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LOCATION AND WEIGHT DISTRIBUTION OF KEY ERRORS

Pankaj Kumar Das and Subodh Kumar

Abstract. In this presentation, we give necessary and sufficient conditions (lower and
upper bounds) for the existence of linear codes capable of identifying the portion of the
codeword which is corrupted by errors named as key errors. An example of such a code
is provided. Comparisons among the number of parity check digits of linear codes detect-
ing/locating/correcting key errors are provided. A result on minimum weight of key errors
in Hamming sense is also included in the paper.

1. Preliminaries

Error control coding scheme is mainly used for distant communication to protect the
information which may get corrupted during the process of communication. But with
the advancement of information technology, it is quite possible that the information
may be disturbed at entry level also. There are communication channels like automata
or electronics devices where entry level error occurs.

Consider the example of keyboard of a computer which has keys for various al-
phabets, numerical and symbols. When one types a number or a symbol, there is
always a possibility to make mistake in typing. One can make a mistake by pressing
the wrong key on either side of the correct key. We may call such errors key errors.
Such errors are already studied by Sharma and Gaur in [9] with respect to S-K met-
ric. Detection and correction of key errors are studied in [1,2] and the key errors are
defined as follows.

Definition 1.1. An i-key error of length b (i = 1, 2, . . . n) is an n-tuple such that
the ith component is non-zero and all other non-zero components are confined up to
b consecutive positions (if they exist) preceding or succeeding the ith component.

Note that the entry error (ith component) of such error could be at any position
from 1st to nth position. Suppose that the 1st position contains the entry error; then
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44 Location and weight distribution of key errors

possibility of occurring errors are on the b consecutive positions to the right side of
the 1st position. If the entry error is in the 2nd position, then other errors may be
in one position left of the 2nd position and the b consecutive positions, immediately
right of the 2nd position. If the entry error is in the 3rd position, the two immediate
positions left of the 3rd position and immediate b consecutive positions to the right of
the 3rd position contain other errors. Continuing in the same way, if the entry error
occurs in the last position, i.e., the nth position, then the other errors will be confined
to the b consecutive positions immediately left of the nth position.

Just like in [1,2], we can consider examples of key errors of length 2 in a vector of
length 6 over GF (3) as follows:

(0 21︸︷︷︸
2

2︸︷︷︸
entry error

12︸︷︷︸
2

), (0 21︸︷︷︸
2

1︸︷︷︸
entry error

02︸︷︷︸
2

), (0 12︸︷︷︸
2

2︸︷︷︸
entry error

00︸︷︷︸
2

),

(000 11︸︷︷︸
2

1︸︷︷︸
entry error

), ( 11︸︷︷︸
2

1︸︷︷︸
entry error

22︸︷︷︸
2

0), ( 1︸︷︷︸
1

1︸︷︷︸
entry error

12︸︷︷︸
2

00), etc.

In this paper, we have studied linear code that will locate key errors. Such codes
are called ‘Error Locating Codes’. The concept of ‘Error Locating Codes’, a middle
concept between error detection and error correction, was first proposed by Wolf and
Elspas [10] in 1963. They subdivided the code into some mutually exclusive sub-
blocks. While decoding, the error occurring in a sub-block can be detected and in
addition, which particular sub-block contains the error can also be identified.

The efficiency of detection/location/correction of error by a code can be improved
by minimizing the number of parity check digits of the code. Although it is not always
possible to find the required exact number of such digits, but it is possible to obtain
the bound on the number of such digits and this was initiated by Hamming [3] where
also a technique was given for construction of such codes.

Let us consider an (n, k) linear code over GF (q) that is divided into m mutually
exclusive sub-blocks, each of length t and let H be the parity check matrix of the code.
The (n = mt, k) code capable of locating key errors of length at most b occurring
within a sub-block of length t is called Single Blockwise Key Error Locating code, or
SBKb/tEL code. To be an SBKb/tEL code, the following two conditions must be
satisfied:
(I) eHT 6= 0 where e is any key error of length at most b within a sub-block.

(II) eiH
T 6= ejH

T , where 1 ≤ i, j ≤ m, i 6= j, and ei and ej are any key errors of
length at most b occurring in the ith and jth sub-blocks.

In [1,2], the author derives lower and upper bounds on the number of parity check
for key error of length up to b detecting (KbED) code and key error of length up
to b correcting (KbEC) code respectively. The present paper derives such bounds
for an SBKb/tEL code. We also provide comparison among the numbers of parity
check digits of these three types of codes. Further, we obtain a combinatorial result
on weight of key errors analogous to the famous Plotkin bound [6]. The weight of a
vector is considered in Hamming sense as the number of non-zero entries.

The paper is organized as follows. The contents of Section 2 are derivation of lower
and upper bounds on the number of parity check digits of an SBKb/tEL code along
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with an example. In Section 3, Plotkin type bound is presented. Finally, Section 4
gives comparison of parity check digits among KbED, KbEC and SBKb/tEL codes.

2. Location of key errors

Firstly, we derive a lower bound on the number of parity check digits needed for
an SBKb/tEL code. In order to do it, we apply the technique of Peterson and
Weldon [5, Theorem 4.16].

Theorem 2.1. For any (n = mt, k) SBKb/tEL code (t > 2b), the number of parity
check digits r (= n− k) satisfies

qr ≥

{
1 + mb, for q = 2,

1 + mb(q − 1)(q − 2), for q 6= 2.

Proof. Since the (n, k) linear code over GF (q) detects key errors of length at most
b within a sub-block and identifies the corrupted sub-block, the number of distinct
syndromes according to conditions (I) and (II) has to be less than or equal of qr,
maximum possible number of distinct syndromes.

Let X be the set consisting of n-tuples such that the non-zero components are
confined to the first 2b positions in any one sub-block (as considered in [1]) as follows.

(i) For q = 2, the first 2b positions are

(

b︷ ︸︸ ︷
x00 . . . 00

b︷ ︸︸ ︷
y00 . . . 00),

(

b︷ ︸︸ ︷
0x0 . . . 00

b︷ ︸︸ ︷
0y0 . . . 00),

. . . . . . . . . . . . . . . . . . . . . ,

. . . . . . . . . . . . . . . . . . . . . ,

(

b︷ ︸︸ ︷
000 . . . 0x

b︷ ︸︸ ︷
000 . . . 0y),

where x = y = 1

(ii) For q 6= 2, the first 2b positions are

(

b︷ ︸︸ ︷
x00 . . . 00

b︷ ︸︸ ︷
y00 . . . 00),

(

b︷ ︸︸ ︷
0x0 . . . 00

b︷ ︸︸ ︷
0y0 . . . 00),

. . . . . . . . . . . . . . . . . . . . . ,

. . . . . . . . . . . . . . . . . . . . . ,

(

b︷ ︸︸ ︷
000 . . . 0x

b︷ ︸︸ ︷
000 . . . 0y),

where x, y ∈ GF (q) \ {0} and x 6= y.

Then, we have that the syndromes of all elements of X are all distinct (see [1]).
Also by condition (II), the syndromes of vectors which are key errors of length at
most b, whether in the same sub-block or in different sub-blocks, must be distinct.

By [1], the number of elements of X, excluding the vector of all zeros, is
(i) b for q = 2, (ii) b(q − 1)(q − 2) for q 6= 2.

The above number of distinct non-zero syndromes is counted corresponding to vectors
lying within a single sub-block. As there are m sub-blocks in all, the number of distinct
non-zero syndromes, including the all zero vectors, is at least

(i) 1 + mb for q = 2, (ii) 1 + mb(q − 1)(q − 2) for q 6= 2.
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Therefore, we must have

qr ≥

{
1 + mb, for q = 2,

1 + mb(q − 1)(q − 2), for q 6= 2.

An upper bound on the number of check digits required for the construction of
an SBKb/tEL code is given in the next theorem where the technique of Varshomov-
Gilbert-Sacks bound (refer to Sacks [7] and Peterson and Weldon [5, Theorem 4.7])
is followed. The bound establishes the existence of such codes.

Theorem 2.2. For the existence of an (n = mt, k) SBKb/tEL code (t > 4b+ 2), the
minimum number of parity check digits r (= n− k) required is at least

1 + logq

[(
1 + qb−1(q − 1)qb

)
×
(

1 + (m− 1)

{
q2b+1 − q

q + 1

+ (t− 2b)(q − 1)
(q2b+1 − q

q + 1
+ 1

)
+

q2b+1 − q3 + (q2 − 1)(b + q)

(q + 1)2

})]
.

Proof. The existence can be established if we can always construct an (n − k) × n
parity check matrix H for such a code. In order to construct parity check matrix H,
we follow the technique as below.

We first assume that the columns of the first m− 1 sub-blocks of H and the first
j − 1 columns h1, h2, . . . , hj−1 of the mth sub-block of H have been appropriately
added. We now add jth column hj of the mth sub-block of the matrix H as follows.

According to condition (I) for being nonzero syndromes of key error of length at
most b within a sub-block, hj should not be a linear combination of immediately
preceding consecutive 2b columns such that the coefficient of the preceding (b + 1)th

column is non-zero. In other words,

hj 6= (u1hj−1 + u2hj−2 + · · ·+ ub−1hj−b+1) + ubhj−b

+ (ub+1hj−b−1 + ub+2hj−b−2 + · · ·+ u2bhj−2b), (1)

where ui ∈ GF (q) and ub 6= 0. From [1], we know the number of the coefficients ui

satisfying ui ∈ GF (q) and ub 6= 0, including the zero vector in (1), and this number is

1 + qb−1(q − 1)qb. (2)

Further, according to condition (II), the syndromes of such key errors need to be
distinct in different sub-blocks. Therefore, hj can be added provided that

hj 6= (u1hj−1 + u2hj−2 + · · ·+ ub−1hj−b+1) + ubhj−b

+ (ub+1hj−b−1 + ub+2hj−b−2 + · · ·+ u2bhj−2b)

+ (vl+1hl+1 + vl+2hl+2 + · · ·+ vl+(2b+1)hl+(2b+1)), (3)

where ui, vi ∈ GF (q), ub 6= 0 and hl+i’s in the last bracket form a pattern of key
errors of length at most b in any one sub-block among the previous m− 1 sub-blocks.

The number of different ways the coefficients ui on R.H.S. of (3) can be selected is
1+qb−1(q−1)qb. Enumeration of the coefficients vi’s is equivalent to the enumeration
of the number of key errors of length at most b in a vector of length t. From [2], we
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can obtain this number (excluding the vector of all zeros) to be

q2b+1 − q

q + 1
+ (t− 2b)(q − 1)

(
q2b+1 − q

q + 1
+ 1

)
+

q2b+1 − q3

(q + 1)2
+

(q − 1)(b + q)

q + 1
.

Since there are m − 1 previously chosen sub-blocks, therefore the number of linear
combinations of vi’s on R.H.S. of (3) becomes

(m− 1)

{
q2b+1 − q

q + 1
+ (t− 2b)(q − 1)

(
q2b+1 − q

q + 1
+ 1

)
+

q2b+1 − q3

(q + 1)2
+

(q − 1)(b + q)

q + 1

}
.

So, for location, the number of linear combinations that hj cannot take is the product{
1+qb−1(q−1)qb

}
×

(m−1)

{
q2b+1−q
q+1

+(t−2b)(q−1)

(
q2b+1−q
q+1

+1

)
+
q2b+1−q3

(q+1)2
+

(q−1)(b+q)

q+1

}
. (4)

Therefore, for detecting and locating of key errors of length at most b, the total
number of linear combinations which hj cannot take is the sum of the quantities
computed in (2) and (4).

Thus, taking the worst situation when all these combinations yield distinct sums,
the jth column hj to the mth sub-block can be added H provided that

qn−k >

[
1+qb−1(q−1)qb

]
× (5)[

1+(m−1)

{
q2b+1−q
q+1

+(t−2b)(q−1)

(
q2b+1−q
q+1

+1

)
+
q2b+1−q3+(q2−1)(b+q)

(q+1)2

}]
.

This completes the proof of the theorem. �

Remark 2.3. For m = 1, the inequality (5) coincides with the one in [1, Theorem
2]. The inequality (5) depends on the value of t (which may be chosen to be smaller
quantity), whereas the R.H.S. of the inequality of [2, Theorem 2.2] depends on n.
As a result, the quantity on R.H.S. of [2, Theorem 2.2] gets bigger than that of the
inequality (5).

Example 2.4. Consider the 9 × 12 parity check matrix H of a (12, 3) linear code
over GF (2). The matrix H is constructed following the technique used in the proof
of Theorem 2.2 by taking q = 2, b = 2, t = 6 and m = 2.

H =



1 0 0 0 0 1 0 0 0 1 0 0
1 1 0 0 0 1 0 0 0 1 1 0
0 1 1 0 0 0 0 0 0 1 1 1
0 0 1 1 0 0 0 0 0 1 1 0
0 0 0 1 1 0 0 0 0 1 1 1
0 0 0 0 1 0 1 0 0 1 1 0
0 0 0 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1


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Table 1: Error Pattern-Syndrome

Error Patterns Syndromes Error Patterns Syndromes
100000 000000 110000000 000000 100000 000001100
110000 000000 101000000 000000 110000 000001010
101000 000000 111100000 000000 101000 000001111
111000 000000 100100000 000000 111000 000001001
010000 000000 011000000 000000 010000 000000110
011000 000000 010100000 000000 011000 000000101
010100 000000 011110000 000000 010100 111111010
011100 000000 010010000 000000 011100 111111001
110100 000000 101110000 000000 110100 111110110
111100 000000 100010000 000000 111100 111110101
001000 000000 001100000 000000 001000 000000011
001100 000000 001010000 000000 001100 111111111
001010 000000 001111000 000000 001010 011111101
001110 000000 001001000 000000 001110 100000001
101100 000000 111010000 000000 101100 111110011
101010 000000 111111000 000000 101010 011110001
101110 000000 111001000 000000 101110 100001101
011010 000000 010111000 000000 111110 100001011
011110 000000 010001000 000000 011010 011111011
111010 000000 100111000 000000 111010 011110111
111110 000000 100001000 000000 111110 100001011
000100 000000 000110000 000000 000100 111111100
000110 000000 000101000 000000 000110 100000010
000101 000000 110110000 000000 000101 110101001
000111 000000 110101000 000000 000111 101010111
010110 000000 011101000 000000 010110 100000100
010101 000000 101110000 000000 010101 110101111
010111 000000 101101000 000000 010111 101010001
001101 000000 111010000 000000 001101 110101010
001111 000000 111001000 000000 001111 101010100
011101 000000 100010000 000000 011101 110101100
011111 000000 100001000 000000 011111 101010010
000010 000000 000011000 000000 000010 011111110
000011 000000 110011000 000000 000011 010101011
001011 000000 111111000 000000 001011 010101000
000001 000000 110000000 000000 000001 001010101

From Table 1 given above, we get all non-zero and distinct syndromes in different
sub-blocks arising out of any key error of length at most 2. Therefore, any key error
of length at most 2 can be located by the code of a null space of H. This example
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is created by modifying [2, Example 2.1] so as to make the conditions (I) and (II)
satisfied.

3. Plotkin type bound

In coding theory, Plotkin bound is a well known and important bound which deals
with the minimum weight in a group of vectors. For results on weight of vectors, one
may refer to [4, 8]. The following theorem (which is equivalent to Plotkin bound [6],
also Peterson and Weldon [5, Theorem 4.1]) is a result in that direction.

Theorem 3.1. The minimum weight of a vector having all key errors of length at
most b in the linear space of all n-tuples is at most

A

q2b+1−q
q+1 + (n− 2b)(q − 1)

(
q2b+1−q

q+1 + 1

)
+ q2b+1−q3

(q+1)2 + (q−1)(b+q)
q+1

,

where

A =

b∑
j=2

2j−2∑
l=j

l∑
i=0

(i + 2)

(
l

i

)
(q − 1)2+i +

b∑
l=1

l∑
i=0

(i + 1)

(
l

i

)
(q − 1)1+i

+ (n− 2b)

{ b∑
l=1

2l−1∑
i=0

(2 + i)

(
2l − 1

i

)
(q − 1)2+i + (q − 1)

}

+

b∑
l=2

(b− l + 1)

2l−3∑
i=0

(2 + i)

(
2l − 3

i

)
(q − 1)2+i + b(q − 1).

Proof. The total weight of key errors of length at most b, when we take the entry
error of the key errors from 1st to bth position is given by

b∑
i=0

(i+1)(q−1)i+1

(
b

i

)

+

{ b∑
i=0

(i+2)

(
b

i

)
(q−1)2+i+

b−1∑
i=0

(i+1)

(
b−1

i

)
(q−1)i+1

}

+

{ b+1∑
i=0

(i+2)

(
b+1

i

)
(q−1)2+i+

b−1∑
i=0

(i+2)

(
b−1

i

)
(q−1)2+i+

b−2∑
i=0

(i+1)

(
b−2

i

)
(q−1)1+i

}

+

{ b+2∑
i=0

(i+2)

(
b+2

i

)
(q−1)2+i+

b∑
i=0

(i+2)

(
b

i

)
(q−1)2+i+

b−2∑
i=0

(i+2)

(
b−2

i

)
(q−1)2+i

+

b−3∑
i=0

(i+1)

(
b−3

i

)
(q−1)1+i

}
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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+

{ 2b−2∑
i=0

(i+2)

(
2b−2

i

)
(q−1)2+i+

2b−4∑
i=0

(i+2)

(
2b−4

i

)
(q−1)2+i

+

2b−6∑
i=0

(
2b−6

i

)
(q−1)2+i+ . . .+

2∑
i=0

(i+2)

(
2

i

)
(q−1)2+i+

1∑
i=0

(1+i)

(
1

i

)
(q−1)1+i

}
,

which is equal to
2b−2∑
l=b

l∑
i=0

(i + 2)

(
l

i

)
(q − 1)2+i +

2b−4∑
l=b−1

l∑
i=0

(i + 2)

(
l

i

)
(q − 1)2+i + . . .

+

2∑
l=2

l∑
i=0

(i + 2)

(
l

i

)
(q − 1)2+i +

b∑
l=1

l∑
i=0

(i + 1)

(
l

i

)
(q − 1)1+i

=

b∑
j=2

2j−2∑
l=j

l∑
i=0

(i + 2)

(
l

i

)
(q − 1)2+i +

b∑
l=1

l∑
i=0

(i + 1)

(
l

i

)
(q − 1)1+i.

Taking the entry error from (b + 1)th position to (n− b)th position, we get the total
weight of key errors of at most length b as

(n− 2b)

{ 2b−1∑
i=0

(2 + i)

(
2b− 1

i

)
(q − 1)2+i +

2b−3∑
i=0

(2 + i)

(
2b− 3

i

)
(q − 1)2+i

+

2b−5∑
i=0

(2 + i)

(
2b− 5

i

)
(q − 1)2+i + · · ·+

1∑
i=0

(2 + i)

(
1

i

)
(q − 1)2+i + (q − 1)

}

= (n− 2b)

{ b∑
l=1

2l−1∑
i=0

(2 + i)

(
2l − 1

i

)
(q − 1)2+i + (q − 1)

}
.

If the entry error of key errors is in the last b positions, the total weight of key errors
of length at most b is{ 2b−3∑

i=0

(2+i)

(
2b−3

i

)
(q−1)2+i+

2b−5∑
i=0

(2+i)

(
2b−5

i

)
(q−1)2+i+ . . .

+

3∑
i=0

(2+i)

(
3

i

)
(q−1)2+i+

1∑
i=0

(2+i)

(
1

i

)
(q−1)2+i+(q−1)

}

+

{ 2b−5∑
i=0

(2+i)

(
2b−5

i

)
(q−1)2+i+

2b−7∑
i=0

(2+i)

(
2b−7

i

)
(q−1)2+i+ . . .

+

3∑
i=0

(2+i)

(
3

i

)
(q−1)2+i+

1∑
i=0

(2+i)

(
1

i

)
(q−1)2+i+(q−1)

}
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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+

{ 5∑
i=0

(2+i)

(
5

i

)
(q−1)2+i+

3∑
i=0

(2+i)

(
3

i

)
(q−1)2+i+

1∑
i=0

(2+i)

(
1

i

)
(q−1)2+i+(q−1)

}

+

{ 3∑
i=0

(2+i)

(
3

i

)
(q−1)2+i+

1∑
i=0

(2+i)

(
1

i

)
(q−1)2+i+(q−1)

}

+

{
+

1∑
i=0

(2+i)

(
1

i

)
(q−1)2+i+(q−1)

}
+(q−1),

which is equal to
b∑

l=2

(b− l + 1)

2l−3∑
i=0

(2 + i)

(
2l − 3

i

)
(q − 1)2+i + b(q − 1).

Hence, the total weight of key errors of length at most b is
b∑

j=2

2j−2∑
l=j

l∑
i=0

(i + 2)

(
l

i

)
(q − 1)2+i +

b∑
l=1

l∑
i=0

(i + 1)

(
l

i

)
(q − 1)1+i

+ (n− 2b)

{ b∑
l=1

2l−1∑
i=0

(2 + i)

(
2l − 1

i

)
(q − 1)2+i + (q − 1)

}

+

b∑
l=2

(b− l + 1)

2l−3∑
i=0

(2 + i)

(
2l − 3

i

)
(q − 1)2+i + b(q − 1) = A (say).

Further, the total number of key errors of length at most b is given by [2] and it is

q2b+1 − q

q + 1
+ (n− 2b)(q − 1)

(
q2b+1 − q

q + 1
+ 1

)
+

q2b+1 − q3

(q + 1)2
+

(q − 1)(b + q)

q + 1
.

Since the minimum weight of a vector in the linear space of all n-tuples can be at most
equal to the average weight, so an upper bound on minimum weight of key errors of
length at most b is the average weight, which is

A

q2b+1−q
q+1 + (n− 2b)(q − 1)

(
q2b+1−q

q+1 + 1

)
+ q2b+1−q3

(q+1)2 + (q−1)(b+q)
q+1

.

This completes the theorem. �

4. Comparison

Detection of errors, location of errors and correction of errors are all important in
connection to a system or situation. Accordingly, codes are constructed to deal with
these problems. The numbers of parity check digits required for the three types of
codes are different. The lesser number of parity check digits improves the rate of
information.

In this section, we make comparisons between the necessary (lower bound) and
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sufficient numbers (upper bound) of parity check digits required for SBKb/tEL codes
(Theorem 2.1 and Theorem 2.2) with the KbED codes that detect all key errors of
length at most b [1, Theorem 1 and Theorem 2], and with the KbEC codes that
correct all key errors of length at most b [2, Theorem 2.1 and Theorem 2.2].

First, we give a comparison between the necessary number of check digits needed
for a KbED code [1, Theorem 1], KbEC code [2, Theorem 2.1] and our SBKb/tEL
code (Theorem 2.1).

Table and Figure 1: Comparison of necessary number of check digits for codes
detecting, correcting & locating key errors

m t b n n− k n− k n− k
for detection in [1] for location in Theorem 2.1 for correction in [2]

2 6 2 12 2 3 7
3 6 2 18 2 3 8
4 6 2 24 2 4 8
5 6 2 30 2 4 9
6 6 2 36 2 4 9
7 6 2 42 2 4 9
8 6 2 48 2 5 9
9 6 2 54 2 5 10
10 6 2 60 2 5 10

10 20 30 40 50 60

2

4

6

8

10

n

n
−

k

Detection in [1]

Location (Theorem 2.1)

Correction in [2]

It is evident from Table and Figure 1 that the necessary number of parity check
digits needed for an SBKb/tEL code lies between the necessary number of parity
check digits needed for a KbED code and KbEC code. The necessary number of
parity check digits for KbED, SBKb/tEL and KbEC codes are in increasing order.

A similar comparison between the sufficient number of parity check digit required
for the existence of a KbED code [1, Theorem 2], KbEC code [2, Theorem 2.2] and
our SBKb/tEL code (Theorem 2.2) is given in the following Table and Figure 2. Here
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also, the sufficient number of parity check digits for KbED, SBKb/tEL and KbEC
codes are in ascending order.

Table and Figure 2: Comparison of sufficient number of check digits for codes
detecting, correcting & locating key errors

m t b n n− k n− k n− k
for detection in [1] for location in Theorem 2.1 for correction in [2]

2 6 2 12 4 9 10
3 6 2 18 4 10 11
4 6 2 24 4 10 11
5 6 2 30 4 11 12
6 6 2 36 4 11 12
7 6 2 42 4 11 13
8 6 2 48 4 12 13
9 6 2 54 4 12 13
10 6 2 60 4 12 13

10 20 30 40 50 60

4

6

8

10

12

n

n
−

k

Detection [1]

Location (Theorem 2.2)

Correction in [2]
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