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Abstract. The aim of this paper is to study the nonlinear eigenvalue problem

(P )

{
∆(|∆u|p(x)−2∆u)− λζ(x)|u|α(x)−2u = µξ(x)|u|β(x)−2u, x ∈ Ω,

u ∈W 2,p(·)(Ω) ∩W 1,p(·)
0 (Ω),

where Ω is a bounded domain in RN , with smooth boundary ∂Ω, N ≥ 1, λ, µ are real
parameters, ζ and ξ are nonnegative functions, p, α, and β are continuous functions on Ω
such that 1 < α(x) < β(x) < p(x) < N

2
.

We show that the p(·)-biharmonic operator possesses infinitely many eigengraph se-
quences and also prove that the principal eigengraph exists. Our analysis mainly relies
on variational method and we prove Ljusternik-Schnirelemann theory on C1-manifold.

1. Introduction

Nonlinear elliptic equations and variational problems involving variable exponents
growth conditions has received a lot of attention in the last decades. This is a conse-
quence of the fact that such equations can be used to model phenomena which arise
in mathematical physics, such as in the electrorheological fluids, nonlinear porous
medium, and image processing see e.g. [15, 16,19].

A typical model of an elliptic equation with p(·)-biharmonic operator is

∆(|∆u|p(x)−2∆u) = V (x)f(λ, x, u) in Ω, (1)

where V is a weight function, and f : [0,+∞]× Ω× R→ R is a suitable function.
Problems like (1) have been largely considered in the literature in the recent years.

For instance, Ayoujil and El Amrouss in [1] considered the problem (1), assuming that
the nonlinearity has the form f(λ, x, u) = λ|u|p(x)−2u, V (x) = 1 and subject to Navier
boundary conditions. In this setting, the existence of a sequence of eigenvalues by
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using the Ljusternik-Schnirelmann critical point theory is established. Successively,
in [2] the same authors considered the case f(λ, x, u) = λ|u|q(x)−2u, V (x) = 1. Also
in [13], the authors are interested in the existence of a continuous family of eigenvalues
of problem (1) with f(λ, x, u) = λ|u|q(x)−2u and V is an indefinite weight function.
The reader is referred to [5, 9–12,20,21] for some recent works on this subject.

We investigate in the present work the following two-parameters eigenvalue problem

(P )

{
∆2
p(x)u− λζ(x)|u|α(x)−2u = µξ(x)|u|β(x)−2u, x ∈ Ω,

u ∈W 2,p(·)(Ω) ∩W 1,p(·)
0 (Ω),

where

• Ω is a bounded domain in RN , with smooth boundary ∂Ω, N ≥ 1,

• λ is a positive real number,

• µ stands for a function depending on λ generating the corresponding eigen-
graphs. More precisely, we mean by eigengraphs the sets in R2 defined by{

(λ, µ(λ)) such that λ ∈ R+
}

,

• p, α and β are continuous functions on Ω,

• ζ and ξ are nonnegative functions.

∆2
p(·)u := ∆(|∆u|p(x)−2∆u) is the so-called p(·)-biharmonic operator. It is reduced

to the p-biharmonic (for a constant exponent p > 1). For variable exponent the p(·)-
biharmonic presents a more complicated nonlinearity than the p-biharmonic, we loose
homogenity of any order.

The main goal of this paper is to show that for any parameter λ ∈ R+, the prob-
lem (P ) has infinitely many eigengraph sequences (µk(λ))k≥1, by using the Ljusternik-
Schnirelmann theory on C1-manifolds [17]. We also give a direct characterization of
the principal eigengraph.

This article is divided into five sections. In Section 2 we recall some basic facts
about the variable exponent Lebesgue and Sobolev spaces. In Section 3, we present
some important basic lemmas which allow us to prove our main results. In Section 4,
we prove our first main result related to the existence of infinitely many eigengraph
sequences for problem (P ). The existence and a direct characterization of the principal
eigengraph of problem (P ) is derived in the last section.

2. Terminology and abstract framework

To study the problem (P ), we need to recall some results on the spaces Lp(·)(Ω) and
Wm,p(·)(Ω), respectively, which will be used later. For a deeper treatment, we refer
the reader to [3,14] and the references therein. Suppose that Ω is a bounded domain
of RN with a smooth boundary ∂Ω and let us denote by

C+
1 (Ω) :=

{
h
∣∣ h ∈ C(Ω) and h(x) > 1 for all x ∈ Ω

}
,
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M :=
{
u : Ω→ R and u is a measurable real-valued function

}
,

h+ := max
x∈Ω

h(x), h− := min
x∈Ω

h(x), for any h ∈ C+
1 (Ω).

For each fixed p ∈ C+
1 (Ω), we define the generalized Lebesgue space by

Lp(·)(Ω) :=
{
u ∈M

∣∣ ρp(·)(u) <∞
}
,

endowed with the so-called Luxemburg norm

|u|Lp(·)(Ω) := |u|p(·) := inf
{
α > 0

∣∣∣ ρp(·)(u
α

) ≤ 1
}
,

where ρp(·) : Lp(·)(Ω) → R is the convex modular mapping ρp(·)(u) =
∫

Ω
|u|p(x) dx.

For each m ∈ N∗, we define the variable exponent Sobolev space Wm,p(·)(Ω) ,

Wm,p(·)(Ω) :=
{
u ∈ Lp(·)(Ω)

∣∣ Dαu ∈ Lp(·)(Ω), |α| ≤ m
}
,

with the norm ‖u‖Wm,p(·)(Ω) := ‖u‖m,p(·) :=
∑
|α|≤m |Dαu|p(·).

Both Lp(·)(Ω) and Wm,p(·)(Ω) are Banach, separable and reflexive spaces. We

denote by W
m,p(·)
0 (Ω) the closure of C∞0 (Ω) in Wm,p(·)(Ω).

Denote by Lq(·)(Ω) the dual space of Lp(·)(Ω) where q is the conjugate function of

p, i.e., q(x) = p(x)
p(x)−1 for all x ∈ Ω.

For u ∈ Lp(·)(Ω) and v ∈ Lq(·)(Ω), we have the following Hölder-type inequality,∣∣∣ ∫
Ω

uv dx
∣∣∣ ≤ ( 1

p−
+

1

q−

)
|u|p(·)|v|q(·) ≤ 2|u|p(·)|v|q(·). (2)

Moreover, if p1, p2 and p3 ∈ C+
1 (Ω) are Lipschitz continuous functions such that

1
p1

+ 1
p2

+ 1
p3

= 1, and for any functions u ∈ Lp1(·)(Ω), v ∈ Lp2(·)(Ω) and w ∈ Lp3(·)(Ω),
the generalized Hölder-type inequality is given by∣∣∣ ∫

Ω

uvw dx
∣∣∣ ≤ ( 1

p−1
+

1

p−2
+

1

p−3

)
|u|p1(·)|v|p2(·)|w|p3(·) ≤ 3|u|p1(·)|v|p2(·)|w|p3(·), (3)

see [7, Proposition 2.5].

Proposition 2.1 ([8, Theorem 1.3]). Let un, u ∈ Lp(·). The following relations hold

1. |u|p(·) = a⇔ ρp(·)(
u
a ) = 1 for u 6= 0 and a > 0.

2. |u|p(·) < (respectively =;> 1)⇔ ρp(·)(u) < (respectively =;> 1).

3. |un| → 0(resp→ +∞)⇔ ρp(·)(un)→ 0, (resp→ +∞).

4. the following statements are equivalent to one another:

(i) limn→+∞|un − u|p(·) = 0,

(ii) limn→+∞ρp(·)(un − u) = 0,

(iii) un → u in measure in Ω and limn→+∞ρp(·)(un) = ρp(·)(u).

We recall also the following proposition, which will be needed later.

Proposition 2.2 ([4]). Let p and q be measurable functions such that p ∈ L∞(Ω)
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and 1 < p(x)q(x) <∞, for a.e. x ∈ Ω. Let u ∈ Lq(·)(Ω), u 6= 0. Then

|u|p(·)q(·) ≤ 1⇒ |u|p
+

p(·)q(·) ≤

∣∣∣∣∣|u|p(·)
∣∣∣∣∣
q(·)

≤ |u|p
−

p(·)q(·),

|u|p(·)q(·) ≥ 1⇒ |u|p
−

p(·)q(·) ≤

∣∣∣∣∣|u|p(·)
∣∣∣∣∣
q(·)

≤ |u|p
+

p(·)q(·).

Note that the weak solutions of (P ) are considered in the generalized Sobolev

space X := W 2,p(·)(Ω) ∩W 1,p(·)
0 (Ω).

Generally, we know that if (E, ‖·‖E) and (F, ‖·‖F ) are Banach spaces, we define the
norm on the space X := E∩F as ‖u‖X = ‖u‖E+‖u‖F . In our case, we have, for any
u ∈ X, ‖u‖X = ‖u‖1,p(·) + ‖u‖2,p(·), thus ‖u‖X = |u|p(·) + |∇u|p(·) +

∑
|α|=2 |Dαu|p(·).

In [18], the equivalence of the norms was proved, and it was even proved that the
norm |∆(·)|p(·) is equivalent to the norm ‖ · ‖X (see [18, Theorem 4.4]).

To deal with the problem under consideration, we choose on X the norm defined
by ‖u‖ := |∆u|p(·). Note that, (X, ‖·‖) is also a separable and reflexive Banach space.

Proposition 2.3. For all u ∈ X, denote Λp(·)(u) :=
∫

Ω
|∆u(x)|p(x) dx. Then:

1. For u ∈ X, we have

(i) ‖u‖ < 1 (= 1, > 1) ⇔ Λp(·)(u) < 1 (= 1 > 1);

(ii) ‖u‖ ≥ 1⇒ ‖u‖p− ≤ Λp(·)(u) ≤ ‖u‖p+ ;

(iii) ‖u‖ ≤ 1⇒ ‖u‖p+ ≤ Λp(·)(u) ≤ ‖u‖p− .

2. If u, un ∈ X,n = 1, 2, . . . , then the following statements are equivalent:

(i) limn→∞ ‖un − u‖ = 0;

(ii) limn→∞ Λp(·)(un − u) = 0;

(iii) un → u in measure in Ω and limn→∞ Λp(·)(un) = Λp(·)(u).

Definition 2.4. For p ∈ C+
1 (Ω), let us define the so-called critical Sobolev exponent

of p by

p∗2(x) =

{
Np(x)
N−2p(x) , if p(x) < N

2 ,

+∞, if p(x) ≥ N
2 ,

for every x ∈ Ω.

Theorem 2.5 ([1, Theorem 3.2]). Let p, q ∈ C+
1 (Ω). Assume that p(x) < N

2 and

q(x) < p∗2(x). Then there is a continuous and compact embedding of X into Lq(·)(Ω).

The last mathematical tool needed in this paper is given in [6], in which the
authors deal with the so defined property (S+).

Lemma 2.6. The following hold true:
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(i) ∆2
p(·) : X → X∗ is a strictly monotone operator, that is,〈

∆2
p(·)u−∆2

p(·)v, u− v
〉
> 0, for all u 6= v ∈ X.

(ii) ∆2
p(·) : X → X∗ is a continuous, bounded homeomorphism.

(iii) ∆2
p(·) : X → X∗ is a mapping of type (S+), that is, if un ⇀ u in X and

lim supn→∞〈∆2
p(·)un, un − u〉 ≤ 0, then un → u in X.

Notation 2.7. We introduce some notations that will clarify what follows:

• For simplicity we write un ⇀ u and un → u to denote the weak convergence
and strong convergence of a sequence un in X, respectively.

• When we refer to a Banach space X, we denote by X∗ its dual and by 〈·, ·〉 the
duality pairing between X∗ and X.

• By meas (·) we denote the Lebesgue measure of a set.

3. Hypotheses and basic lemmas

In this section, we investigate some basic lemmas. First, we will work under the
following hypotheses on the problem (P ),

(H1) 1 < α− ≤ α+ < β− ≤ β+ < p− ≤ p+ < N
2 .

(H2) ζ and ξ are two weight functions satisfying

ζ ∈ C(Ω) with ζ− := min
x∈Ω

ζ(x) > 0,

and ξ ∈ Lr(·)(Ω), r(x) >
N

2
and ξ(x) > 0 a.e. in Ω. (4)

Remark 3.1. We will denote by r′ the conjugate exponent of the function r, and put

s(x) =
r(x)β(x)

r(x)− β(x)
.

Thus, by hypotheses (H1) and (H2)–(4) on the functions p, α, β and r, a straightfor-
ward computation gives α(x) < p∗2(x), s(x) < p∗2(x), and p− < p∗2(x), for x ∈ Ω.
Then, from Theorem 2.5, the embeddings

X ↪→ Lα(·)(Ω), X ↪→ Ls(·)(Ω), and X ↪→ Lp
−

(Ω), (5)

are compact and continuous. Therefore, there exists a positive constant C such that
|u|α(·) ≤ C‖u‖, |u|s(·) ≤ C‖u‖, |u|p− ≤ C‖u‖, for u ∈ X. Without any loss of
generality, we can suppose that C > 1.

Definition 3.2. We recall that, for a fixed real λ, µ = µ(λ) is an eigenvalue of (P )
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if and only if there exists u ∈ X \ {0}, such that∫
Ω

|∆u(x)|p(x)−2∆u(x)∆v(x)dx

=

∫
Ω

(
λζ(x)|u(x)|α(x)−2u(x) + µξ(x)|u(x)|β(x)−2u(x)

)
v(x) dx .

for all v ∈ X. u is then called an eigenfunction associated to µ.

In the rest of this section, we will prove some lemmas which allow us to prove
our main results. To this end, consider the energy functional corresponding to prob-
lem (P ) defined on X as H(u) := Φ(u)− λΨ(u)− µJ(u), where

Φ(u) =

∫
Ω

|∆u(x)|p(x)

p(x)
dx, Ψ(u) =

∫
Ω

ζ(x)

α(x)
|u(x)|α(x)dx, J(u) =

∫
Ω

ξ(x)

β(x)
|u(x)|β(x)dx,

and set V :=
{
u ∈ X

∣∣ J(u) = 1
}

.

Lemma 3.3. The following hold true:
(a) Φ, Ψ and J are even, and of class C1 on X.

(b) V is a closed C1-manifold.

Proof. (a) It is clear that Φ, Ψ and J are even. Standard arguments imply that
Φ,Ψ, J ∈ C1(X,R) and their derivative functions are given by〈

dΦ(u), v
〉

=

∫
Ω

|∆u(x)|p(x)−2∆u(x)∆v(x) dx,〈
dΨ(u), v

〉
=

∫
Ω

ζ(x)|u(x)|α(x)−2u(x)v(x) dx,〈
dJ(u), v

〉
=

∫
Ω

ξ(x)|u(x)|β(x)−2u(x)v(x) dx,

for all u, v ∈ X.
(b) V = J−1{1}. Thus V is closed. For all x ∈ Ω, we have β− ≤ β(x) ≤ β+, and

then for all u ∈ V 〈
dJ(u), u

〉
=

∫
Ω

ξ(x)|u(x)|β(x) dx ≥ β− > 0.

The derivative operator dJ satisfies dJ(u) 6= 0 ∀u ∈ V, i.e., dJ(u) is onto for all u ∈ V.
Hence J is a submersion, which proves that J−1{1} is a C1-manifold of X. �

Lemma 3.4. dΨ is completely continuous, namely, un ⇀ u in X implies dΨ(un) →
dΨ(u) in X∗.

Proof. Let un ⇀ u in X. For any v ∈ X, by Hölder-type inequality (2) and continuous
embedding of X into Lα(·)(Ω), it follows that∣∣〈dΨ(un)− dΨ(u), v

〉∣∣ =

∣∣∣∣ ∫
Ω

ζ(x)
(
|un|α(x)−2un − |u|α(x)−2u

)
v dx

∣∣∣∣
≤ 2ζ+

∣∣|un|α(x)−2un − |u|α(x)−2u
∣∣
α(·)
α(·)−1

∣∣v∣∣
α(·)
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≤ 2Cζ+
∣∣|un|α(x)−2un − |u|α(x)−2u

∣∣
α(·)
α(·)−1

‖v‖.

On the other hand, using the compact embedding of X into Lα(·)(Ω), we have un → u

in Lα(·)(Ω). Due to the fact that the map Lα(·)(Ω) 3 u 7→ |u|α(x)−2u ∈ L
α(·)
α(·)−1 (Ω),

is continuous, we get |un|α(x)−2un → |u|α(x)−2u in L
α(·)
α(·)−1 (Ω). That is, dΨ(un) →

dΨ(u) in L
α(·)
α(·)−1 (Ω). Recall that the embedding L

α(·)
α(·)−1 (Ω) ↪→ X∗, is compact. Thus

dΨ(un)→ dΨ(u) in X∗. �

Lemma 3.5. dJ is completely continuous.

Proof. Let un ⇀ u in X. For any v ∈ x, by Hölder-type inequality (3) and continuous
embedding of X into Ls(·)(Ω), it follows that∣∣〈dJ(un)− dJ(u), v

〉∣∣ =

∣∣∣∣ ∫
Ω

ξ(x)
(
|un|β(x)−2un − |u|β(x)−2u

)
v dx

∣∣∣∣
≤ 3
∣∣ξ(x)

∣∣
r(·)

∣∣|un|β(x)−2un − |u|β(x)−2u
∣∣
β(·)
β(·)−1

|v|s(·)

≤ 3C
∣∣ξ(x)

∣∣
r(·)

∣∣|un|β(x)−2un − |u|β(x)−2u
∣∣
β(·)
β(·)−1

‖v‖.

On the other hand, using the compact embedding of X into Lβ(·)(Ω), we have un → u

in Lβ(·)(Ω). Due to the fact that the map Lβ(·)(Ω) 3 u 7→ |u|β(x)−2u ∈ L
β(·)
β(·)−1 (Ω),

is continuous, we get |un|β(x)−2un → |u|β(x)−2u in L
β(·)
β(·)−1 (Ω). Therefore, the above

inequality ends the proof. �

Lemma 3.6. There exists a constant λ1 > 0 such that

λ1 = inf
u∈X,‖u‖>1

∫
Ω
|∆u|p(x)
p(x) dx∫

Ω
|u|p− dx

. (6)

Proof. By (5), there exists a positive constant C such that |u|p− ≤ C‖u‖ for all u ∈ X.

On the other hand, we have
∫

Ω
|∆u|p(x) dx ≥ ‖u‖p− for all u ∈ X with ‖u‖ > 1.

From the above two inequalities, we obtain that∫
Ω

|∆u|p(x)

p(x)
dx ≥ 1

Cp−p+

∫
Ω

|u|p
−
dx.

Thus, there exists λ1 > 0 satisfying (6). �

Next, we write Φλ(·) = Φ(·)− λΨ(·).

Lemma 3.7. For any λ ∈ R+, Φλ is bounded from below.

Proof. Since α+ < p− we have lim|u|→+∞
ζ+

α−
|u|α(x)

|u|p−
= 0 uniformly on Ω. Then, for

any λ > 0, there exists a positive constant K such that

λζ+

α−
|u|α(x) ≤ λ1

2
|u|p

−
+K, ∀x ∈ Ω. (7)
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where λ1 is defined by (6).
For any u ∈ X with ‖u‖ > 1, from (6), and (7), we have

Φλ(u) ≥
∫

Ω

1

p(x)
|∆u|p(x) − λζ+

α+

∫
Ω

|u|α(x)dx

≥
∫

Ω

1

p(x)
|∆u|p(x) − λ1

2

∫
Ω

|u|p
−
dx−Kmeas(Ω).

This implies that Φλ(u) ≥ 1

2

∫
Ω

1

p(x)
|∆u|p(x) −Kmeas(Ω). (8)

Thus Φλ(u) ≥ 1

2p+
‖u‖p

−
−Kmeas(Ω).

As p− > 1, Φλ is bounded from below and coercive since Φλ(u)→∞ as ‖u‖ → ∞. �

4. Existence of infinitely many eigengraph sequences

In this section, we show that the problem (P ) has infinitely many eigengraph se-
quences, by using the results of Ljusternik-Schnirelmann [17]. Let

Γj =
{
H ⊂ V

∣∣ H is compact, H = −H and γ(H) ≥ j
}
,

where γ(H) = j is the Krasnoselskii genus of the set H, i.e.,

γ(H) = inf
{
j
∣∣ there exists an odd continuous map from H to Rj \ {0}

}
.

Let us now state the main result in this section.

Theorem 4.1. For any integer j ∈ N∗ and for any λ ∈ R+,
µj(λ) := infH∈Γj maxu∈H Φλ(u) is a critical value of Φλ restricted on V. More pre-
cisely, there exists uj ∈ H such that µj(λ) = Φλ(uj) = supu∈H Φλ(u), and uj is an
eigenfunctin associated to the positive eigenvalue (λ, µj(λ)). Moreover, µj(λ) → ∞,
as j →∞.

To obtain the proof of Theorem 4.1, we must show the functional Φλ satisfies the
Palais-Smale condition [in short the (PS) condition] on V, in the first place.

Proposition 4.2. The functional Φλ satisfies the (PS) condition on V for every
λ > 0. Namely, we will prove that if a sequence {un}n≥1 ⊂ V satisfies

|Φλ(un)| ≤ d for some d > 0 and all n ≥ 1 , (9)

dΦλ(un)→ 0 in X∗, as n→∞. (10)

then {un}n≥1 has a convergent subsequence in X.

Proof. Let {un}n≥1 be a sequence of Palais-Smale of Φλ in X. Since∫
Ω

1

p(x)
|∆un|p(x) dx ≥ 1

p+

∫
Ω

|∆un|p(x) dx =
1

p+
Λp(·)(un),

this fact, combined with (8) and (9), implies that

d2 ≤ Λp(·)(un) ≤ 2p+
(
d+Kmeas(Ω)

)
≤ d1, d, d1, d2 > 0.
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That is Λp(·)(un) is bounded in R.
Thus, without loss of generality, we can assume that un converges weakly in X to

some function u ∈ X and Λp(·)(un)→ `.
If ` = 0, then un converges strongly to 0 in X. Otherwise, then we argue as

follows.
From (10), dΦλ(un)→ 0. i.e.,

αn = dΦλ(un)− βndJ(un)→ 0 as n→ +∞, (11)

where βn =

〈
dΦλ(un), un

〉〈
dJ(un), un

〉 .
The idea is to prove that lim supn→∞〈∆2

p(·)un, un − u〉 ≤ 0. Indeed, notice that〈
∆2
p(·)un, un − u

〉
= Λp(·)(un)−

〈
∆2
p(·)un, u

〉
.

Applying αn of (11) to u, we deduce that

lim
n→∞

θn =
〈
∆2
p(·)un, u

〉
− λ
〈
dΨ(un), u

〉
− βn

〈
dJ(un), u

〉
= 0.

Therefore,
〈
∆2
p(·)un, un−u

〉
=Λp(·)(un)−λ

〈
dΨ(un), u

〉
−θn−

〈
dΦλ(un), un

〉〈
dJ(un), un

〉 〈dJ(un), u
〉
.

That is,
〈
∆2
p(·)un, un−u

〉
=

Λp(·)(un)〈
dJ(un), un

〉(〈dJ(un), un
〉
−
〈
dJ(un), u

〉)
−θn−λ

〈
dΨ(un), u

〉
+λ

〈
dΨ(un), un

〉〈
dJ(un), un

〉 〈dJ(un), u
〉
.

On the other hand, from Lemma 3.4, dΨ is completely continuous. Thus
dΨ(un) → dΨ(u),

〈
dΨ(un), un

〉
→
〈
dΨ(u), u

〉
and

〈
dΨ(un), u

〉
→
〈
dΨ(u), u

〉
. From

Lemma 3.5, dJ is also completely continuous. So dJ(un) → dJ(u),
〈
dJ(un), un

〉
→〈

dJ(u), u
〉

and
〈
dJ(un), u

〉
→
〈
dJ(u), u

〉
.

Then
∣∣〈dJ(un), un

〉
−
〈
dJ(un), u

〉∣∣ ≤∣∣〈dJ(un), un
〉
−
〈
dJ(u), u

〉∣∣
+
∣∣〈dJ(un), u

〉
−
〈
dJ(u), u

〉∣∣,
and

∣∣〈dJ(un), un
〉
−
〈
dJ(un), u

〉∣∣ ≤∣∣〈dJ(un), un
〉
−
〈
dJ(u), u

〉∣∣
+
∥∥dJ(un)−dJ(u)

∥∥
∗

∥∥u∥∥,
where ‖ · ‖∗ is the dual norm associated to the norm ‖ · ‖. This implies that〈
dJ(un), un

〉
−
〈
dJ(un), u

〉
→ 0 as n → ∞. Combining with the above equalities,

we obtain

lim sup
n→+∞

〈
∆2
p(·)un, un − u

〉
≤ `〈

dJ(u), u
〉 lim sup

n→∞

[〈
dJ(un), un

〉
−
〈
dJ(un), u

〉]
.

We deduce lim supn→∞
〈
∆2
p(·)un, un−u

〉
≤ 0. In view of Lemma 2.6, un → u strongly

in X. �

We are now in a position to prove Theorem 4.1.



M. Laghzal, A. Touzani 97

Proof (of Theorem 4.1). We prove the theorem in two steps.
Step 1. We will show for any j ∈ N∗, Γj 6= ∅.

Indeed, let j ∈ N∗ be given and let x1 ∈ Ω and r1 > 0 be small enough such

that B(x1, r1) ⊂ Ω and meas(B(x1, r1)) < meas(Ω)
2 . First, we take θ1 ∈ C∞0 (Ω) with

supp(θ1) = B(x1, r1). Put B1 := Ω\B(x1, r1), then meas(B1) > meas(Ω)
2 . Let x2 ∈ B1

and r2 > 0 such that B(x2, r2) ⊂ B1 and meas(B(x2, r2)) < meas(B1)
2 . Next, we take

θ2 ∈ C∞0 (Ω) with supp(θ2) = B(x2, r2). Continuing the process described above we
can construct by recurrence a sequence of functions θ1, θ2, . . . , θj ∈ C∞0 (Ω) such that{

supp(θi) ∩ supp(θj) = ∅ if i 6= j,

meas(supp(θi)) > 0 for i ∈ {1, 2, . . . , j}.

Let Xj = span{θ1, θ2, · · · , θj} be the vector subspace of X generated by j vectors

{θ1, θ2, . . . , θj}. Then, it is clear that dim Xj = j and
∫

Ω
ξ(x)
β(x) |u(x)|β(x)dx > 0 for all

u ∈ Xj \ {0}.
Note that Xj ⊂ Lβ(·)(Ω) because Xj ⊂ X ⊂ Lβ(·)(Ω). Thus the norms ‖ · ‖ and

|.|β(·) are equivalent on Xj because Xj is a finite dimensional space. Consequently

the map u 7→ |u|β(·) := inf
{
α > 0

∣∣ ∫
Ω

∣∣∣u(x)
α

∣∣∣β(x)

dx ≤ 1
}

, defines a norm on Xj .

Putting S1 :=
{
u ∈ Xj

∣∣|u|β(·) = 1
}

the unit sphere of Xj .

Let us introduce the functional g : R+ ×Xj −→ R, (s, u) 7→ J(su). On one hand,
it is clear that g(0, u) = 0 and g(s, u) is non-decreasing with respect to s. Moreover,

for s > 1 we have g(s, u) ≥ sβ
−
J(u), so that lims→+∞ g(s, u) = +∞. Therefore, for

every u ∈ S1 fixed, there is a unique value s = s(u) > 0 such that g(s(u), u) = 1.

On the other hand, since

∂g

∂s
(s(u), u) =

∫
Ω

(s(u))β(x)−1ξ(x)|u|β(x) dx ≥ β−

s(u)
g(s(u), u) =

β−

s(u)
> 0,

the implicit function theorem implies that the map u 7→ s(u) is continuous and even
by uniqueness. Now, take the compact Hj := V ∩Xj . Since the map h : S1 −→ Hj

defined by h(u) = s(u) · u is continuous and odd, it follows by the property of genus
that γ(Hj) = j. Therefore Hj ∈ Γj .

Step 2. We claim that µj(λ)→∞ as j →∞.

Let (en, e
∗
k)n,k be a bi-orthogonal system such that en ∈ X and e∗k ∈ X∗, the

(en)n are linearly dense in X and the (e∗k)k are total for the dual X∗. For j ∈ N∗, set
Xj = span{e1, . . . , ej} and X⊥j = span{ej+1, ej+2, . . . }. By a property of genus, we

have for any H ∈ Γj , it is H ∩X⊥j−1 6= ∅.
We claim that tj = infH∈Γj supu∈H∩X⊥j−1

Φλ(u)→∞ as j →∞.

Indeed, if not, for large j there exists uj ∈ X⊥j−1 with
∫

Ω
ξ(x)
β(x) |uj(x)|β(x)dx = 1

such that tj ≤ Φλ(uj) ≤ M , for some M > 0 independent of j. Thus in view of (8),

we get ‖uj‖ ≤
(
2p+(M +K meas(Ω)

)) 1

p− . This implies that (uj)j is bounded in X.
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For a subsequence of {uj} if necessary, we can assume that {uj}j≥1 converges weakly
in X and strongly in Lp(·)(Ω).

By our choice of X⊥j−1, we have uj ⇀ 0 in X because 〈e∗k, en〉 = 0, for any n > k.

This contradicts the fact that
∫

Ω
ξ(x)
β(x) |uj(x)|β(x)dx = 1 for all j.

Indeed, from Lemma 3.5, dJ is completely continuous, so 〈dJ(uj), uj〉 → 0. On

the other hand, since
∫

Ω
ξ(x)
β(x) |uj(x)|β(x)dx = 1, and

〈dJ(uj), uj〉 =

∫
Ω

ξ(x)|uj(x)|β(x)dx ≥ β−
∫

Ω

ξ(x)

β(x)
|uj(x)|β(x)dx ≥ β− ≥ 1,

and since 〈dJ(uj), uj〉 ≥ 1, for all j, 〈dJ(uj), uj〉 → l ≥ 1. Therefore, l 6= 0. Since
µj(λ) ≥ tj , we get µj(λ)→∞ as j →∞, the claim is proved.

5. Existence of the principal eigengraph

Our purpose in this section is to derive an existence result concerning principal eigen-
graph µ1(λ), and we give a variational formulation of µ1(λ) involving a mini-max
argument over sets of genus greater than k.

Definition 5.1. We denote by µ1(λ) the first principal eigenvalue of (P ) and letting
the parameter λ to vary, one gets the graph of the function λ→ µ1(λ) from R+ into
R which is called, in the literature, the principal eigengraph of (P ) and sets as

µ1(λ) := inf

{∫
Ω

|∆u|p(x)

p(x)
dx− λ

∫
Ω

ζ(x)

α(x)

∣∣u∣∣α(x)
dx
∣∣ ∫

Ω

ξ(x)

β(x)
|u|β(x) dx = 1

}
. (12)

Remark 5.2. Clearly, µ1(λ) defined by (12) can be equivalently written as

µ1(λ) := inf
H∈Γj

max
u∈H

∫
Ω
|∆u|p(x)
p(x) dx− λ

∫
Ω
ζ(x)
α(x) |u|

α(x) dx∫
Ω
ξ(x)
β(x) |u|β(x) dx

,

or equivalently to,
1

µ1(λ)
:= sup

H∈Γj

min
u∈H

∫
Ω
ξ(x)
β(x) |u|

β(x) dx∫
Ω
|∆u|p(x)
p(x) dx− λ

∫
Ω
ζ(x)
α(x) |u|α(x) dx

.

In the following corollary we give some properties of the principal eigengraph µ1.

Corollary 5.3. The following properties hold true:

a) µ1(λ) = inf
{∫

Ω
1

p(x) |∆u|
p(x) dx− λ

∫
Ω
ζ(x)
α(x) |u|

α(x) dx
∣∣ ∫

Ω
ξ(x)
β(x) |u|

β(x) dx = 1
}
.

b) µ1(λ) ≤ µ2(λ) ≤ · · · ≤ µn(λ)→ +∞.

Proof. a) For u ∈ V, set H1 = {u,−u}. It is clear that γ(H1) = 1, Φλ is even and

Φλ(u) = max
H1

Φλ ≥ inf
H∈Γ1

max
u∈H

Φλ(u).

Thus inf
u∈V

Φλ(u) ≥ inf
H∈Γ1

max
u∈H

Φλ(u) = µ1(λ).
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On the other hand, for all H ∈ Γ1 and u ∈ H, we have maxu∈H Φλ ≥ Φλ(u) ≥
infu∈V Φλ(u). It follows that infH∈Γ1

maxH Φλ = µ1(λ) ≥ infu∈V Φλ(u). Then

µ1(λ) = inf

{∫
Ω

1

p(x)
|∆u|p(x) dx− λ

∫
Ω

ζ(x)

α(x)
|u|α(x) dx

∣∣ ∫
Ω

ξ(x)

β(x)
|u|β(x) dx = 1

}
.

b) For all i ≥ j, we have Γi ⊂ Γj and in view of the definition of µi(λ), i ∈ N∗, we
get µi(λ) ≥ µj(λ). As regards µn(λ)→∞, it has been proved in Theorem 4.1. �
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