,j+n(t) =

{
− 1

2g
i(t)gN (t) if i = j

0 if i 6= j
, if 1 ≤ i, j ≤ n;

Ri+N,N (t) = 0, if 1 ≤ i ≤ n;

RNN (t) = 1
2g

2
N (t)

∑
,

where
∑

=

n∑
k=1

1

gk(t)gk+n(t)
.

By direct computation we obtain the scalar curvature as follows: R(t) = − 1
2gN

∑
.

Then the Ricci-Bourguignon flow equation on Hn with a diagonal left-invariant metric
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g0 has the following form
d
dtgi(t) = gN (t)

gi+n(t)
− ρgi(t)gN (t)

∑
, for 1 ≤ i ≤ n;

d
dtgi+n(t) = gN (t)

gi(t)
− ρgi+n(t)gN (t)

∑
, for 1 ≤ i ≤ n;

d
dtgN (t) = −(1 + ρ)g2N (t)

∑
.

(2)

Let g1, g2, . . . , g2n, gN be a solution of the Ricci-Bourguignon flow. As diagonal com-
ponents of a metric, they are positive function of t.

Theorem 1.4. Consider the Heisenberg Lie group Hn with a diagonal left-invariant
metric g0. Let g(t) be a solution to the Ricci-Bourguignon flow with initial metric g0;
then

(i) d
dt

gi(t)
gi+n(t)

= 0, if 1 ≤ i ≤ n;

(ii) d
dt

(
g1(t) . . . gn(t)g

1−nρ
1+ρ

N (t)
)

= d
dt

(
g1+n(t) . . . g2n(t)g

1−nρ
1+ρ

N (t)
)

= 0,

(iii) If ρ < 0 and GN (t) =
∫ t
0
gN (t)dt then lim

t→+∞
GN (t) = +∞.

(iv) Moreover, if gi(0)gn+i(0) = g1(0)g1+n(0), for 1 ≤ i ≤ n then a solution g(t) has
the following formgj(t) = gj(0)

(
1 + bt

) 1−nρ
n+2−nρ

, if 1 ≤ j ≤ 2n

gN (t) = gN (0)
(

1 + bt
) n+nρ
nρ−n−2

(3)

where b = (n+ 2− nρ) gN (0)
g1(0)g1+n(0)

.

Proof. (i) Using (2) and direct computation we have d
dt

gi(t)
gi+n(t)

= 0.

(ii) By differentiation with respect to variable time t and using (2) we obtain

d

dt

(
g1(t) . . . gn(t)(gN (t))

1−nρ
1+ρ

)
=
( n∑
k=1

1

gk(t)

dgk(t)

dt
+

1− nρ
1 + ρ

1

gN (t)

dgN (t)

dt

)
g1(t) . . . gn(t)g

1−nρ
1+ρ

N

=
( n∑
k=1

(
gN (t)

gk(t)gn+k(t)
− ρgN (t)

∑
)
)
g1(t) . . . gn(t)(gN (t))

1−nρ
1+ρ

−
(

(1− nρ)gN (t)
∑)

g1(t) . . . gn(t)(gN (t))
1−nρ
1+ρ = 0,

the part (i) implies that gi(t)
gi+n(t)

is constant for 1 ≤ i ≤ n, so we can set Ai = gi(t)
gi+n(t)

=
gi(0)
gi+n(0)

, therefore gi+n(t) = gi(t)
Ai

. Hence d
dt

(
g1(t) . . . gn(t)(gN (t))

1−nρ
1+ρ

)
= 0 results in

d
dt

(
g1+n(t) . . . g2n(t)g

1−nρ
1+ρ

N (t)
)

= 0.

(iii) For ρ < 0 the equations (2) implies that gj , 1 ≤ j ≤ 2n is an increasing
function, so

∑
is positive and decreasing. Since gN (t) is positive, then last equation

in (2) yields d
dtgN (t) = −(1+ρ)g2N (t)

∑
≥ −g2N (t)

∑
≥ −

∑
(0)g2N (t), which by direct
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computation results in gN (t) ≥ 1∑
(0)t+g−1

N (0)
; by this it holds that

lim
t→+∞

GN (t) = lim
t→+∞

∫ t

0

gN (r)dr ≥ lim
t→+∞

∫ t

0

1∑
(0)r + g−1N (0)

dr = +∞.

(iv) gj(t) and gN (t) for 1 ≤ j ≤ 2n given in (3) satisfy the Ricci-Bourguignon
flow (2). �

Consider Z = span {e2n+1}, V = span {e1, e2, . . . , e2n}, Hn = V ⊕Z, where Z is
the center of Hn and V is the orthogonal complement of Z in Hn. If Z = e2n+1 then
Z = e2n+1, j(Z)ei = en+i, j(Z)en+i = −ei. Hence

j(Z) =

[
0 −In
In 0

]
, (j(aZ))

2
=

[
−a2In 0

0 −a2In

]
,

where In is an n× n identity matrix and it yields to (j(aZ))
2

= − |aZ|2 Id, therefore
Hn with this structure is of Heisenberg type.

Proposition 1.5. Heisenberg type of Lie group Hn is not preserved along the Ricci-
Bourguignon flow with solution (3) with additional condition g2n+1(0) = gi(0)gn+i(0),
for 1 ≤ i ≤ n.

Proof. In (Hn, gt = 〈, 〉t), we have

j(Z)ei =

2n+1∑
j=1

〈Z, [ei, ej ]〉t
〈ej , ej〉t

ej =
|Z|2t
gn+i(t)

en+i, and j(Z)en+i = − |Z|
2
t

gi(t)
ei, 1 ≤ i ≤ n.

Hence j(Z) = A

[
0 −B1

B2 0

]
,

where B1 = diag( 1
g1(t)

, . . . , 1
gn(t)

), B2 = diag( 1
gn+1(t)

, . . . , 1
g2n(t)

), A = |Z|2t . Now for

any real constant a we obtain

j(aZ) = aA

[
0 −B1

B2 0

]
, (j(aZ))

2
= −a2A2

[
D 0
0 D

]
,

where D = diag( 1
g1(t)gn+1(t)

, . . . , 1
gn(t)g2n(t)

). But for 1 ≤ i ≤ n we have gi(0)gn+i(0) =

g2n+1(0), then (3) results in (j(Z))
2

= − 1
(n+2−nρ)t+1 |Z|

2
t I2n. So, Heisenberg type of

Hn is not preserved under the evolution of the Ricci-Bourguignon flow. �

Definition 1.6. (i) Let µ(Z) denote the number of distinct eigenvalues of j(Z)2 and
−θ1(Z)2,−θ2(Z)2, . . . ,−θµ(Z)2 denote the µ distinct eigenvalues of j(Z)2, with the
assumption that 0 ≤ θ1(Z) < θ2(Z) < . . . < θµ(Z).

(ii) A two-step nilpotent metric Lie algebra (N , 〈·, ·〉) is Heisenberg-like if
[j(Z)Xm, Xm] ∈ spanRZ for all Z ∈ Z and all Xm ∈Wm(Z),m = 1, . . . , µ(Z), where
Wm denotes the invariant subspace of j(Z) corresponding to θm(Z), m = 1, . . . , µ(Z).

If N is of Heisenberg type, then for all Z ∈ Z and X ∈ V, [X, j(Z)X] =| X |2 Z.
If N is Heisenberg-like, then for all Z ∈ Z and every Xm ∈Wm(Z),m = 1, . . . , µ(Z),

[Xm, j(Z)Xm] = ( θm(Z)|Xm|
|Z| )2Z. Therefore, with the above notation Hn under the
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evolution of the Ricci-Bourguignon flow from Heisenberg type convert to Heisenberg-
like type.

1.4 Quaternion Lie groups

We now recall the construction of the higher-dimensional, classical quaternion Lie
groups. Let N = Qn be a (4n + 3)−dimensional quaternion group. Let x =
(x11, x21, . . . , x4n), z = (z1, z2, z3). Assume that q = (x, z) ∈ N and q′ = (x′, z′) ∈ N .
Multiplication on N is defined as follows:

Lq(q
′) = L(x,z)(x

′, z′) = (x, z) ◦ (x′, z′)

=

(
x+ x′, z1 + z′1 +

1

2
(M1x, x

′), z2 + z′2 +
1

2
(M2x, x

′), z3 + z′3 +
1

2
(M3x, x

′)

)
,

where Mk =


Ak 0 · · · 0

0 Ak
. . .

...
...

. . .
. . . 0

0 · · · 0 Ak

 , for = 1, 2, 3

and A1 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , A2 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , A3 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,
(Mkx, x

′) is the usual inner product of vectors Mkx ∈ R4n and x′ ∈ R4n. With
respect to this multiplication, we have the following vector fields

X1l =
∂

∂x1l
+

1

2

(
x2l

∂

∂z1
− x4l

∂

∂z2
− x3l

∂

∂z3

)
,

X2l =
∂

∂x2l
+

1

2

(
−x1l

∂

∂z1
− x3l

∂

∂z2
+ x4l

∂

∂z3

)
,

X3l =
∂

∂x3l
+

1

2

(
x4l

∂

∂z1
+ x2l

∂

∂z2
+ x1l

∂

∂z3

)
,

X4l =
∂

∂x4l
+

1

2

(
−x3l

∂

∂z1
+ x1l

∂

∂z2
+ x2l

∂

∂z3

)
,

Zm =
∂

∂zm
,

for l = 1, 2, . . . , n and m = 1, 2, 3. The nonzero Lie brackets of vector fields are

[X1l, X2l] = −Z1, [X1l, X3l] = Z3, [X1l, X4l] = Z2,

[X2l, X3l] = Z2, [X2l, X4l] = −Z3, [X3l, X4l] = −Z1.

Given the above definitions, Qn is two-step nilpotent. Note the dual of the above
vector fields are as follows: dxkl, k = 1, 2, 3, 4, 1 ≤ l ≤ n, and θr = dzr− 1

2 (Mrx, dx),
r = 1, 2, 3.

Set V = span{X1l, X2l, X3l, X4l|1 ≤ l ≤ n}, Z = span{Z1, Z2, Z3}. If we choose
an inner product on Qn such that V∪Z is an orthonormal basis for Qn then quaternion
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Lie group is of Heisenberg type.

1.5 The Ricci-Burguignon flow on quaternion Lie group

Assume that

ei = X1i, en+i = X2i, e2n+i = X3i, e3n+i = X4i, i = 1, 2, . . . , n,

e4n+r = Zr, r = 1, 2, 3.

Let g be diagonal and gα = gαα. With the above symbols and [ei, ej ] = Ckijek, and
Propositions 1.1, 1.2 and Corollary 1.3 we conclude that the Ricci tensor stay diagonal
under the Ricci-Burguignon flow, also as follows

Ri = −1

2

(
g4n+1

gn+i
+
g4n+3

g2n+i
+
g4n+2

g3n+i

)
, R4n+1 =

g24n+1

2

n∑
i=1

(
1

gign+i
+

1

g2n+ig3n+i

)
,

Rn+i = −1

2

(
g4n+1

gi
+
g4n+2

g2n+i
+
g4n+3

g3n+i

)
, R4n+2 =

g24n+2

2

n∑
i=1

(
1

gig3n+i
+

1

gn+ig2n+i

)
,

R2n+i = −1

2

(
g4n+3

gi
+
g4n+2

gn+i
+
g4n+1

g3n+i

)
, R4n+3 =

g24n+3

2

n∑
i=1

(
1

gig2n+i
+

1

gn+ig3n+i

)
,

R3n+i = −1

2

(
g4n+2

gi
+
g4n+3

gn+i
+
g4n+1

g2n+i

)
,

and R = −1

2

(
g4n+1

n∑
i=1

(
1

gign+i
+

1

g2n+ig3n+i

)

+g4n+2

n∑
i=1

(
1

gig3n+i
+

1

gn+ig2n+i

)
+ g4n+3

n∑
i=1

(
1

gig2n+i
+

1

gn+ig3n+i

))
.

Therefore, the Ricci-Bourguignon flow equation, ∂g∂t = −2Ric+ 2ρRg, on Qn has the
form

d
dtgi=

g4n+1

gn+i
+ g4n+3

g2n+i
+ g4n+2

g3n+i
− ρgi

∑′
, for 1 ≤ i ≤ n;

d
dtgn+i=

g4n+1

gi
+ g4n+2

g2n+i
+ g4n+3

g3n+i
− ρgn+i

∑′
, for 1 ≤ i ≤ n;

d
dtg2n+i=

g4n+3

gi
+ g4n+2

gn+i
+ g4n+1

g3n+i
− ρg2n+i

∑′
, for 1 ≤ i ≤ n;

d
dtg3n+i=

g4n+2

gi
+ g4n+3

gn+i
+ g4n+1

g2n+i
− ρg3n+i

∑′
, for 1 ≤ i ≤ n;

d
dtg4n+1=−

(∑n
i=1

g24n+1

gign+i
+
∑n
i=1

g24n+1

g2n+ig3n+i

)
− ρg4n+1

∑′
,

d
dtg4n+2=−

(∑n
i=1

g24n+2

gig3n+i
+
∑n
i=1

g24n+2

gn+ig2n+i

)
− ρg4n+2

∑′
,

d
dtg4n+3=−

(∑n
i=1

g24n+3

gig2n+i
+
∑n
i=1

g24n+3

gn+ig3n+i

)
− ρg4n+3

∑′
.

(4)

Theorem 1.7. Consider the quaternion Lie group Qn with a diagonal left-invariant
metric g0. Let g(t) be a solution to the Ricci-Bourguignon flow with initial metric g0,
then
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(i) d
dt

(
g1(t)g2(t) . . . g4n(t)

(
g4n+1(t)g4n+2(t)g4n+3(t)

) 2(1−2nρ)
1+3ρ

)
= 0,

(ii) If ρ < 0 and Gk(t) =
∫ t
0
gk(t)dt for k = 4n+1, . . . , 4n+3 then lim

t→+∞
Gk(t) = +∞.

(iii) If moreover gj(0) = g1(0), g4n+1(0) = g4n+2(0) = g4n+3(0), for 1 ≤ j ≤ 4n
then a sloution g(t) has the following formgj(t) = g1(0)

(
1 + ct

) 3(1−2nρ)
6+2n−6nρ

, for 1 ≤ j ≤ 4n,

g4n+k(t) = g4n+1(0)
(

1 + ct
)−n(1+3ρ)

3+n−3nρ

, for 1 ≤ k ≤ 3

(5)

where c = g4n+1(0)
g21(0)

(6 + 2n− 6nρ).

Proof. (i) Assume that G(t) = g1(t)g2(t) . . . g4n(t)
(
g4n+1(t)g4n+2(t)g4n+3(t)

) 2(1−2nρ)
1+3ρ ,

then using (4), we get

d

dt
G(t) =

(
4n∑
r=1

1

gr

dgr
dt

+
2(1− 2nρ)

1 + 3ρ

3∑
k=1

1

g4n+k

dg4n+k
dt

)
G(t)

=

n∑
i=1

(
1

gi

dgi
dt

+
1

gn+i

dgn+i
dt

+
1

g2n+i

dg2n+i
dt

+
1

g3n+i

dg3n+i
dt

)
G(t)

+
2(1− 2nρ)

1 + 3ρ
G(t)

3∑
k=1

1

g4n+k

dg4n+k
dt

= 0.

(ii) For ρ < 0 the first four equations (4) yield that gj , 1 ≤ j ≤ 4n is an increasing
function, so∑

1
=

n∑
i=1

(
1

gign+i
+

1

g2n+ig3n+i

)
,
∑

2
=

n∑
i=1

(
1

gig3n+i
+

1

gn+ig2n+i

)
,

∑
3

=

n∑
i=1

(
1

gig2n+i
+

1

gn+ig3n+i

)
are positive and decreasing functions of t. Since g4n+k(t), 1 ≤ k ≤ 3, are positive we
have

d

dt
g4n+1(t) = −g24n+1

n∑
i=1

( 1

gign+i
+

1

g2n+ig3n+i

)
− ρg4n+1

′∑
≥ −g24n+1

n∑
i=1

( 1

gign+i
+

1

g2n+ig3n+i

)
≥ −g24n+1

∑
1
(0)

which by direct computation implies that

g4n+1(t) ≥ 1∑
1(0)t+ g−14n+1(0)

,
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therefore

lim
t→+∞

G4n+1(t) = lim
t→+∞

∫ t

0

g4n+1(r)dr ≥ lim
t→+∞

∫ t

0

1∑
1(0)r + g−14n+1(0)

dr = +∞;

similarly lim
t→+∞

G4n+2(t) = +∞ and lim
t→+∞

G4n+3(t) = +∞.

(iii) gj(t) and g4n+k(t) for 1 ≤ j ≤ 4n, 1 ≤ k ≤ 3 given in (5) satisfy the Ricci-
Bourguignon flow (4). �

Proposition 1.8. Heisenberg type of Lie group Qn is not preserved under the evolu-
tion of the Ricci-Bourguignon flow with solution (5) and additional condition g21(0) =
g4n+1(0).

Proof. The proof is similar to proof of Proposition 1.5. In (Qn, gt = 〈, 〉t), we have

j(Z1)ei = −g4n+1(t)

gn+i(t)
en+i, j(Z1)en+i =

g4n+1(t)

gi(t)
ei, j(Z1)e2n+i = −g4n+1(t)

g3n+i(t)
e3n+i,

j(Z1)e3n+i =
g4n+1(t)

g2n+i(t)
e2n+i, j(Z2)ei =

g4n+2(t)

g3n+i(t)
e3n+i, j(Z2)en+i =

g4n+2(t)

g2n+i(t)
e2n+i,

j(Z2)e2n+i = −g4n+2(t)

gn+i(t)
en+i, j(Z2)e3n+i = −g4n+2(t)

gi(t)
ei, j(Z3)ei =

g4n+3(t)

g2n+i(t)
e2n+i,

j(Z3)en+i = −g4n+3(t)

g3n+i(t)
e3n+i, j(Z3)e2n+i = −g4n+3(t)

gi(t)
ei, j(Z3)e3n+i = −g4n+3(t)

gn+i(t)
en+i.

By Theorem 1.7 for 1 ≤ i ≤ 4n and 1 ≤ k ≤ 3 we have gi(t) = g1(t) and g4n+k(t) =

g4n+1(t). Therefore, if we set E = g4n+1(t)
gi(t)

, then

j(Z1) = E


0 In 0 0
−In 0 0 0

0 0 0 In
0 0 −In 0

 , j(Z2) = E


0 0 0 −In
0 0 −In 0
0 In 0 0
In 0 0 0

 ,

j(Z3) = E


0 0 −In 0
0 0 0 In
In 0 0 0
0 −In 0 0

 ,
hence for any real constants c1, c2 and c3, we find that

j(c1Z1 + c2Z2 + c3Z3) = E


0 c1In −c3In −c2In

−c1In 0 −c2In c3In
c3In c2In 0 c1In
c2In −c3In −c1In 0

 .
If Z = c1Z1 + c2Z2 + c3Z3 then

(j(Z))2 = −E2(c21 + c22 + c23)I4n = −E2 |Z|2t
g4n+1(t)

I4n = − 1

(6 + 2n− 6nρ)t+ 1
|Z|2t I4n.

Hence, it is not of Heisenberg type. �

Remark 1.9. By Definition 1.6, along the Ricci-Bourguignon flow, Qn converts from
Heisenberg type to Heisenberg-like type.
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2. Deformation of marked length spectrum

Suppose that the Lie group N is Hn or Qn and g(t) is the solution of the Ricci-
Bourguignon flow in (3) and (5) respectively, with some conditions given in Propo-
sitions 1.5 and 1.8. Then for t = 0 we have j(Z)2 = −|Z|2Id for all Z ∈ Z, that is
the group N is Heisenberg type. But if in Heisenberg Lie group (Hn, g(t)) suppose
that ηt = 1

(n+2−nρ)t+1 , then in (Hn, g(t)) from the proof of Proposition 1.5 we have

j(Z)2 = −ηt|Z|2t Id for all Z ∈ Z. Also if in the quaternion Lie group (Qn, g(t)) we
suppose that ζt = 1

(6+2n−6nρ)t+1 then in (Qn, g(t)) from the proof of Proposition 1.8

we obtain j(Z)2 = −ζt|Z|2t Id for all Z ∈ Z.
Let Pt = ηt or ζt. For Hn or Qn we have j(Z)2 = −Pt|Z|2t Id. Similarly to the

argument of [1], we conclude the following statements about the deformation of spec-
trum and length spectrum. The spectrum and the length spectrum have relationship
with each other (see [9–11]).

Proposition 2.1. Let (N , 〈, 〉t) is the Lie algebra of N where N is Hn or Qn . Then
we have
(i) 〈j(Z)X, j(Z∗)X〉t = Pt〈Z,Z∗〉t〈X,X〉t for all Z,Z∗ ∈ Z and X ∈ V;

(ii) 〈j(Z)X, j(Z)Y 〉t = Pt〈Z,Z〉t〈X,Y 〉t for all Z ∈ Z and X,Y ∈ V;

(iii) |j(Z)X|t = P
1
2
t |Z|t|X|t for all Z ∈ Z and X ∈ V;

(iv) j(Z) ◦ j(Z∗) + j(Z∗) ◦ j(Z) = −2Pt〈Z,Z∗〉tId for all Z,Z∗ ∈ Z;

(v) [X, j(Z)X] = Pt〈X,X〉tZ for all Z ∈ Z and X ∈ V.

Proposition 2.2. Let σ(s, t) = exp(X(s, t) + Z(s, t)) be a curve in 2-step nilpotent
Lie group with left invariant metric (N, g(t)) where N is Hn or Qn, such that σ(0, t) =
e and σ′(0, t) = X0(t) +Z0(t), where X0(t) ∈ V(t), Z0(t) ∈ Z(t) and e is the identity
in N . Let g(t) is the solution of the Ricci-Bourguignon flow on Hn and Qn in (3)
and (5) respectively. Then

X(s, t) = (cos sθ − 1)J−1X0(t) + sin sθ
θ X0(t)

Z(s, t) =

(
s(1 +

|X0(t)|2t
2|Z0(t)|2t

) + sin sθ
θ
|X0(t)|2t
2|Z0(t)|2t

)
Z0(t)

(6)

where J = j(Z0(t)), θ =
√
Pt|Z0(t)|t.

Definition 2.3. A nonidentity element ϕ(t) of (N, g(t)) translates a unit speed
geodesic σ(s, t) in (N, g(t)) by an amount ω(t) > 0 if ϕ(t) · σ(s, t) = σ(s+ ω(t), t) for
all s ∈ R. The amount ω(t) is called a period of ϕ(t).

Definition 2.4. Let N be a simply connected, nilpotent Lie group with a left invari-
ant metric, and let Γ ⊆ N be a discrete subgroup of N . The group Γ is said to be
a lattice in N if the quotient manifold Γ \N obtained by letting Γ act on N by left
translation is compact.
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Proposition 2.5. Let (N, g(t)) be (Hn, g(t)) or (Qn, g(t)), g(t) is the solution of
the Ricci-Bourguignon flow in 3 and 5 respectively, and Γ be a discrete subgroup of
N . Let ϕ(t) ∈ Γ be a family of nonidentity elements of the center of N , such that
logϕ(t) ∈ Z. Then ϕ(t) = exp(V ∗(t) + Z∗(t)) has the following periods.{
|Z∗(t)|t,

√
(4πk)(|Z∗(t)|t − πk); where k is an integer and {1 ≤ k ≤ 1

2π
|Z∗(t)|t}

}
Proof. Every unit speed geodesic ofN is translated by some element ϕ(t) ofN (see [7]).
Thus (6) proves the proposition. �

Definition 2.6. Let M be a compact Riemannian manifold. For each nontrivial free
homotopy class C of closed curves in M we define l(C) to be the collection of all
lengths of smoothly closed geodesics that belong to C.

Definition 2.7. The length spectrum of a compact Riemannian manifold M is the
collection of all ordered pairs (L,m), where L is the length of a closed geodesic in M
and m is the multiplicity of L, i.e. m is the number of free homotopy classes C of
closed curves in M that contain a closed geodesic of length L.

Lemma 2.8. Let g(t) be the solution of the Ricci-Bourguignon flow in (3) and (5).
Then (Γ\Hn, g(t)) and (Γ\Hn, g0) have the same length spectrum, also (Γ\Qn, g(t))
and (Γ \Qn, g0) have the same length spectrum.

Proof. Let (N, g(t)) be (Hn, g(t)) or (Qn, g(t)). If ϕ(t) belongs to a discrete group
Γ ⊆ N , then the periods of ϕ(t) are precisely the lengths of the closed geodesic in Γ\N
that belong to the free homotopy class of closed curves in Γ \N determined by ϕ(t).
Therefore a free homotopy class of closed curves in Γ \N corresponds to a conjugate
class of an element ϕ in Γ and the collection l(C) is then precisely the set of periods
of ϕ. For any nonidentity element ϕ(t) = exp(V ∗(t) +Z∗(t)) ∈ N that does not lie in
the center of N , by Lemma 3.2 in [1] it has a unique period ω(t) = |V ∗(t)|t. Therefore
in Heisenberg Lie group (Hn, g(t))), if we suppose that V ∗(t) = Σni=1aiei + bien+i for
some ai, bi ∈ R, then we obtain

|V ∗(t)|2t = g1(t)

n∑
i=1

(a2i + b2i ) = (1 + bt)
1−nρ

n+2−nρ |V ∗(t)|20,

where b = (n + 2 − nρ) gN (0)
g1(0)gn+1(0)

and in quaternion Lie group we suppose that

V ∗(t) = Σni=1aiX1i + biX2i + ciX3i + diX4i for some ai, bi, ci, di ∈ R, then

|V ∗(t)|2t = Σni=1a
2
i |X1i|2t + b2i |X2i|2t + c2i |X3i|2t + d2i |X4i|2t = (1 + ct)

3(1−2nρ)
6+2n−6nρ |V ∗(t)|20.

where c = (6 + 2n− 6nρ) g4n+1(0)
g21(0)

. Let W ∗(t) = (1 + ct)−
3(1−2nρ)

12+4n−12nρV ∗(t) and ψ(t) =

exp(W ∗(t) +Z∗(t)) then |W ∗(t)|t = |V ∗(t)|0 in (Qn, g(t)). Similarly, if W ∗(t) = (1 +

bt)−
1−nρ

2n+4−2nρV ∗(t) then in (Hn, g(t)) we have |W ∗(t)|t = |V ∗(t)|0. Hence the period of
ψ(t) is ω(t). Also, since for arbitrary nonidentity elements ϕ(t) = exp(V ∗(t)+Z∗(t)) ∈
N which are in the center of N , we have the following periods.{
|Z∗(t)|t,

√
(4πk)(|Z∗(t)|t − πk); where k is an integer and {1 ≤ k ≤ 1

2π
|Z∗(t)|t}

}
.
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Therefore in Heisenberg Lie group (Hn, g(t))) we see that Z∗(t) = ae2n+1 for some

a ∈ R. We obtain |Z∗(t)|2t = a2|e2n+1|2t = (1 + bt)−
n+nρ
n+2−nρ |Z∗(t)|20 and in quaternion

Lie group we suppose that Z∗(t) = Σ3
i=1aiZ4n+i for some ai ∈ R, then

|Z∗(t)|2t = Σ3
i=1a

2
i |Z4n+i|2t = (1 + ct)

−n(1+3ρ)
n+3−3nρ |Z∗(t)|20.

Then in any case the set of periods of ϕ(t) is similar and this implies that length
spectrum on (Hn, g0) or (Qn, g0) is preserved under the metric in (3) and (5). �

Definition 2.9. Two Riemannian manifolds M1 and M2 are said to have the same
marked length spectrum if there exists an isomorphism T : π1(M1)→ π1(M2) (called
a marking) such that, for each γ ∈ π1(M1), the collection of lengths (counting multi-
plicities) of closed geodesics in the free homotopy class [γ] of M1 coincides with the
analogous collection in the free homotopy class [T (γ)] of M2, i.e. l(T∗(C)) = l(C)
for all nontrivial free homotopy classes of closed curves in M1, where T∗ denotes the
induced map on free homotopy classes.

Definition 2.10. Two Riemannian manifolds (M1, g1) and (M2, g2) are said to have
Ck-conjugate geodesic flows if there is a Ck diffeomorphism F : S(M1, g1)→ S(M2, g2)
between their unit tangent bundles that intertwines their geodesic flows i.e., F ◦GsM1

=
GsM2

◦ F where GsM1
and GsM2

are geodesic flows of M1 and M2 respectively.

Definition 2.11. A compact Riemannian manifold M is said to be Ck-geodesically
rigid within a given class M of Riemannian manifolds if any Riemannian manifold
M1 in M whose geodesic flow is Ck-conjugate to that of M is isometric to M .

Definition 2.12. The solution g(t) of the Ricci-Bourguignon flow with the initial
condition g(0) = g0 is called a Ricci-Bourguignon soliton if there exist a smooth
function u(t) and a 1-parameter family of diffeomorphisms ψt of Mn such that g(t) =
u(t)ψ∗t (g0), u(0) = 1, ψ0 = idMn .

Similarly to the proof of [1, Theorems 3.1 and 3.2], we have the following lemma.

Lemma 2.13. The spectrum and marked length spectrum on a compact nilmanifold is
preserved under the Ricci-Bourguignon soliton.

The geodesically rigidity on compact nilmanifold of Heisenberg type is invariant
under the Ricci-Bourguignon soliton.
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