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Abstract. Let R be a commutative Noetherian ring and let I be a semidualizing ideal
of R. In this paper, it is shown that the Gj-projective, Gr-injective, and Gr-flat dimensions
agree with Gpd rear(—), Gid gear(—), and Gfd gsar(—), respectively. Also, it is proved that
for a non-negative integer n if sup{GP;—pdx(M) | M € M(R)} < n (or sup{GZ;—idr(M) |
M € M(R)} < n), then for every projective (R < I)-module P we have idgwr(P) < n, and
for every injective (R <t I)-module E we have pd g (E) < n.

1. Introduction

Throughout this paper R is a commutative Noetherian ring and all modules are
unital. Recall that for an R-module M the idealization R x M (also called trivial
extension) introduced by Nagata in 1956 [13, Page 2], is a new ring where the module
M can be viewed as an ideal such that its square is 0. In [4], D’Anna and Fontana
considered a different type of construction obtained involving a ring R and an ideal
I C R that is denoted by R > I, called amalgamated duplication, and it is defined
RxI={(r,r+1i)|r € R,i €I}, as a subring of R x R. The properties of the ring
R I were studied extensively in [1,3-5,14,17]. Also, in [15], the authors focused on
the properties of R <1 I, when [ is a semidualizing ideal of R, i.e., I is an ideal of R
and I is a semidualizing R-module. The notion of a “semidualizing module” was first
introduced by Foxby [8], and then Vasconcelos [18] and Golod [9] rediscovered these
modules using different terminology for different purposes.

In [11], the authors showed that how a semidualizing module C gives rise to three
new relative homological dimensions which are called Go-projective, G¢-injective,
and Go-flat dimension. Also, they investigated the properties of these dimensions
and they suggested the view point that one should change ring from R to R x C' and
they showed that the G¢-projective, Go-injective, and G¢-flat dimensions always
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agree with the ring changed Gorenstein dimensions Gpd gpxc(—), Gid gxe(—), and
Gfd rxco(—), respectively.

This paper builds on work of Holm and Jorgensen [11] for the ring R <t I, where
I is a semidualizing ideal, instead of idealization. In particular, it is shown that for
a semidualizing ideal I the Gj-projective, Gr-injective, and G-flat dimensions agree
with Gpd gear(—), Gid gsar(—), and Gfd geqr(—), respectively. Also, we give some
homological properties of (R <t I)-modules, where [ is a semidualizing ideal of the ring
R. In particular, it is proved that for a non-negative integer n if sup{GP; —pdx(M) |
M e M(R)} <n(orsup{GZ;—idr(M) | M € M(R)} < n), then for every projective
(R I)-module P we have idpeqr(P) < n, and for every injective (R > I)-module E
we have pd g (F) < n.

2. Background material

Throughout this paper M(R) denotes the category of R-modules. We use the term
“subcategory” to mean a “full, additive subcategory X C M(R) such that, for all
R-modules M and N, if M = N and M € X, then N € X”. Write P(R), F(R) and
Z(R) for the subcategories of projective, flat and injective R-modules, respectively.
. 87‘1,/+1 ay ay_,

DEFINITION 2.1. An R-complex is a sequence ¥ = --- — Y, Y, 1 — - of
R-modules and R-homomorphisms such that 9} ;0 = 0 for each integer n. Let X
be a subcategory of M(R). The R-complex Y is Hompg (X, —)-exact if for each X in
X, the complex Hompg(X,Y) is exact, and similarly for Homg(—, X)-exact.

The notion of semidualizing modules, defined next, goes back at least to Foxby [§],
but was rediscovered by others.

DEFINITION 2.2. A finitely generated R-module C' is called semidualizing if the
natural homothety homomorphism x& : R — Hompg(C,C) is an isomorphism and
ExtZ'(C,C) = 0.

DEFINITION 2.3. Let C be a semidualizing R-module. An R-module is C-projective
(resp. C-flat or C-injective) if it is isomorphic to a module of the form P& rC for some
projective R-module P (resp. F ®p C for some flat R-module F' or Hompg(C,I) for
some injective R-module I). We let Pc(R), Fo(R) and Zo(R) denote the categories
of C-projective, C-flat and C-injective R-modules, respectively.

The next two classes were also introduced by Foxby [8].

DEFINITION 2.4. Let C be a semidualizing R-module. The Auslander class with
respect to C' is the class Ac(R) of R-modules M such that:
(i) Torf(C, M) =0 = Ext%(C,C ®r M) for all i > 1, and

(ii) the natural map v : M — Hompg(C,C) ®g M is an isomorphism.
The Bass class with respect to C' is the class Bo(R) of R-modules M such that:
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(i) Bxth(C,M)=0= Toer(C7 Homp(C, M)) for all ¢ > 1, and
(ii) the natural evaluation map ¢§; : C @ g Homg(C, M) — M is an isomorphism.
The notion of precovers and preenvelopes, defined next, are from [6].

DEFINITION 2.5. Let X be a subcategory of M(R). An X-precover of an R-module
M is an R-module homomorphism X HM , where X € X, and such that the map
Homp (X', ) is surjective for every X’ € X. If every R-module admits X-precover,

then the class X is precovering. The notions of X -preenvelope and preenveloping are
defined dually.

DEFINITION 2.6. Let C' be a semidualizing R-module. In [12], it is shown that the
class Po(R) is precovering. So, one can iteratively take precovers to construct an
augmented proper Pc-projective resolution for any R-module M, that is, a complex
Xt=... = C®rP — C®r Py — M — 0 which is HOHlR(Pc(R),—)—
exact. The truncated complex X =--- — C®r P, — C ®r Py — 0 is a proper
Pc-projective resolution of M.

Dually, in [12] it is proved that the class Z¢(R) is enveloping. So, for an R-
module N one can construct an augmented proper Lc-injective resolution, that is,
a complex Y+ = 0 — N — Homg(C,I°) — Homg(C,I') — .- which is
Homp(—,Zc(R))-exact. Also, in [12] it is shown that the class Fo(R) is covering.
Similarly for an R-module M one can construct an augmented proper Fc-flat resolu-
tion.

FACT 2.7. Note that X+ and Y* need not be exact. In [16, Corollary 2.4], it is proved
that if M is in Bo(R) (resp. Ac(R)), then every augmented proper Pc-projective
resolution (resp. Lc-injective resolution) of M is exact.

DEFINITION 2.8. Let C' be a semidualizing R-module and let M be an R-module. The
Pc-projective dimension of M is Pc —pdg (M) = inf{sup{n | X,, # 0} | X is a proper
Pc-projective resolution of M }. The Fg-projective dimension, denoted Fo — pdg(—)
is defined similarly and the Zg-injective dimension, denoted Ze — idg(—) is defined
dually.

FacT 2.9 ([16, Theorem 2.11]). Let C be a semidualizing R-module. Then for every
R-module M, we have the following statements.
(i) pdp(M) = Pc-pdg(C @r M) and Po-pdg(M) = pdg(Homg(C, M)).

(Z’L) Ic-idR(M) = ldR(C QR M) and ldR(M) = Ic-idR(HOHlR(C, M))
DEFINITION 2.10 ([11]). Let C be a semidualizing R-module. A complete ZcZ-

resolution is a complex Y of R-modules satisfying the following:
(i) Y is exact and Homp(1,Y) is exact for each I € Zo(R), and

(il) Y; € Zo(R) for all 4 > 0 and Y; is injective for all ¢ < 0.
An R-module M is Gg-injective if there exists a complete ZoZ-resolution Y such
that M = Coker(dy); in this case Y is a complete ZcZ-resolution of M. The class
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of all Ge-injective R-modules is denoted by GZ¢(R). In the case C' = R, we use the
more common terminology “complete injective resolution” and “Gorenstein injective
module” and the notation GZ(R).

A complete PP¢c-resolution is a complex X of R-modules such that:
(i) X is exact and Homp(X, P) is exact for each P € Pe(R), and

(ii) X; is projective for all ¢ > 0 and X; € P¢(R) for all i < 0.

An R-module M is G¢-projective if there exists a complete PPc-resolution X
such that M = Coker(9;¥); in this case X is a complete PPc-resolution of M. The
class of all Go-projective R-modules is denoted by GP¢(R). In the case C = R, we
use the more common terminology “complete projective resolution” and “Gorenstein
projective module” and the notation GP(R).

A complete FFc-resolution is a complex Z of R-modules such that:

(i) Z is exact and Z ®p I is exact for each I € Zo(R), and

(i) Z; is flat for all ¢ > 0 and Z; € Fo(R) for all ¢ < 0.

An R-module M is Go-flat if there exists a complete F Fo-resolution Z such that
M = Coker(07); in this case Z is a complete FFc-resolution of M. The class of
all Geo-flat R-modules is denoted by GF¢(R). In the case C = R, we use the more
common terminology “complete flat resolution” and “Gorenstein flat module” and
the notation GF(R).

Fact 2.11 ([11]). Let C be a semidualizing module of the ring R. Then the following
statements hold:

(i) P(R) € GPc(R) and Po(R) C GPo(R).
(it) Z(R) € GZc(R) and Ic(R) € GZc(R).
(iii) F(R) C GFc(R) and Fo(R) C GFo(R).

DEFINITION 2.12. Let C be a semidualizing module of the ring R and let M be an
R-module. A GP-resolution of M is a complex of R-modules in GP ¢ (R) of the form

X X
X =% x, P Xy~ 0 such that Ho(X) = M and H,(X) = 0 for n > 1. The
GPc-projective dimension of M is the quantity GP¢c — pdp(M) = inf{sup{n | X,, #
0} | X is an GP-resolution of M}.

In particular, GPc — pdz(0) = —oo. The modules of GP-projective dimension
zero are the non-zero modules in GP¢(R). The GF o-resolution and GF o-projective
dimension are defined similarly.

Dually, an GZ¢-coresolution of M is a complex of R-modules in GZ¢(R) of the

X X
form X = 0 — Xo 2% X, 233 ... such that Ho(X) & M and H,(X) = 0
for n < —1. The GZ-injective dimension of M is the quantity GZo — idgr(M) =
inf{sup{n | X,, # 0} | X is an GZ-coresolution of M}.

In particular, GZ¢ —idg(0) = —oo. The modules of GZ-injective dimension zero
are the non-zero modules in GZ¢(R).
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3. Amalgamation along a semidualizing ideal and relative Gorenstein
homological dimensions

The first aim of this section is to show that for a semidualizing ideal I of the ring R, i.e.,
I is an ideal of R and [ is a semidualizing R-module, the Gj-projective, Gj-injective,
and Gr-flat dimensions agree with Gpd geqr(—), Gid rear(—), and Gfd geqr(—), re-
spectively.

First, we deal with some applications of a general construction, introduced in [4],
called amalgamated duplication of a ring along an ideal.

Let R be a commutative ring with unit element 1 and let I be an ideal of R. Set
R I={(r,s)|r,s € R,s—r € I}.1tis easy to check that R I is a subring, with
unit element (1,1), of R x R (with the usual componentwise operations) and that
R I ={(r,r+1)|r € R,i € I}. In the following, we recall some main properties
of the ring R I from [3] which will be important later on.

PROPOSITION 3.1. Let R be a ring and let I be an ideal of R. Then the following
statements hold.

(i) By introducing a multiplicative structure in the R-module direct sum R & I by
setting (r,4)(s,j) = (rs,rj+si+1ij), the map f: RSI — R 1 defined by f((r,4)) =
(r,r +14) is a ring isomorphism and R-isomorphism too. Moreover, there is an exact
sequence of R-modules 0 — R 2+ Ra I T 0 where o(r) = (r,r) for allr €
R, and ¢¥((r,s)) = s—r, for all (r,s) € Ri<i I. Notice that this sequence splits; hence

we also have the short exact sequence of R-modules 0 — I PSRl 5 R — 0,
where ' (i) = (0,i) and ¢'((r,s)) =r, for every i € I and (r,s) € R 1.

(ii) R and R 1< I have the same Krull dimension. Also, if R is a Noetherian ring,
then Ri<1 1 is a finitely generated R-module.

In [1,3-5,14,17], the properties of the ring R > I were studied extensively. In
addition, in [15], the authors focused on the properties of R < I, where T is a semi-
dualizing ideal. Some of these results are collected in the following proposition.

PROPOSITION 3.2 ([15, Lemmas 3.7 and 3.1(v)]). Let I be an ideal of the ring R.
Then the following statements hold.

(i) If E is a (faithfully) injective R-module, then Homp(R < I, E) is a (faithfully)
injective (R < I)-module.

(ii) Ewery injective (R > I)-module is a direct summand of the R-module Homp (R >
I, E), where E is a injective R-module.

(iii) If I is a semidualizing ideal of the ring R, then for every injective R-module E we
have the following equivalence of (R > I)-module Homppqr(Homp(R < I, E), —) =
Homp(Homg(I, E), —).

Using the same method of the proof of Proposition 3.2, we obtain the following
dual.
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PRrROPOSITION 3.3. Let I be an ideal of the ring R. Then the following statements
hold.
(i) If P is a projective R-module, then (R><1I)®p P is a projective (R > I)-module.

(i) Ewery projective (R > I)-module is a direct summand of the R-module (R <
I) ®r P, where P is a projective R-module.

(iii) If I is a semidualizing ideal of the ring R, then for every projective R-module Q
we have the following equivalence of (R < I)-module Hompyr(—, (R I) @r Q) =
HOHIR(—, I®gr Q)

COROLLARY 3.4. Let I be a semidualizing ideal of the ring R and let M be an R-
module. Then the following statements hold for any integer n.

(i) Exty(Hompg(I,J), M) = 0 for any injective R-module J if and only if for any
injective (R > I)-module U we have Extg. (U, M) = 0.

(ii) Exty(M,I ®g P) = 0 for any projective R-module P if and only if for any
projective (R < I)-module S we have Extg, ;(M,S) = 0.

Proof. The item (i) follows from Proposition 3.2 while the item (ii) is a consequence
of Proposition 3.3. O

ProPOSITION 3.5. Let I be an ideal of the ring R and let M be an R-module. If E
is a faithfully injective R-module, then Gid gpqr(Homp (M, E)) = Gfd gy (M).

Proof. By Proposition 3.2 (i), L = Homg(R > I, F) is a faithfully injective (R I)-
module. Therefore, [2, Theorem 6.4.2] implies that Gid peqr(Hompsr(M, L)) =
Gfd ppqr(M). In the following sequence, the first isomorphism follows from adjoint-
ness and the second one follows from tensor cancellation.

Hompyqr (M, L) = Hompegr (M, Homp (R < I, E))
> Homp((R< I) ®ppar M, E) 2 Hompg(M, E). O

PROPOSITION 3.6 ([7, Proposition 2.2]). Let I be a semidualizing ideal of the ring R
and let M be an R-module which is Gorenstein injective over Ri<1 I. Then there exists
a short exact sequence of R-modules 0— M’ —Hompg(I, E) — M —0, where E is an
injective R-module and M’ is Gorensrein injective (R > I)-module, which stays exact
under applying the functor Homg(Homg (I, J), —), for any injective R-module J.

The dual proof of Proposition 3.6 (this time using Proposition 3.3), is as follows.

PRrROPOSITION 3.7. Let I be a semidualizing ideal of the ring R and let M be an R-
module which is Gorenstein projective as (R >t I)-module. Then there exists a short
ezact sequence of R-modules 0 — M — I @g P — M’ — 0, where P is a projective
R-module and M' is Gorenstein projective as (R > I)-module. Furthermore, the
sequence stays exact applying the functor Homg(—,I ®g Q) for any projective R-
module Q.

LEMMA 3.8. Let I be a semidualizing ideal of the ring R and let M be a G-injective
R-module. Then there exists the short exact sequence of (R <1 I)-modules 0 —
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M — U — M — 0, where idgsqr(U) = 0 and GZ; — idg(M’') = 0. Furthermore,
the sequence stays exact over applying the functor Homps (V, —) for any injective
(R I)-module V.

Proof. By definition there exists a short exact sequence of R-modules 0 - N —
Hompg (I, E)— M —0, where E is injective and N is G-injective, and stays exact by
applying the functor Homg(Hompg (I, J), —) for every injective R-module J. By Pro-
position 3.1 (i), we have the following short exact sequence of R-modules (%) : 0— 1 —
R I— R—0. By applying the functor Hompg(—, E) to the sequence (x), we get the
exact sequence of (R < I')-modules (xx) : 0— F—Hompg(R < I, E) —Hompg(I, E)—0.
Now we have the following commutative diagram of (R < I)-modules with exact rows:

0—— M ——Homr(R~<I,E) —= M ——0

| |

0 N Hompg(I, E) M 0

By Proposition 3.2 (i), Homg(R < I, E) is an injective (R < I)-module. Also using
Snake lemma on the diagram embeds the vertical arrows into exact sequences, which
implies the short exact sequence of R-modules 0 - F — M’ — N — 0. Therefore
M’ =2 E® N as R-modules. But N is G-injective and E is by Fact 2.11 (ii). So
M’ is also Gr-injective. Furthermore the lower row in the diagram stays exact under
Homp(Homg(I, J), —) for every injective R-module J. Also, the sequence (xx) splits
as R-modules, so the surjection Homg (R i I, E) —Hompg(I, E) splits, which implies
that the upper row in the diagram also stays exact under Hompg(Hompg(Z, J), —). Now
using Proposition 3.2 (iii) we see that the upper row in the diagram stays exact under
Hompyor(Homp(R > I, J), —) for every injective R-module J. This proves that the
sequence stays exact under Hom gyqy (V, —), for every injective (R < I)-module V. U

By a similar argument, the following result obtained.

LEMMA 3.9. Let I be a semidualizing ideal of the ring R and let M be a Gy-projective
R-module. Then there exists the short exact sequence of (R v I)-modules 0 —
M — P — M' — 0, where pdpy(P) = 0 and GPr — pdp(M') = 0. Furthermore,
the sequence stays exact over applying the functor Hompsr(—,S) for any projective
(R I)-module S.

In [11], Holm and Jorgensen investigated the properties of relative Gorenstein
homological dimensions, G¢-projective, Go-injective, and Go-flat dimensions, where
C'is a semidualizing R-module and they showed that the G¢-projective, G¢-injective,
and Gc-flat dimensions always agree with the ring changed Gorenstein dimensions
Gpd gxco(—), Gid gxo(—), and Gfd gxo(—), respectively. In the following, we study
these result for amalgamation instead of idealization.

PRrROPOSITION 3.10. Let I be a semidualizing ideal of the ring R. Then for every
R-module M the following statements holds.

(i) M is a Gr-injective R-module if and only if M is a Gorenstein injective (R T)-
module.
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(i) M is a Gr-projective R-module if and only if M is a Gorenstein projective
(R < I)-module.

(#ii) M is a Gr-flat R-module if and only if M is a Gorenstein flat (R > I)-module.

Proof. (i) Assume that M is Gj-injective R-module. Then Lemma 3.8 implies that M
is Gorenstein injective as (R < I)-module. Conversely, if M is Gorenstein injective
over R < I, then Proposition 3.6 and Corollary 3.4 (i) gives the existence of a complete
ZcoZ-resolution.

(i) Similar, with using Proposition 3.7 and Lemma 3.9 and Corollary 3.4 (ii).

(iii) By item (i) and Propositions 3.5, we only need to show that for every faithfully
injective R-module E we have M is Gy-flat if and only if Homg (M, E) is G-injective,
which is proved in the proof of [11, Proposition 2.15]. 0

THEOREM 3.11. Let I be a semidualizing R-module of the ring R and let M be an
R-module. Then the following equalities hold.
(i) GZ; —idr(M) = Gid gpar (M),

(ii) GPr — pdp(M) = Gpd rear(M),
(iii) GP1 — fdp(M) = GId g (M).

Proof. We only prove the first equality. The proofs of other items are similar. By
Proposition 3.10 (i) we have GZ; —idr(M) > Gid geqr(M). For the opposite, assume
that Gid geqr(M) = n. Pick an injective resolution E of M as R-module, E : 0 —
M—FEy—F 14— - —FE_,— K_, — 0. By [15 Theorem 3.8] the modules
E; are Gorenstein injective as (R p< I)-module, and therefore [10, Theorem (2.22)]
implies that the R-module K_,, is Gorenstein injective as (R > I)-module. Now
Proposition 3.10 implies that K_,, is a G-injective R-module. On the other hand,
Fact 2.11(4¢) implies that the modules E; are G-injective R-modules, which shows
that gI] — ldR(M) S n. 0

Here, we investigate some homological properties on amalgamation along a semi-
dualizing ideal I.

LEMMA 3.12. Let I be a semidualizing ideal of the ring R, P be a projective R-module,
and let E be an injective R-module. Then the following statements hold.
(Z) idRNI((R D] I) KRR P) < idR(I QR P)

(i1) pdpee;(Hompg(R = I, E)) < pdp(Hompg(1, E)).

Proof. (i) Consider the following injective resolution of the R-module I ® g P,
E:0-I®pP —-E°5E'— ...

By [12, Corollary 6.1], I @g P € Br(R). Therefore, using Proposition 3.1 (i), we have

Extgl(R ><1,I®pP)= Ext%l(R ®I,I ®r P)=0. So, the sequence E stays exact

by applying the functor Hompg(R > I, —). On the other hand, Proposition 3.2 (i)

implies that Homg(R < I, E*) is an injective (R >t I)-module for every i > 0,

which shows that Hompg(R < I, E) is an injective resolution of the (R < I)-module



M. Salek, E. Tavasoli, A. Tehranian, M. Salimi 109

Homp(R < I,I ®r P). But, Homg(R < I,I ®g P) = Homg(R < I,I) ®g P,
by [6, Theorem 3.2.14], and Homp(R a1 I,I) @r P = (R > I) ®g P as (R s I)-
module by [5, Theorem 4.1].

(ii) Consider the projective resolution of the R-module Hompg(I, E) as follows,
P:..-— P — Py — Homg(I,E) — 0. By [12, Corollary 6.1], Homg(I,E) €
Ac(R). Therefore using Proposition 3.1 (i), we have Tor’: (R >a I, Homg(I, E)) =
Tor’ ,(R®I,Hompg(I, E)) = 0. So, the sequence P stays exact by applying the func-
tor (R I)®p —. Also, Proposition 3.3 (i) implies that (R < I) ®g P; is a projective
(R < I)-module for every ¢ > 0, which shows that (R <t I) ®g P is a projective
resolution of the (R > I)-module (R > I) ® g Hompg (I, E). On the other hand, we
have:

(R I) ®r Homp (I, E) = Homg(Homp(R > I,1), E) = Homgp(R > I, E).
Note that in the above sequence the first isomorphism follows from [6, Theorem

3.2.11], since R I is a finitely generated R-module by Proposition 3.1 (ii), and the
second one follows from [5, Theorem 4.1]. O

THEOREM 3.13. Let I be a semidualizing ideal of the ring R. Assume that sup {GP|—
pdr(M)|M e M(R)} <n, (orsup{GZ; —idg(M)| M € M(R)} <n), where n is a
non-negative integer. Then for every projective (R > I)-module P and every injective
(R < I)-module E the following statements hold.

(i) idroar(P) <. (ii) pdoar(E) < .

Proof. Let P be a projective (R < I)-module and let F be an injective (R > I)-
module. By Proposition 3.2 (ii) and Proposition 3.3 (ii), E is a direct summand of
the R-module Hompg(R 1 I, E’) for some injective R-module E’ and P is a direct
summand of the R-module (R I) ®g @ for some projective R-module ). Now we
show that idpsr (R 1) ®g Q) < n and pdpy;(Homg(R > I, E')) < n.

First assume that sup{GP; — pdr(M) | M € M(R)} < n.

(i) Let @ be a projective R-module and let M be an R-module. Then by [19,
Proposition 2.12], Ext's™ (M, I ®r Q) = 0, which implies that idz(I ®r Q) < n. Now,
Lemma 3.12(¢) implies that idpwr(R><1) @r Q) < n.

(ii) By [20, Lemma 3.4(1)], P; — pdp(E) = GPr — pdg(E) for any injective R-
module E. Therefore Fact 2.9 (i) implies that pdp(Hompg (I, E)) = Pr —pdg(E) < n.
Now Lemma 3.12 (ii) implies that pdp.q;(Homg(R = I, E)) < n.

Now suppose that sup{GZ; —idgr(M) | M € M(R)} < n.

(i) By [20, Lemma 3.4(2)], Z; —idr(Q) = GZ1—idr(Q) for any projective R-module
Q. So, Fact 2.9 (ii) implies that idr(I ®g Q) < n. Hence, idpwr (R 1) ®r Q) <n
by Lemma 3.12 (i).

(ii) Let M be an R-module. Then Ext ™ (Homg (I, E), M) = 0 for any injective
R-module E, by the dual of [19, Proposition 2.12]. So, pdz(Hompg(I, E)) < n. Now,
Lemma 3.12 (ii) implies that pdp,q;(Homg(R < I, E)) < n. 0

REFERENCES

[1] A. Bagheri, M. Salimi, E. Tavasoli, S. Yassemi, A construction of quasi-gorenstein rings, J.
Algebra Appl. 11(1) (2012), 1250013 (9 pages).



110 Results on amalgamation along a semidualizing ideal

[2] L. W. Christensen, Gorenstein dimensions, Lecture Notes in Math, Vol. 1747, Springer, Berlin,
2000.

[3] M. D’Anna, A construction of Gorenstein rings, J. Algebra, 306 (2006), 507-519.

[4] M. D’Anna, M. Fontana, An amalgamated duplication of a ring along an ideal, J. Algebra
Appl. 6(3) (2007), 443-459.

[5] M. D’Anna, M. Fontana, The amalgamated duplication of a ring along a multiplicative- canon-
ical ideal, Ark. Mat., 45 (2007), 241-252.

[6] E. E. Enochs, O. M. G. Jenda, Relative homological algebra, de Gruyter Expositions in Math-
ematics, vol. 30, Walter de Gruyter & Co., Berlin, 2000.

. Esmaeelnezhad, Cohen-Macaulay homological dimensions with respect to amalgamated du-
7] A. E Inezhad, Cohen-M lay h logical di j ith l d d
plication, J. Algebraic Syst., 2(2) (2014), 125-135.

[8] H. B. Foxby, Gorenstein modules and related modules, Math. Scand., 31, (1972), 267-284.

[9] E.S. Golod, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov., 165 (1984),
62-66.

[10] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), 167-193.

[11] H. Holm,P. Jgrgensen, Semi-dualizing modules and related Gorenstein homological dimensions,
J. Pure Appl. Algebra, 205(2) (2006), 423-445.

[12] H. Holm , D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ., 47(4)
(2007), 781-808.

[13] M. Nagata, Local Rings , Interscience, New York, 1962.

[14] J. Shapiro, On a construction of Gorenstein rings proposed by M. D’Anna, J. Algebra, 323
(2010), 1155-1158.

[15] M. Salimi, E. Tavasoli, S. Yassemi, The amalgamated duplication of a ring along a semidual-
izing ideal, Rend. Sem. Univ. Padova, 129 (2013).

[16] R. Takahashi, D. White, Homological aspects of semidualizing modules, Math. Scand., 106(1)
(2010), 5-22.

[17] E. Tavasoli, M. Salimi, A. Tehranian, Amalgamated duplication of some special rings, Bulletin
of Korean Math. Soc., 49(5) (2012), 989-996.

[18] W. V. Vascocelos, Divisor theory in module categories, North-Holland Math. Stud., vol. 14,
North-Holland Publishing Co., Amsterdam, 1974.

[19] D. White, Gorenstein projective dimension with respect to a semidualizing module, J. Commut.
Algebra, 2(1) (2010), 111-137.

[20] Z. Zhang, J. Wei, Gorenstein homological dimensions with respect to a semidualizing module,
Int. Electron. J. Algebra, 23 (2018), 131-142.

(received 18.09.2019; in revised form 02.05.2020; available online 03.04.2021)

Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran,
Iran

E-mail: mahnaz.salek@srbiau.ac.ir
Department of Mathematics, East Tehran Branch, Islamic Azad University, Tehran, Iran
E-mail: elhamtavasoli@ipm.ir

Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran,
Iran

E-mail: tehranian@srbiau.ac.ir
Department of Mathematics, East Tehran Branch, Islamic Azad University, Tehran, Iran

E-mail: maryamsalimi@ipm.ir



	 Introduction
	Background material
	Amalgamation along a semidualizing ideal and relative Gorenstein homological dimensions

