
MATEMATIČKI VESNIK
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A NOTE ON THE MINIMAL DISPLACEMENT FUNCTION

Gastão Bettencourt and Sérgio Mendes

Abstract. Let (X, d) be a metric space and Iso(X, d) the associated isometry group. We
study the subadditivity of the minimal displacement function f : Iso(X, d) → R for different
metric spaces. When (X, d) is ultrametric, we prove that the minimal displacement function
is subadditive. We show, by a simple algebraic argument, that subadditivity does not hold
for the direct isometry group of the hyperbolic plane. The same argument can be used for
other metric spaces.

1. Introduction

Fundamental in the form we sense the world is the concept of symmetry. Mathemati-
cally, symmetry is realized by means of isometries in appropriate spaces. Following [6],
given a metric space (X, d), we define an isometry as a function φ : X → X that
preserves distances, d(φ(x), φ(y)) = d(x, y) and is onto. Associated to isometries there
is a well defined number, the so called minimal displacement or minimal translation
length, which is defined purely analytically as follows. For any isometry φ,

f(φ) = inf
x∈X

d(φx, x).

The study of the minimal displacement function can be traced back to the following
problem in functional analysis [3]: given a subset K of a Banach space and a mapping
T : K → K, estimate the quantity inf {‖x − Tx‖ : x ∈ K}. As pointed out by
Goebel and Kirk [4, p. 210], this problem is meaningful only in situations where
it is not already known that the mapping T has a fixed point. An example is the
case of certain continuous mappings T : B → B on the unit ball B of an infinitely
dimensional Banach space, where Brouwer’s fixed point theorem does not hold.

In geometry and metric group theory, the minimal displacement function is used
to classify isometries into the three types (elliptic, hyperbolic and parabolic), gene-
ralizing the work of Felix Klein in the 19th century on the classification of isometries
of the hyperbolic plane H, see [6, p. 258].
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A generalization of the minimal displacement function is now in use, with many
applications to metric group theory, see for instance the recent preprint by Breuillard
and Fujiwara [1] and the bibliography therein.

We recall that, given a set S with some algebraic structure, (e.g. a group or a
semigroup) a subadditive function to R is any function f : S → R satisfying

f(g · h) 6 f(g) + f(h). (1)

Subadditive functions are particularly interesting due to their remarkable proper-
ties (e.g. every numerical semigroup can be obtained from a subadditive, periodic
function f : N→ Q+

0 , see [8, Theorem 5.5]).

Let (X, d) be a metric space and Iso(X, d) the associated isometry group. A
natural question is to understand if the minimal displacement function f : Iso(X, d)→
R is subadditive. In other words, given any isometries φ, ψ we want to know if the
following inequality holds:

inf
x∈X

d(φψx, x) 6 inf
x∈X

d(φx, x) + inf
x∈X

d(ψx, x). (2)

In this note we provide some examples showing that the inequality (2) does hold
for some metric spaces but not always. As expected, the inequality (2) depends on
the metric d over the space X. When (X, d) is ultrametric, we show that the minimal
displacement function is always subadditive. In spite of the analytic nature of the
minimal displacement function we give a purely algebraic argument which proves
that the minimal displacement function of the hyperbolic plane, when restricted to
the direct isometry group, is not subadditive. The same argument can easily be
applied to other isometry groups under certain conditions.

2. Properties of minimal displacement function

Let f be the minimal displacement function defined on the set Iso(X, d) of isometries
of X. It is well known that Iso(X, d) has a group structure with product given by
composition: (g · h)(x) = g(h(x)), for every g, h ∈ Iso(X, d). We have already noted
that the minimal displacement function is used to characterize isometries. Following
several authors (see [6] and the references therein), we say that an isometry is elliptic
if the infimum is attained and is zero, hyperbolic if the infimum is attained and is
greater than zero and parabolic if the infimum is not attained. Define Ie`` as the
subset of elliptic isometries.

For any φ ∈ Iso(X, d) we have

d(φx, x) = d(φ−1φx, φ−1x) = d(x, φ−1x) = d(φ−1x, x),

where we have used the definition of isometry and the symmetry of the metric d.
Taking the infimum, we have

f(g−1) = f(g), (3)

that is, f is inverse invariant. We also have d(φψφ−1x, x) = d(ψφ−1x, φ−1x). Again,
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taking the infimum we get

f(φψφ−1) = inf
x∈X

d(ψφ−1x, φ−1x) = inf
y∈X

d(ψy, y) = f(ψ), (4)

that is, f is conjugacy invariant. Hence, we have the following well known facts.

Proposition 2.1. Let (X, d) be a metric space and f the minimal displacement func-
tion. Then, for all isometries φ, ψ, f(φ) = f(φ−1) and f(φψφ−1) = f(ψ).

For a given metric space (X, d), there is always a subgroup of Iso(X, d) for which
the restriction of the minimal displacement function is trivially subadditive. In fact,
given p ∈ X, define the set Iso p(X, d) = {φ ∈ Iso(X, d) : φ(p) = p}. It can easily be
proved that Iso p(X, d) is a subgroup of Iso(X, d), called the isotropy group of p (or
stabilizer of p). Since every element of Iso p(X, d) is elliptic we conclude the following.

Proposition 2.2. The restriction f |Iso p(X,d) : Iso p(X, d) → R of the minimal dis-
placement function is subadditive.

3. Examples

In this section we give examples of metric spaces and verify if the inequality (2) holds.

3.1 Euclidean line

The first example is the usual Euclidean metric space (R, d), with d(x, y) = |x − y|.
The group of isometries of (R, d) is the semidirect product: Iso(R, d) ∼= R o Z/2Z,
where (R,+) is the additive group of R, identified as the group of translations of R,
and Z/2Z = {−1, 1} is the group with two elements. The latter is the orthogonal
group O(1). It follows that Iso(R, d) is not simple, having R as a normal subgroup.
The group Iso(R, d) may be realized as follows: Iso(R, d) = 〈φk, ψk : k ∈ R〉, where
φk(x) = x + k and ψk(x) = −x + k. Since ψk has a fixed point, it is an elliptic
isometry, for every k ∈ R, whereas φk is hyperbolic for k 6= 0. Take ψm and ψn with
m 6= n. Then, ψnψm = φn−m. It follows that the minimal displacement function
for the space (R, d) is not subadditive. Notice that the argument works for every
Euclidean space (E, d).

3.2 Hyperbolic plane

The upper plane model of hyperbolic geometry is the set H = {z ∈ C : Im z > 0},
endowed with the metric dH given by

cosh dH(z, w) = 1 +
|z − w|2

2Im z · Imw

The group of order preserving isometries Iso+(H, d), also known as the direct isometry
group, is given by the Möbius transformations

z 7→ az + b

cz + d
,
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with a, b, c, d ∈ R and ad− bc = 1.
Now, take

φd(z) =
1

−z + 2d
.

This is an elliptic isometry precisely when d ∈ ] − 1, 1[ since z0 = d + i
√

1− d2 is a
fixed point of φd and z0 ∈ H. Pick two isometries φd, φd′ . The composition is

φdφd′(z) =
z − 2d′

2dz + (1− 4dd′)
.

Choosing d, d′ such that dd′ < 0 we can see that φdφd′ fixes two real points,

dd′ ±
√

(dd′)2 − dd′
d

,

in which case the isometry is hyperbolic. Again, the minimal displacement function
for the space (H, dH) is not subadditive.

3.3 French railway metric space

Let (X, d) be a metric space and fix p ∈ X. Define a new metric dF, p = dF on X by

dF (x, y) =

{
d(x, p) + d(p, y) if x 6= y

0 if x = y
.

Note that, since d is a metric on X, dF (x, y) = 0 if, and only if, x = y. The above
metric is called the French Railway metric.

In [2, Theorem 2.2], the author proved that, for every isometry φ ∈ Iso(X, dF ), p
is a fixed point of φ. Since Isop(X, dF ) = Iso(X, dF ), from Proposition 2.2 we obtain:

Proposition 3.1. The minimal displacement function for the space (X, dF ) is sub-
additive.

3.4 Ultrametric spaces

The last example includes a large class of metric spaces. A metric space (X, d) is
called ultrametric if it satisfies the strong triangle inequality

d(x, y) ≤ max {d(x, z), d(z, y)} , (5)

for every x, y, z ∈ X.
Given any two isometries φ, ψ of (X, d) and x ∈ X, consider the three points x,

φ−1x and ψx. Now, we use the fact that in an ultrametric space, every triangle is an
acute isosceles. This means that either

d(ψx, φ−1x) = d(φ−1x, x) or d(ψx, φ−1x) = d(ψx, x) or d(φ−1x, x) = d(ψx, x).

If d(ψx, φ−1x) = d(φ−1x, x) = d(φx, x) then taking the infimum on both sides we
have infx∈X d(ψx, φ−1x) = infx∈X d(φx, x) and so

inf
x∈X

d(φψx, x) = inf
x∈X

d(φx, x) ≤ inf
x∈X

d(φx, x) + inf
x∈X

d(ψx, x).
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If d(ψx, φ−1x) = d(ψx, x), again we conclude by the same reasoning that

inf
x∈X

d(φψx, x) = inf
x∈X

d(ψx, x) ≤ inf
x∈X

d(ψx, x) + inf
x∈X

d(φx, x).

Finally, suppose that d(φ−1x, x) = d(ψx, x). By the strong triangle inequality (5)
we have d(ψx, φ−1x) ≤ max {d(ψx, x), d(x, φ−1x)} = d(φ−1x, x). So, d(φψx, x) ≤
d(φx, x). Taking the infimum we obtain

inf
x∈X

d(φψx, x) ≤ inf
x∈X

d(φx, x) ≤ inf
x∈X

d(φx, x) + inf
x∈X

d(ψx, x).

We have concluded the following result for ultrametric spaces.

Theorem 3.2. Let (X, d) be an ultrametric space. Then the minimal displacement
function is subadditive.

4. A class of subadditive functions

Let G be a group. We focus on functions f : G → R that are subadditive (1) and
inverse invariant (3). Denoting by e the identity of G, we have

f(e) = f(gg−1) 6 f(g) + f(g−1) = 2f(g).

Taking g = e in the above inequality we obtain f(e) > 0. Hence, f(g) > 0 for every
g ∈ G. Suppose there exists an element go ∈ G such that f(go) = 0. Define the subset
of G, K = {g ∈ G : f(g) = 0}. Since 0 6 f(e) 6 2f(go) then f(e) = 0 and e ∈ K.
Also if g ∈ K then g−1 ∈ K by (3). On the other hand, if g, h ∈ K it follows that
0 6 f(gh) 6 f(g) + f(h) = 0 and gh ∈ K. So we conclude the following

Proposition 4.1. Let f be subadditive and inverse invariant and suppose K is not
empty. Then K is a subgroup of G.

Recall that a subgroup N of G is called normal if gng−1 ∈ N for all g ∈ G and
n ∈ N . A group G is said to be simple if the only normal subgroups of G are {e} and
G itself.

Suppose that we have a subadditive, inverse invariant function f on G. Let K be
defined as above. If it happens that f is also conjugacy invariant (4) on G we have,
for all g ∈ G, h ∈ K, f(ghg−1) = f(h) = 0 and so K is a normal subgroup of G.

5. The hyperbolic plane

In Examples 3.1 and 3.2 we saw that the inequality (2) fails, by constructing two
elliptic isometries whose composition is a hyperbolic isometry. In this section we will
use a simple algebraic criteria to achieve the same conclusion for the hyperbolic plane.

Let f be the minimal displacement function and assume that f is also subadditive.
Clearly K defined as above is a subgroup of Iso+(H, dH). By conjugacy invariance
K is even a normal subgroup of Iso+(H, dH). By definition of elliptic isometries we
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clearly have Ie`` ⊂ K. So K 6= {e}. On the other hand, Iso+(H, dH) has plenty
hyperbolic isometries (see Example 3.2), which implies that K 6= Iso+(H, dH). Now,
we note that in this setting Iso+(H, dH) is a simple group, see [5, 7]. And this is a
contradiction. We conclude the following.

Theorem 5.1. The minimal displacement function f : Iso+(H, dH) → R is not sub-
additive.

Remark 5.2. Let (X, d) be a metric space with G = Iso(X, d) simple and Ie``\{id}
nonempty. Then the above result applies and the minimal displacement function for
(X, d) is not subadditive.
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Beira Interior – Covilhã, Portugal
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