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SGδ-SELECTIVE SEPARABILITY

Mohammad Reza Ahmadi Zand and Fatemeh Mohamadi Nasiri

Abstract. A topological space X is called Gδ-selectively (resp., SGδ-selectively) sepa-
rable if for every sequence (Dn : n ∈ ω) of dense Gδ subsets of X, one can pick finite subsets
Fn ⊂ Dn such that

⋃
n∈ω Fn is dense (resp., dense and Gδ). In this paper we introduce and

study these kinds of spaces.

1. Introduction

Let X be a topological space. We denote the families of dense or dense Gδ subspaces
of X respectively by DX or DGX. By ω, S, and R we denote the set of nonnegative
integers, the Sorgenfrey line, and the real line, respectively. A topological space X
is called selectively separable (also called M -separable) [4, 5] if for every sequence
(On : n ∈ ω) of elements of DX there is a sequence (Tn : n ∈ ω) such that for
each n, Tn is a finite subset of On, and

⋃
n∈ω Tn is an element of DX. This notion

was first introduced by Scheepers [14]. Also, X is called R-separable [4] if for any
sequence (Dn)n∈ω of DX one can pick one-point subsets Fn ⊆ Dn such that ∪n∈ωFn

is an element of DX. A family B of open sets in X is called a π-base for X if every
nonempty open set in X contains a nonempty element of B. The π-weight of a space
X, πw(X), is the smallest cardinal of any π-base for X. If X is a Tychonoff space, and
Y is a dense subspace of X then πw(Y ) = πw(X) [12].

A space X has countable fan tightness [3], if whenever x ∈ An for all n ∈ ω, one
can choose finite subsets Fn ⊂ An so that x ∈

⋃
{Fn : n ∈ ω}. It is natural to say

that X has countable fan tightness with respect to dense and Gδ-sets if this statement
is true for An ∈ DGX. A continuous mapping f : X −→ Y which is onto is called
irreducible if f(A) ̸= Y for every proper closed subset A ⊂ X. A paratopological group
is a group G equipped with a topology such that the group operation (x, y) 7→ xy
from G ×G → G is a continuous mapping. A paratopological group G in which the
mapping x 7→ x−1 from G to G is continuous is called a topological group.
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Proposition 1.1. Let G be a Hausdorff topological group. Then the following are
equivalent.
(i) G is second countable;

(ii) G is a first countable space and every dense subset of X is separable;

(iii) G is an R-separable space which is first countable.

Proof. Clearly (i)⇒(iii), (iii)⇒ (ii) and (i)⇒(ii).
(ii)⇒(i) Let G be a first countable space and every dense subset of X is separable.

According to Birkoff-Kakutani’s theorem, G is a metric space and so by hypothesis,
it is second countable. Thus, we are done. □

Corollary 1.2. Let G be a countable Hausdorff topological group; then G is selec-
tively separable if and only if it is first countable.

G. Gruenhage and M. Sakai [11, Example 2.13] showed that there is a selective
separable, countable and dense subset S of {0, 1}c such that the group generated by
S which is not first countable is not selectively separable.

Remark 1.3. The Sorgenfrey line S is an example of a paratopological additive group
which is not a topological group. S is not second countable but it is first countable,
every dense subset of S is separable and S is R-separable since a set is a dense subset of
S if and only if it is dense in R. The space Q of rational numbers with the Sorgenfrey
topology is a metrizable paratopological non-topological group [13], and it satisfies in
conditions (i), (ii) and (iii) the Proposition 1.1.

2. Main results

In this section, we will introduce and investigate Gδ-selectively separable spaces and
SGδ-selectively separable spaces.

Definition 2.1. A topological space X is called Gδ-selectively separable if for every
sequence (Dn : n ∈ ω) of elements of DGX, one can pick finite subsets Fn ⊂ Dn such
that

⋃
n∈ω Fn is an element of DX.

Definition 2.2. Let X be a topological space. If for every sequence (Dn : n ∈ ω) of
elements of DGX, one can pick finite subsets Fn ⊂ Dn so that

⋃
n∈ω Fn ∈ DGX, then

X is called SGδ-selectively separable.

Clearly, every selectively separable space is aGδ-selectively separable space and ev-
ery SGδ-selectively separable space is a Gδ-selectively separable space. By [5, Propo-
sition 2.3] every topological space of countable π-weight is selectively separable, so we
have the following result.

Proposition 2.3. Each space with countable π-weight is Gδ-selectively separable.
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Recall that a topological spaceX is a Baire space if the intersection of any sequence
of dense open subsets of X is dense.

Proposition 2.4. Let X be an SGδ-selectively separable Baire space which is a T1-
space. Then, the set of isolated points of X is dense and countable.

Proof. Since X ∈ DGX, there exists a countable dense subset E of X which is a
Gδ-set in X. Let I(X) denote the set of all isolated points of X. If A = E \ I(X) is
nonempty, then the countable set I(X) = E ∩ (

⋂
a∈A X \ {a}) is dense in X since X

is a Baire space and E is a Gδ-set in X. □

Example 2.5. By Proposition 2.4, every selectively separable space X which is a
Baire space and the set of isolated points of X is not dense is an example of a Gδ-
selectively separable space which is not an SGδ-selectively separable space. R and S
have these properties.

Remark 2.6. Following Bourbaki [6], we say that a subset A of a topological space X
is locally closed in X if A is the intersection of an open subset of X and a closed subset
of X. A countable intersection of locally closed sets is called σ-locally closed [2]. X is
called DGδ-space if every subset of X is σ-locally closed. From [2, Theorem 2.4] it
follows that X is a DGδ-space if and only if every dense subset of X is Gδ. Thus, we
observe that in the class of DGδ-spaces which are T1-spaces the concepts of selective
separability, Gδ-selective separability and SGδ-selective separability coincide. Clearly,
every countable T1-space is a DGδ-space. G. Gruenhage and M. Sakai [11, Example
3.2] showed that under CH, there are two countable R-separable spaces whose product
is not selectively separable. Thus, this example shows that under CH, the product
of two Gδ-selectively (resp., SGδ-selectively) separable spaces need not be a Gδ-
selectively (resp., an SGδ-selectively) separable space.

Proposition 2.7. Assume that X is Gδ-selectively (resp., SGδ-selectively) separable;
then every dense Gδ subspace of X is Gδ-selectively (resp., SGδ-selectively) separable.

Proof. Let Y be a dense Gδ-subspace of X and (Dn : n ∈ ω) be a sequence of dense
Gδ-subspaces of Y . Thus, (Dn : n ∈ ω) is a sequence of elements of DGX , so there
are finite Fn ⊂ Dn such that D =

⋃
{Fn : n ∈ ω} is dense (resp., dense and Gδ)

in X, i.e., D ∈ DX (D ∈ DGX). Thus, Y is Gδ-selectively (resp., SGδ-selectively)
separable. □

Let F (X) denote the set of all functions from X to R and the set of points at
which f ∈ F (X) is continuous is denoted by C(f). Recall that a topological space X
is called Volterra [10] if for all f, g ∈ F (X) such that C(f), C(g) ∈ DGX we have that
C(f) ∩ C(g) is dense in X. An algebraic characterization of Volterra spaces is given
in [1]. Now we show that in the class of Volterra spaces the converse of Proposition 2.7
hold.

Corollary 2.8. Let X be a Volttera space and D ∈ DG(X). Then X is Gδ-
selectively (resp., SGδ-selectively) separable if and only if D is Gδ-selectively (resp.,
SGδ-selectively) separable.
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Proof. Let D be Gδ-selectively (resp., SGδ-selectively) separable and (Dn : n ∈ ω) be
a sequence of dense Gδ-subspaces of X. Then for each n ∈ ω, D∩Dn ∈ DG(X) since
by [9] a space X is Volterra if and only if the intersection of any two dense Gδ-sets
in X is dense. Thus, there are finite Fn ⊂ Dn ∩ D such that E =

⋃
{Fn : n ∈ ω}

is dense (resp., dense and Gδ) in D. Clearly E ∈ D(X) (resp., E ∈ DG(X)), and
so X is Gδ-selectively (resp., SGδ-selectively) separable. The converse follows from
Proposition 2.7. □

Theorem 2.9. Every space having a Gδ-selectively (resp., an SGδ-selectively) sepa-
rable, open and dense subspace is Gδ-selectively (resp., SGδ-selectively) separable.

Proof. Since every dense open subspace ofX intersected with a dense (resp., dense and
Gδ) subspace of X is still dense (resp., dense and Gδ) in X, it is straightforward. □

Remark 2.10. It is well known that every open subset of a selectively separable space
is selectively separable. It is easy to prove that every open subset of a Gδ-selectively
(resp., an SGδ-selectively) separable space is Gδ-selectively (resp., SGδ-selectively)
separable and by the following example we show that this is not true for Gδ-sets.

Example 2.11. Since ω ∈ DG(βω) is the set of all isolated points of βω, every dense
and Gδ subset of βω contains ω. Thus, βω is SGδ-selectively separable and so it is
Gδ-selectively separable. The Gδ-set ω

∗ = βω \ ω admits a family of c disjoint open
sets, where c is the cardinality of the continuum. Thus, ω∗ is not separable and so it
is not Gδ-selectively separable.

Lemma 2.12. Let X be a DGδ-space which is T1. Then, X is Gδ-selectively separable
if and only if for every decreasing sequence (Dn : n ∈ ω) of elements of DGX, there
exist finite sets Fn ⊂ Dn such that

⋃
n∈ω Fn is dense in X.

Proof. By Remark 2.6, in the class of DGδ-spaces which are T1-spaces the concepts of
selective separability and Gδ-selective separability coincide. Thus, the result follows
from [11, Lemma 2.1]. □

By slight changes in the proof of Lemma 2.12, we have the following result.

Lemma 2.13. Let X be a DGδ-space which is T1. Then, X is SGδ-selectively separable
if for every decreasing sequence (Dn : n ∈ ω) of dense Gδ-subspaces of X there are
finite sets Fn ⊂ Dn such that

⋃
n∈ω Fn is dense and Gδ in X.

Theorem 2.14. Let Y be a dense and open (resp., Gδ) subspace of X (resp., where X
is a Volterra space). If Y has a countable open cover consisting of Gδ-selectively (resp.,
SGδ-selectively) separable subsets, then X is Gδ-selectively (resp., SGδ-selectively)
separable.

Proof. For each n ∈ ω, let Vn be an open subset of Y which is a Gδ-selectively (resp.,
an SGδ-selectively) separable subset of Y and Y =

⋃
n∈ω Vn. For each n ∈ ω, let

Wn = Vn \
⋃

i≤n−1 Vi. Then, {Wn : n ∈ ω} is a disjoint family of Gδ-selectively
(resp., SGδ-selectively) separable open subsets of Y by Remark 2.10, and so it is
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easily seen that W =
⋃

n∈ω Wn is Gδ-selectively (resp., SGδ-selectively) separable.
Thus, Y is Gδ-selectively (resp., SGδ-selectively) separable since W is open and dense
in Y . Therefore by Theorem 2.9 (resp., Corollary 2.8) X is Gδ-selectively (resp., SGδ-
selectively) separable since Y is a dense and open (resp., Gδ) subspace of X. □

Corollary 2.15. X is a Gδ-selectively (resp,. an SGδ-selectively) separable space
if and only if the set I(X) of isolated points of X is countable and X \ I(X) is
Gδ-selectively (resp., SGδ-selectively) separable.

A map f : X → Y is called feebly open if for every nonempty open subset U of X,
there is a nonempty open subset V of Y such that V ⊆ f(U). It seems that the idea
of a feebly open map was first introduced in [8].

Proposition 2.16. Let X be a Gδ-selectively separable space. Then,
(i) every closed irreducible continuous image of X is Gδ-selectively separable;

(ii) every feebly open continuous image of X is Gδ-selectively separable.

Proof. Let f : X → Y be a continuous onto function. If f is either feebly open or
closed irreducible, then the inverse image of any dense subset of Y is dense inX. Thus,
for any sequence (Dn : n ∈ ω) of elements of DGY , we have En = f−1(Dn) ∈ DGX
for all n ∈ ω, and so we can find, for every n ∈ ω, a finite Fn ⊆ En such that⋃

n∈ω Fn ∈ DX. Hence Gn = f(Fn) is a finite subset of Dn for every n ∈ ω and⋃
n∈ω Gn is a dense subspace of Y . □

Proposition 2.17. Let Y be a separable, dense Gδ-subspace of a Volterra space X.
Then X is Gδ-selectively separable if and only if Y has countable fan tightness with
respect to dense Gδ-sets.

Proof. Necessity. By Corollary 2.8, Y is Gδ-selectively separable and so Y has count-
able fan tightness with respect to dense Gδ-sets. Sufficiency. Let S = {sn : n ∈ ω} be
a dense subset of Y and (Dn : n ∈ ω) be a sequence of elements of DGX. Thus, for
each n ∈ ω Dn ∩ Y ∈ DG(Y ) since X is a Volterra space [9]. Pick a disjoint family
T = {Tn : n ∈ ω} of infinite subset of ω such that

⋃
T = ω. For any n ∈ ω, we have

sn ∈ Y ∩ (
⋂

m∈Tn
Dm ∩ Y ) and so there is a finite subset Fm of Dm ∩ Y for every

m ∈ Tn such that sn ∈ Y ∩ (
⋃

m∈Tm
Fm) since Y has countable fan tightness with

respect to dense and Gδ-sets. Thus, Fn is a finite subset of Dn for every n ∈ ω and⋃
n∈ω Fn is dense in X and so X is Gδ-selectively separable. □

By slight changes in the proof of Proposition 2.17, the following result is obtained.

Proposition 2.18. A separable space X is Gδ-selectively separable if and only if X
has countable fan tightness with respect to dense Gδ-sets.

Proposition 2.19. For a T1-space X, the following statements are equivalent.
(i) X is hereditarily selectively separable;
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(ii) X is hereditarily separable and all countable subspaces of X are selectively sepa-
rable;

(iii) X is hereditarily Gδ-selectively separable,

Proof. (i)⇔(i) See [4, Proposition 16]. (i)⇒(iii) It is obvious.
(iii)⇒(ii) Let Y be a subspace of X. Then Y is separable since Y is Gδ-selectively

separable. Clearly, every countable T1-space is a DGδ-space and by Remark 2.6, in
the class of DGδ-spaces which are T1-spaces the concepts of selective separability and
Gδ-selective separability coincide and so every countable subspace of X is selectively
separable. □
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