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CERTAIN RESULTS ON A CLASS OF INTEGRAL FUNCTIONS
REPRESENTED BY MULTIPLE DIRICHLET SERIES

Nibha Dua and Niraj Kumar

Abstract. In the present paper we obtain a condition on vector valued coefficients of
multiple Dirichlet series for when the series converges in the whole complex plane. We also
prove some results related to Banach algebraic structure, topological divisor of zero and more
on a class of such series satisfying certain condition.

1. Introduction

Consider a multiple Dirichlet series of the form:

f(s1, s2, . . . , sn) =

∞∑
m1,m2,...,mn=1

am1,m2,...,mne
(λ1m1

s1+λ2m2
s2+...+λnmn sn), (1)

where sj = σj + itj (σj , tj ∈ R) for j = 1, 2, . . . , n; am1,m2,...,mn belong to a commu-
tative Banach algebra over the field E, i.e. (E, ‖ · ‖), having identity element w with
‖w‖ = 1. Also, 0 < λi1 < λi2 < . . . < λip →∞ as p→∞, for i = 1, 2, . . . , n. For the
sake of simplicity, we denote s = (s1, s2, . . . , sn) ∈ Cn, m = (m1,m2, . . . ,mn) ∈ Nn,
and λm = (λ1m1

, λ2m2
, . . . , λnmn ) ∈ Rn.

For n-tuples x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) we denote [x] = x1 +
x2 + . . .+xn, xy = (x1y1, x2y2, . . . , xnyn), and x+ y = (x1 + y1, x2 + y2, . . . , xn+ yn).
Thus the series (1) can be written as

f(s) =

∞∑
m=1

ame
[λms]. (2)

Sarkar [4] considered multiple Dirichlet series with complex coefficients and made a
characterization of coefficients in the case when the series converges absolutely in the
whole Cn. He further characterized the order and type of an entire function defined
by such series and expressed them in terms of its complex coefficients and exponents.
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2. Entire function

In this section, we find a necessary and sufficient condition for the series (2) to converge
absolutely in the whole Cn.

Theorem 2.1. The series represented by (2) satisfying

lim sup
[m]→∞

∑n
k=1 logmk

[λm]
= 0 (3)

converges for all s ∈ Cn if and only if

lim sup
[m]→∞

log ‖am‖
[λm]

= −∞. (4)

Proof. Let (2) represents an entire function. If the series satisfies (3), the domain
of absolute convergence of the series (2) coincides with its domain of convergence
(see [1]). Thus (2) converges absolutely for all s ∈ Cn.

Consider r = (r, r, . . . , r) with r > 0. Then there exists a constant K such that∑∞
m=1 ‖am‖e[rλm] < K, that is ‖am‖e[rλm] < K which implies log ‖am‖ < logK −

r[λm]. Hence for arbitrary r > 0, we have lim sup[m]→∞
log ‖am‖

[λm] < −r, which gives

the desired result.

Conversely, let (4) hold. Let s ∈ Cn , σ > 0 such that <s1 < σ , <s2 < σ,
. . . , <sn < σ. For some ε > 0, there exists R such that whenever [m] ≥ R we have
log ‖am‖

[λm] < −(σ + ε). Thus ‖am‖eσ[λm] < e−ε[λm]. In view of (3),
∑∞
m=1 e

−ε[λm] <∞.

Thus the series (2) converges absolutely for all s where <s1 < σ , <s2 < σ ,. . . ,
<sn < σ. Hence the series also converges at (s1

′, s2
′, . . . , sn

′) where <s1′ < <s1,
<s2′ < <s2, . . . , <sn′ < <sn. As σ > 0 is arbitrary, thus the series (2) converges in
the whole Cn. �

3. The class M

Srivastava in [5] considered a class of Dirichlet series in one variable of the form∑∞
m=1 ame

λms where am ∈ C for which
(
λm
e

)λm |am| is bounded and studied some
growth properties of the class of such series.

Kumar, Chutani and Manocha [3] proved various results on a class of vector
valued Dirichlet series in two variables of the form

∑∞
m,n=1 am,ne

(λms1+λns2) for

which (λm + µn)
c1(λm+µn)e{c2(m+n)−c1}(λm+µn)‖am,n‖ is bounded where c1, c2 ≥ 0

and c1, c2 are simultaneously not zero.

In this paper, we provide a more general form of bounded condition by considering

a function Ψ : Nn → R+ satisfying lim[m]→∞ log Ψ(m)
1

[λm] = ∞. For example, if
(λm) = (m1,m2, . . .mn) where mj for j = 1, 2 . . . , n denotes a sequence of natural

numbers and Ψ(m) = [mλm]
[λm]

, the previous condition holds.
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Throughout this paper we consider M to be a class of all Dirichlet series (2)
with sequence of exponents (λm) satisfying (3) for which Ψ(m)‖am‖ is bounded.
Since every element of M satisfies (4) thus M represents a class of entire functions
represented by vector valued multiple Dirichlet series.

In particular, if Ψ(m) = emλmm! we get the same class of Dirichlet series in one
variable as the one in [2]. The aim of this paper is to extend some results from [3] to
class of Dirichlet series in several variables and also prove some new results.

Operations in M for f(s) =
∑∞
m=1 ame

[λms] and g(s) =
∑∞
m=1 bme

[λms] are defined
as (f + g)(s) =

∑∞
m=1(am + bm)e[λms], αf(s) =

∑∞
m=1(αam)e[λms], α ∈ E and (f ·

g)(s) =
∑∞
m=1 Ψmambme

[λms].
The norm in M can be defined as ‖f‖∗ = sup[m]≥n Ψ(m)‖am‖. Also, the identity

element in M is e(s) =
∑∞
m=1 w{Ψ(m)}−1e[λms]. For definition of the terms used in

the sequel, we refer to [6, 7].

4. Main results

Lemma 4.1. M is not a division algebra.

Proof. We need to show that there exists an element in M whose inverse does not
exist in M.

Let α(s) =
∑∞
m=1 w(m1m2 . . .mn)−1{Ψ(m)}−1e[λms]. Clearly, α(s) ∈ M. Let

β(s) =
∑∞
m=1 bme

[λms] be the inverse of α(s). Then

(α · β)(s) = e(s)⇒
∞∑
m=1

w(m1m2 . . .mn)−1bme
[λms] =

∞∑
m=1

w{Ψ(m)}−1e[λms]

⇒ bm = w(m1m2 . . .mn){Ψ(m)}−1.
However, β(s) =

∑∞
m=1 w(m1m2 . . .mn){Ψ(m)}−1e[λms] does not belong to M. �

Theorem 4.2. The function f(s) =
∑∞
m=1 ame

[λms] is invertible in M if and only if
{{Ψ(m)}−1‖am−1‖} is a bounded sequence.

Proof. Let g(s) =
∑∞
m=1 bme

[λms] be the inverse of f(s) such that (f · g)(s) = e(s)
Then Ψ(m)ambm = w{Ψ(m)}−1 which implies that Ψ(m)‖bm‖ = ‖w{Ψ(m)am}−1‖
or equivalently, Ψ(m)‖bm‖ = ‖am−1‖{Ψ(m)}−1. Since g(s) is an element of M, it can
be concluded that {{Ψ(m)}−1‖am−1‖} is a bounded sequence.

Conversely, suppose that {{Ψ(m)}−1‖am−1‖} is a bounded sequence. Let g(s) =∑∞
m=1 w{Ψ(m)}−2{am}−1e[sλm]. Clearly g ∈ M. Moreover (f · g)(s) = e(s). �

Theorem 4.3. (M,‖.‖∗) is a commutative Banach algebra over E.

Proof. Let {fr} be a Cauchy sequence in M where fr(s) =
∑∞
m=1 am

(r)e[λms] Then
for ε > 0, there exists some k such that whenever r, p ≥ k, ‖fr − fp‖∗ < ε, which
implies

sup
[m]≥n

Ψ(m)‖am(r) − am(p)‖ < ε whenever r, p ≥ k. (5)
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Here {am(r)}, being a Cauchy sequence in E, converges to some am ∈ E.

Letting p → ∞ in (5), we get sup[m]≥n Ψ(m)‖am(r) − am‖ < ε whenever r ≥ k.

Hence fr → f for f(s) =
∑∞
m=1 ame

[λms]. Also

sup
[m]≥n

Ψ(m)‖am‖ = sup
[m]≥n

Ψ(m)‖am − am(r) + am
(r)‖

≤ sup
[m]≥n

Ψ(m)‖am(r) − am‖+ sup
[m]≥n

Ψ(m)‖am(r)‖.

Therefore, f ∈M.

If f, g ∈M then

‖f · g‖∗ = sup
[m]≥n

Ψ(m)‖ambmΨ(m)‖ ≤ sup
[m]≥n

Ψ(m)‖am‖ sup
[m]≥n

Ψ(m)‖bm‖ = ‖f‖∗ · ‖g‖∗,

which proves the theorem. �

Theorem 4.4. A necessary and sufficient condition for f(s) =
∑∞
m=1 ame

[λms] in M
to be a topological divisor of zero is lim[m]→∞ Ψ(m)‖am‖ = 0.

Proof. Let f(s) be a topological divisor of zero. Suppose lim[m]→∞Ψ(m)‖am‖ =
α(α > 0). Then for a given ε, 0 < ε < α , there exists a natural number N such that

Ψ(m)‖am‖ > α− ε whenever [m] ≥ N. (6)

As f ∈M is a topological divisor of zero, therefore there exists an arbitrary sequence
{gr} of elements in M having unit norm such that sup[m]≥n Ψ(m)‖bm(r)‖ = 1 for

gr(s) =
∑∞
m=1 bm

(r)e[λms].

For some δ , 0 < δ < 1 we can find an integer Mr and a subsequence {mt} of {m}
such that

Ψ(m)‖bm(r)‖ > 1− δ for all [m] = [mt] ≥Mr. (7)

If Ψ(m){Ψ(m)‖ambm(r)‖} = 0 for some [m] = [mt] ≥ max{Mr, N} then ‖ambm(r)‖ =

0. Since E is a field, therefore either am = 0 or bm
(r) = 0, which contradicts either (6)

or (7). Hence,Ψ(m){Ψ(m)‖ambm(r)‖} > 0 for all [m] = [mt] ≥ max{Mr, N}. Thus
‖f · gr‖∗ 9 0, which is a contradiction to the fact that f(s) is a topological divisor of
zero. Hence lim[m]→∞Ψ(m)‖am‖ = 0.

Conversely, let lim[m]→∞Ψ(m)‖am‖ = 0. Construct a sequence {gm} such that

gm(s) = w{Ψ(m)}−1e[λms]. Clearly, gm ∈ M and ‖gm‖∗ = 1 for all m ≥ 1. Here (gm ·
f)(s) = (f · gm)(s) = {Ψ(m)am{Ψ(m)}−1}e[λms] = ame

[λms]. Therefore ‖gm · f‖∗ =
‖f · gm‖∗ = Ψ(m)‖am‖. Here ‖gm · f‖∗ = ‖f · gm‖∗ → 0 as [m]→∞, therefore, f(s)
is a topological divisor of zero. �
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Theorem 4.5. Every continuous linear functional θ : M → E is of the form θ(f) =∑∞
m=1 amαmΨ(m) where f(s) =

∑∞
m=1 ame

[λms] and {αm} is a bounded sequence
in E.

Proof. Let θ : M→ E be a continuous linear functional. So,

θ(f) = θ
( ∞∑
m=1

ame
[λms]

)
=

∞∑
m=1

amθ
(
e[λms]

)
. (8)

We define a sequence {fm} in M as fm(s) = w{Ψ(m)}−1e[λms] From (8), θ(f) =∑∞
m=1 amΨ(m)θ(fm(s)). Since θ is a continous linear functional, therefore ‖θ(fm)‖ ≤

P‖fm‖∗ for some P . As ‖fm‖∗ = 1, thus ‖θ(fm)‖ ≤ P . Let αm = θ(fm). Thus αm
is a bounded sequence in E. �

Theorem 4.6. Let f(s) =
∑∞
m=1 ame

[λms] ∈ M where am 6= 0 for every [m] ≥ n. Let
L ∈ Cn be a set having at least one finite limit point. Define

fτ (s) =

∞∑
m=1

am{Ψ(m)}−1e[λm(s+τ)].

Then the set Af = {fτ : τ ∈ L} is a total set with respect to the family of continuous
linear transformations θ : M→ E.

Proof. We have

fτ (s) =

∞∑
m=1

am{Ψ(m)}−1e[λm(s+τ)] =

∞∑
m=1

am{Ψ(m)}−1e[λms]e[λmτ ].

Note that for all τ ∈ Cn,

Ψ(m)‖am{Ψ(m)}−1e[λmτ ]‖ = ‖ame[λmτ ]‖ ≤
∞∑
m=1

‖ame[λmτ ]‖.

Since f(s) is an entire function in M converging absolutely in the whole Cn, thus
fτ (s) ∈M for every τ ∈ L.

Let θ : M→ E be a continuous linear transformation such that θ(Af ) ≡ 0, that is

θ(fτ ) = 0 for all τ ∈ L. Then by Theorem 4.5,
∑∞
m=1 Ψ(m)(am{Ψ(m)}−1e[λmτ ])αm =

0 which implies
∑∞
m=1 amαme

[λmτ ] = 0, for all τ ∈ L.
Define h(s) =

∑∞
m=1 amαme

[λms]. Since {αm} is a bounded sequence in E and
f(s) =

∑∞
m=1 ame

[λms] is an element of M, therefore h(s) also belongs to M. However,
h(τ) =

∑∞
m=1 amαme

[λmτ ] = 0 for all τ ∈ L. As L has a finite limit point, therefore
h ≡ 0. This however implies that amαm = 0 for all [m] ≥ n and as am 6= 0 for every
[m] ≥ n implies that αm = 0 for all [m] ≥ n. �
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