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EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS TO
A FOURTH-ORDER MULTI-POINT BOUNDARY VALUE PROBLEM

Faouzi Haddouchi, Cheikh Guendouz and Slimane Benaicha

Abstract. In this paper, we study the existence and multiplicity of positive solutions
for a nonlinear fourth-order ODE with multi-point boundary conditions and an integral
boundary condition. The main tool is Krasnosel’skii fixed point theorem on cones.

1. Introduction

Boundary value problems related to nonlocal conditions have many applications to
problems in the theory of heat conduction, thermoelasticity, plasma physics, control
theory, etc. The current analysis of these problems has a great interest and many
methods are used to solve them. Recently, the study of existence of a positive solution
to fourth-order boundary value problems has gained much attention and becomes a
rapidly growing field, see [1,2,4,6-9,15]. However, the approaches used in the litera-
ture are usually by topological degree theory and fixed-point theorems in cones [5].

Multi-point boundary value problems have received considerable interest in the
mathematical applications in different areas of science and engineering, see [3,12-14].

In 2007, M. Zhang and Z. Wei [13] studied the existence of multiple positive
solutions for fourth-order m-point boundary value problem

u® () + Bt)u" — A(t)u = f(t,u), 0 <t <1,

u(0) = X0 au(&), u(l) = S0 biu(&),

u’(0) = S a (&), w(1) = X0 b (&)
In the same year, X. Zhang and L. Liu [14] considered the fourth-order multi-point
boundary value problems with bending term

x @ (t) = g(t) f(t, x(t), 2" (t)), t € (0,1),
2(0) =0, z(1) = Y7 2 aw(&), 2(0) =0, 2”(1) = Y1 bia (&)
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26 Positive solutions for a fourth-order boundary value problem

In 2016, S. Benaicha and F. Haddouchi [2], considered the following fourth-order
two-point boundary value problem

u'(t) + f(u(t)) =0, t € (0,1),

1
u'(0) = /(1) = u"(0) =0, u(0) = /0 a(s)u(s) ds.

Bo Yang [12] studied the fourth-order differential equation u””(t) = g(t)f(u(t)), t €
(0, 1), together with boundary conditions u(0) = au’(0) — fu”(0) = yu'(1) 4+ 0u’ (1) =
u”(1) = 0. Yan. D and R. Ma [11] investigated the global behavior of positive
solutions of fourth-order boundary value problem v’ = \f(x,u), x € (0,1), together
with boundary conditions u(0) = u(1) = «”(0) = v”(1) = 0, where f : [0,1] xRt = R
is a continuous function with f(z,0) < 0in (0,1), and A > 0. The proof of main results
are based upon bifurcation techniques. Recently, Wei. Y et al. [10] considered the
following boundary value problem u® (t) = f(t,u(t),u'(t)), t € (0,1), subject to the
boundary conditions «(0) = w/(0) = v/(1) = «”(1) = 0. Under some conditions of f,
the existence and uniqueness of this problem is obtained.

Motivated by these works, in this paper, we are concerned with the following
fourth-order ODE with multi-point and integral boundary conditions:

W"(8) + f(tu(t)) = 0, € (0,1), (1)

1 n
V(O = /() =" (0) =0, O =a [ u)ds+ Y Gulw). (@)
0 i=1
where
(C1) f € C([0,1] x [0,00),[0,00));
(C2) a>0,8>0,1<i<nand 0<m<m<...<n, <l
(C3) a+ Y, Bi<1.

This paper is organized as follows. In Section 2, we present some theorems and
lemmas that will be used to prove our main results. In Section 3, we discuss the
existence of at least one positive solution for (1)-(2). In Section 4, we investigate the
existence of multiple positive solutions for (1)-(2). Finally, we give some examples to
illustrate our results in Section 5.

2. Preliminaries

At first, we consider the Banach space C(]0, 1], R) equipped with the sup norm |ju|| =
SUP¢¢(o,1] [u(t)].

DEFINITION 2.1. Let E be a real Banach space. A nonempty, closed, convex set
K C E is a cone if it satisfies the following two conditions:

(i) z€e K, A>0imply Az € K; (ii) x € K, —z € K imply = 0.

DEFINITION 2.2. An operator T : E — FE is completely continuous if it is continuous
and maps bounded sets into relatively compact sets.
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DEFINITION 2.3. A function u(t) is called a positive solution of (1)-(2) if w € C([0,1],R)
and u(t) > 0 for all ¢ € (0,1).

To prove our results, we need the following well-known fixed point theorem of cone
expansion and compression of norm type due to Krasnosel’skii [5].

THEOREM 2.4. Let E be a Banach space, and let K C E be a cone. Assume
that Q1 and Qo are bounded open subsets of E with 0 € 1, Q1 C Qo and let
A: KN (Q\Q1) = K be a completely continuous operator such that

(a) |Aul| < ||ul|, v € KNOQ, and || Au| > ||u|, v € K NONs; or

(b) [[Aul| > |lull, v € KN OQy, and ||Aul| < [lul|, v € K N 0Qy.
Then A has a fized point in K N (Q2\Q1).

Consider the multi-point boundary value problem
u™'(t) +y(t) =0, t € (0,1), (3)

UI(O) _ Ul(l) — u”(O) =0, u(0) = a/o u(s)ds + Zﬂlu(m) (4)

For convenience, we denote k =1 — (a +> 0, ﬁi)-

LEMMA 2.5. Let k # 0. Then for any y € C0,1], the boundary value problem (3)-(4)

has a unique solution which can be expressed by u(t) = fo s)ds, where
H(t,s):[0,1] x [0,1] = R is the Green’s function deﬁned by
1 n
1
H(t,s) = G(t,s) + %/0 G(r,s)dr + z ;BiG(m, ), (5)
121 —5)2—(t—s) 0<s<t<I;

d G(t,s) = = oo 6
o (t;) 6{153(1—3)27 0<t<s<l. (6)
Proof. Rewriting (3) as u””(t) = —y(t) and integrating four times over the interval
[0,¢] for t € [0,1], we obtain

1 t
u(t) = ’6/ (t — 5)3y(s) ds + 01t3 + cth + Cyt+ Ch, (7)
0

where C1,Co,C3,Cy € R are constants. By (4), we get C; = fo (1 —s)*y(s)ds and
Cy=C3=0. Further

Cy =u(0) = < ()ds+T63 /01(1—5)2y(s)ds+6’4>d7
+Z@( 5 [ mesrueast T [y ase )

o f 1 (-5 [ esrusas [ 1(1—s>2y<s>ds)dr

#30(g [ oo [Camspuas) ccy(or 3 5).

i=1
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so Ci —Z/Ol <é /OT(TS)Sy(S) der%s /01(15)2y(3)ds)d7

+}ém(—é [ omsrats st [ amatsy as).

Replacing these expressions in (7), we get

t 3 1
u(t) =5 [ (=9v) dst [ =02yt ds

k/ (_/ (7=s) y(s)ds+%3 /01(1—8)221(8) dS)dT

T Zﬁl< /’71 (ni—5)°y(s) d8+776?/1(1—8)2y(s) ds)

0
1

1
:6/0 [t?’(lfs)zf(tfs)‘g]y(s)ds+é/t t3(1—s)%y(s) ds

v | 1 ([ ra-sr-e-silueas [ S s)(s) is)ar

kz@( [ s st | 1(18)2y(s)ds>

i

[ (el [ cirnir+ES 5605 ot ds
0 k Jo ki
/OIH(t, s)y(s) ds. =

The proof of the following lemma can be found in [2, Lemma 2.3].

LEMMA 2.6. Let 0 € (0,3) be fived. Then G(t,s) defined by (6) satisfies
(i) G(t,s) >0, for all t,s € [0,1],

(ii) p(t)e(s) < G(t,s) < e(s), for all (t,s) € [0,1]x[0,1], where e(s) = §5(1—s)?, and

t3
p(t) = min{t3,t2(1 —t)} = { ’

l\D\»—‘ [\3\»—-

t<

t2(1 - t)a t>
(iii) 63e(s) < G(t,s) <e(s), forall (t,s)€[0,1—0]x][0,1].
In the remainder of this paper, we always assume that k& > 0.

LEMMA 2.7. Let y(t) € C([0,1],[0,00)) and 6 € (0,%). Then the unique solution
of (3)-(4) is nonnegative and satisfies mingeg1_g u(t) > 03(1 — 26)]ul.

Proof. The positiveness of u(t) follows immediately from Lemma 2.5 and Lemma 2.6.
For all ¢t € [0, 1], we have

/ Ht, s)y(s) ds = / 1<G(t,s)+z /0 1G(T,s)d7+;§:l ﬁﬁ(m,s))y(s) ds
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1

e(s)dr + % zn: BiG (i, 8))y(8) ds
( > Eiﬁz G(mis s )y (s) ds.
(s iSammon
have

JACE
I
Then |[fu] < (

Fort € [0,1 — 0], we

/Hts

:/0 (Gts k/GTsdeZ@ (i, s )()ds

> / 1 <G(t,s) +2 /0 " rsyar + kzﬁia<ni,s>)y<s> ds
z/ol(e3e<>+ %681 — 20)e( %Z (105) (s s

o (5o s o

From (8) and (9), we obtain min,efg,1_g) u(t) > 6° (1 — 20)]|u]|. O
Let 6 € (0,1). We define the cone

K ={ueC([0,1], R): u(t) >0, t€[0,1], glilng]u(t) > 6°(1 — 20)||ull},

and the operator T': K — C[0, 1]

/Hts (5, u(s)) ds, (10)
where H(t,s) is defined by (5).

REMARK 2.8. By Lemma 2.5, the fixed points of the operator 7' in K are the non-
negative solutions of the boundary value problem (1)-(2).

LEMMA 2.9. The operator T defined in (10) is completely continuous and satisfies
T(K)CK.

Proof. From Lemma 2.7, we obtain T(K) C K. By an applying Arzela-Ascoli theo-
rem, T is completely continuous. O

For convenience, we introduce the following notations

u—0+
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foo = lim { min f(t,u)} = lim { max f(t,u)}

u——+oo | 0<t<1 u u—+oo | 0<t<1 u
1-6
@:961—292/ 1 G, s s,
( ) ; + +o Zﬁ (i
@:i Ay =01 Ay =0t
6]{’ 9 .

3. Existence results

THEOREM 3.1. Assume that one of the following hypotheses is satisfied.
(H1) fo =00 and f* =0; (H2) f*=0 and fs = 0.
Then the problem (1)-(2) has at least one positive solution in K.

Proof. Assume that (H1) holds. Since fo = oo, there exists p; > 0 such that f(¢,u) >
ou, for all 0 < u < py,t € [0,1], where § > 0 is chosen so that 6¥ > 1. Then, for
u€ KNoQ and t € [0,1 — 0] with Q; = {u € C[0,1] : ||u|]| < p1}, we obtain

/Hts

:A <G(t s) + k i G(TsdT-i-kZﬂz (mi, s )>f(s,u(s))d5

1-0 a 1-6
> [ (e g G<T,s>dr+E;ﬁiG<ni,s> Fls.u(s)) ds

)
> /0 o (G(u 9+ / e syar - iﬁie(m, s>>6u(s> ds

1-6 n
1
3 3 3
> 66%(1 — 20) ||u||/ (9 ()+k9(1720 EZ: (0, s )

> 5651 ||u||/1 6((1+ ) )+k;ﬁia(m,s)> ds

= 0U|ufl = [|uf- (11)
Hence, ||[Tu|| > ||ul], v € K NoQ;.
On the other hand, since f>°=0, there exists p3>0 (p2>p1) such that f(¢,u)<nu
for all ¢ € [0,1] with u>ps and 7>0 satisfies n®<1. We consider two cases.
Case 1. Suppose that f is bounded, then there exists L > 0 such that f(¢,u) < L.
Let Qo = {u € C[0,1] : |lul| < p2} with p2 = max{2p1, L®}. If u € K NIy, then
by Lemma 2.6 we have

Tu(t) :/()1H(t,s)f(s,u(s))ds<L/o (e k/ s)dr + kZ@ )
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1 1 n L 1
i (14341308 ds=F [ a0 <p=ul (12
0 ] 0

and consequently, ||Tul| < [Jull, v € K N oNy.

Case 2. If f is unbounded, then from condition (C1), there exists o > 0 such
that f(t,u) < no, with 0 < u < py and t € [0,1].

Let Qy = {u € C[0,1] : ||u|| < p2}, where ps = max{o, p2}. If u € K N9y, then
we have f(t,u) < nps, and

mw=mewwwmmsAXm> ;ij )WMS

1 1
<apag | els)ds <npd < o = . (13

So, ||[Tull < |lull, w € K N 9. Therefore by Theorem 2.4, T has at least one fixed
point, which is a positive solution of (1)-(2) such that p; < |ju|| < pa.

Next, assume that (H2) holds. Since fY = 0, there exists p; > 0 such that
flt,u) < eu, for all 0 < u < p1,t € [0,1], where € > 0 satisfies e® < 1. Then, for
uw € KNoQy with Q = {u € C[0,1] : ||ul| < p1}, we have

Tu( / H(t,s)f(s,u(s))ds < /01 (e(s) + %e(s) +2éﬁie(s)>eu(s) ds

< gelll [ s < ol <

Therefore, ||Tu|| < |lul|, v € K NoQy.

By fs = o0, there exists po > 0 such that f(¢,u) > ou, for all u > py and
t €[0,1— 6], where 6 > 0 is chosen so that ¥ > 1. Let ps = max{2py, ﬁ} and
Qo = {u € C0,1],||ull < p2}. So, for all u € K NN, u(t) > p2, t € [0,1 — 0] is
satisfied. Similar to the estimates (11), we obtain

Tu(t) :/0 H{(t,s)f(s,u(s)) ds > 60[|u| = [Jul]

The existence of a positive solution of (1)-(2) follows from Theorem 2.4. [

4. Multiplicity results

THEOREM 4.1. Assume that the following assumptions are satisfied.

(H5) fo = fu = oo

(H4) There exist constants py > 0 and My € (0,A1] such that f(t,u) < Mip;, for
u € (0,p1] and t € [0,1].

Then the problem (1)-(2) has at least two positive solutions uy and ug such that
0 < fluall < p1 < |lue-
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Proof. First, assume that (H3) holds. Since f; = oo, then for any M, € [Az,00),
there exists p. € (0, p1) such that f(¢t,u) > M,u, for allt € [0,1 — 6] and 0 < u < p.
Set Q,. = {u € C[0,1] : |lul| < p«}. By using Lemma 2.6, for u € K N 99Q,, and
t€[6,1— 0], we have

/Hts (s,u(s))ds
ZA (Gt S k‘ a OGTSdT“r‘k_Zﬁz Th» )f(svu(s))ds

> /6 o (G(t, )+ /9 T orair+ . ;&G(m, s>>M*u<s) ds

> M,05(1 — 26)? [/91_9 <(1 + z>e(s) + % gﬁiG(ni, s)> ds} P

= M Ay pe > Aoy i = |Jul],
which means that
|Tu|| > [, v e KNoQ,.. (14)

On the other hand, since fo = oo, then for any M* € [Ay, 00), there exists p* > p;
such that f(t,u) > M*u, for all t € [#,1 — 0] and u > p*.

Let p* > % and Q,- = {u € C[0,1] : ||u|| < p*}. For all u € K NN+, we
have that u(t) > p*, t € [0,1 — 0]. Hence, for t € [,1 — 0], we get

/Hts s, uls)) ds

2/0 ( /GTsdH—kZﬁz (109) ) s () s
1-6 a 1-6
> [ (g [ et 3G )3t s

> 0 MAG > p A = Jull. (15)
Therefore ||Tul| > ||ull, u € K NOQ,-. (16)

Finally, set Q,, = {u € C[0,1] : |lu|| < p1}. Then for any u € K NoQ,,, we get
from (H4) that f(t,u) < Myp, for all ¢ € [0,1], and similarly to the estimates (12),
we obtain

Tu(o) - | 1 (ceo+3 [ G, )i + ;iBiG(% ) (s, ds
< /Ole(s)(1+ % + llsi:ﬂl)MlpldS

1 1
< Alplg/ e(s)ds < MAT oy = |Juf, (17)
0
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yielding || Tul| < ||ul, v e KNOQ,,. (18)
Hence, since p. < p1 < p* and from (14), (16), (18), it follows from Theorem 2.4 that
T has a fixed point u; in K N (£, \ ©Q,,) and a fixed point ug in K N (£2,- \ Q).
Both are positive solutions of the problem (1)-(2) and 0 < |Ju1]| < p1 < |luz| L

THEOREM 4.2. Assume that the following assumptions are satisfied:
(H5) f° = [ =0,

(H6) There exist constants pa > 0 and My € [A2,00) such that f(t,u) > Mapa, for
u € [03(1 — 20)p2, p2] and t € (0,1 — 6).

Then the problem (1)-(2) has at least two positive solutions u; and us such that
0 < fluall < p2 < uzl|.

Proof. Assume that (H5) holds. Firstly, since f© = 0, for any € € (0, A;], there exists
p« € (0,p2) such that f(t,u) < eu, for all t € [0,1] where 0 < u < p,. Then, for
ue KNoQ,, with Q, ={ue C[0,1]: ||ul]| < ps}, we have

Tu(t):/o H(t,s)f(s,u(s))dsg/o (e(s)—&—ge(sﬂ—iZﬂie(s))f(s,u(s))ds

1

! 1 1
S/o e(s)(l—&—z—k k;&)eu(s) ds < ep*E/O e(s)ds < eAT ' pu < pa = ||ul.

Therefore ITul| < |lull, ve KNoQ,,. (19)

Secondly, in view of f*° = 0, for any €; € (0,A;], there exists p > py such that
f(t,u) < eyu, for all t € [0,1] with u > p.

We consider two cases.

Case 1. Suppose that f is bounded. Let L > 0 be such that f(¢,u) < L, for all
u € [0,00) and ¢ € [0, 1]. Taking p* > max{p, %}, for u € K with ||u|| = p*, we have

Tu(t) = /01 <G(t, 5)+ Z/Ol G(r, s)dr + % i@-e(m, s)>f(3,u(s)) ds

<Le < pradyt <pt = |lull,
and consequently
1Tl < ||ull, we KNoQ,. (20)

Case 2. Suppose that f is unbounded; then from condition (C1), there exists
o > 0 such that f(t,u) < €10, with 0 < u < p, and ¢ € [0,1]. For v € K with
|lu|| = p*, where p* > max{c, g}, we obtain

Tu(t) = 1 H(t,s)f(s,u(s))ds < 1 e(s) + Se(s) + L iﬂie(s) f(s,u(s))ds
0 0 k k <

1 n
a 1 _ %
S/ e(s) (1 +o T kzﬁi)ﬁp* ds < e1p™AT < p* = |lull.
0 i=1

We conclude that
ITull < llull, u € K N 0Q,-. (21)
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Hence, in either case, we may always set Q,« = {u € C[0,1] : |lu|]| < p*} such that
|Tul| < ||ul|, for ue K NOQ,-.

Now, set ,, = {u € C[0,1] : ||u]| < p2}. Then for any v € K N 9Q,,, we get
from (H6) that there exists Ma € [Ag, 00) such that f(t,u) > Mayps for allt € [6,1—-6],
and u € [63(1 — 20)p2, p2]. Similarly to the estimates of (15) we get

Tu(t) 2M203(1—29)p2/010 ((1+ ) Zﬁl (1 s )
> Mypa65(1 —29)2/91_9 ((1+ ) ;i (13, 8 )

— MyAT 92 > p3 = [Jull.
Then
| Tull = [lull, uwe K NOQ,. (22)

Hence, from (19)—(22) and Theorem 2.4 it follows that there exist at least two positive
solutions u; in K N (2, \ Q,,) and ug in K N (- \ Q,,) of the problem (1)-(2) such
that 0 < ||U1|| < p2 < ||1L2|| O

5. Examples

ExAMPLE 5.1. Consider the boundary value problem
u"(t)+t+|cosul =0, 0 <t <1,
u’(O) =u (1) u”(0) =0, (23)
Ly u(s)ds + U(7)+IU(2)+QU(£)
= 3Jo 15 3 84 13/
where f(tau) =t+ ‘COS’U’| a = %7 ﬂl = 77 ﬁZ = 47 ﬁS = 84’ h = 157 N2 = 37 and
ngz%.Wehavekzl—( + = —|— —1—84) >0f0—oof°°—0 Then, by (HI)
of Theorem 3.1, the problem (23) hab at least one positive solution.

EXAMPLE 5.2. As a second example we consider the following boundary value problem
o (t) +utetIn(l+t+u) =0, 0<t <1,
u’(O) =u (1) u”’(0) =0, (24)
= 4y u(ods + dru(h) + fuh
where f(t,u) = uzeuln(1+t+u) >0, a= 4, B = 12, Bo = 6, m=z and No = %
Wehave k=1—({+15+5)=45>0,f°=0, foo = 00. So, by (H2) ofTheorem31
the problem (24) has at least one positive solution.
ExAMPLE 5.3. Consider the following boundary value problem
W)+ 1+t =0, 0<t <1,
u’(O) =u (1) u”(0) =0, (25)
= g5 Jo uls)ds + gyu(}) + mpul§) + Figu(b),
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Wherelf(tau) = (1 +t)eua a = 307 Bl = @7 62 = ﬁy 63 = ﬁa m = %7 2 = % and
n3 = 3-

Then fy = foo = 00,k = 1—(3—1()4—6—10—1—&4—%) = 12. On the other hand,
choose p; = 1 and My = Ay. Then f(t,u) < 2e, for (t,u) € [0,1] x (0, p1] and
Ay =6k =% =5,625. So f(t,u) < 2e<5,625= Mlpl.

By Theorem 4.1, the problem (25) has at least two positive solutions.

ExXAMPLE 5.4. Consider the following boundary value problem
u""(t) + 6528 x 10%u2el"* =0, 0 <t <1,

u'(O)—uu) u"(0) =0, (26)
:10 fo ds+20 (%)v
where f(t,u) = f(u )—6528><109 Zel=v o= & Bl—ﬁz%andm:n—% Then
fo=f2=0 k=11 (1+%):%7%:17,and\1/—06( —20) [, ((1 +
De(s) + £G (% s)) ds
=091 11 1
U =0%(1 — 20)? —~Zs(1— —Z —(1—35)?
So, 6°(1 — 20) [/0 1768( s)? d8+176/ 8( s)*ds
11 (2 /1 3 11 %1
— - — —Z Z(1—39)2
176/9 (2 5) d8+176/; s1=9) ds}
05(1 — 20)2 1
—T |:].9\:[11 + 8\112 \:[12 + 8\113:|,
. 1-60 N 1 1 5
with \1/1:/6 s(1 - 5)2ds = 2(1-20) (5 +0-6%),

\I/é:/j(l—s) ds 2(1—29)(7—79%92)

31 3 1
U2 = - =—(1-20)*
2 /9(2 S) ds = 5g(1 = 200",

1-6 1 )
\I/:;:/é (1—s)%ds 6(1—29)( + 9+9)

—L 61 _ 3 _ 2 3
v _65289 (1 —260)°(103 + 2066 — 2126 4 80°).

So, Ag = 6528 x 0~6(1 — 20)~3(103+ 20660 — 21262 +86%)~1. On the other hand, let us
choose py = 1 and My = As. Then f(t,u) = f(u) > 6528 x 10%9%(1 —260)2, for (t,u) €
[0,1— 0] x [03(1—20)p2, pa]. So, f(t,u) > 10°912(1—20)5(103 + 2060 — 21202 + 86%) .
Using the Mathematica software, we easily check that
9012 5 2 3 17 12

10°9'2(1 — 26)°(103 + 2060 — 21262 + 86%) > 1, for all § € {ﬁ %}

and consequently f(t,u) > As = Mo.
By Theorem 4.2, the problem (26) has at least two positive solutions.
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