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ON WEAKLY STRETCH RANDERS METRICS

Akbar Tayebi, Asma Ghasemi and Mehdi Sabzevari

Abstract. The class of weakly stretch Finsler metrics contains the class of stretch met-
ric. Randers metrics are important Finsler metrics which are defined as the sum of a Riemann
metric and a 1-form. In this paper, we prove that every Randers metric with closed and
conformal one-form is a weakly stretch metric if and only if it is a Berwald metric.

1. Introduction

In [5], L. Berwald introduced the non-Riemannian curvature, so-called stretch curva-
ture as a natural extension of Landsberg curvature. He denoted it by 3 and proved
that 3 = 0 if and only if the length of a vector remains unchanged under the paral-
lel displacement along an infinitesimal parallelogram. A Finsler metric is said to be
stretch metric if 3 = 0. Then Matsumoto investigated the class of stretch metrics
with scalar flag curvature [8]. In [12], Shibata showed that every stretch metric of
non-zero scalar flag curvature is a Riemannian metric of constant sectional curvature.
In [13], he proved that a Kropina metric F' = o?/3 has vanishing stretch curvature if
and only if it is a Berwald metric. Bacs6-Matsumoto showed that a Douglas metric
on a manifold of dimension n > 3 is R-quadratic if and only if it is a stretch metric
with horizontally constant mean Berwald curvature [3]. In [9], Najafi-Bidabad-Tayebi
proved that every R-quadratic Finsler metric is a stretch metric.

In 1941, Randers published a paper concerned with an asymmetric metric in the
four-space of general relativity. His metric is in the form F' = «a 4 3, where a =
Vaij(x)yiyl is gravitation field and B = b;(z)y’ is the electromagnetic field. He
regarded these metrics not as Finsler metrics but as “affinely connected Riemannian
metrics”. This metric was first recognized as a kind of Finsler metric in 1957 by
Ingarden, who first named them Randers metrics. In [22], Tayebi-Tabatabeifar showed
that a Randers metric F' = « 4+ § with closed one-form § is a stretch metric if and
only if it is a Berwald metric. In [21], Tayebi-Sadeghi characterized the stretch (o, 3)-
metrics of non-Randers type with vanishing S-curvature. In [4], Bacs6-Szilasi showed
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that if the stretch tensor of a Finsler metric depends only on the position, then it
vanishes identically. Recently, Tayebi-Najafi proved that a homogeneous (¢, §)-metric
is a stretch metric if and only if it is a Berwald metric [18].

Taking the trace with respect to g, in first and second variables of 3, gives rise to
the mean stretch curvature £,. A Finsler metric is said to be weakly stretch metric if
3 = 0. In [10], Najafi-Tayebi showed that every compact weakly stretch manifold is a
weakly Landsberg manifold. Then, they proved a rigidity theorem stating that every
compact weakly stretch manifold with negative flag curvature reduces to a Riemannian
manifold. In [16], Tayebi-Izadian studied a square metrics F = « + 23 + 2/« with
vanishing Douglas curvature. They showed that F' is a weakly stretch metric if and
only if it reduces to a Berwald metric.

By definition, we have the following

{Berwald metrics} C {R-quadratic metrics}
C {Stretch metrics} C {Weakly stretch metrics}.

In [7], Li-Shen found the necessary and sufficient condition under which a Randers
metric is R-quadratic. It follows that a weakly stretch Randers metric is not a Berwald
metric, in general. Najafi-Tayebi showed that every generalized Berwald Randers
metric is a weakly stretch metric if and only if it is a Berwald metric [10]. A Finsler
manifold (M, F) is called a generalized Berwald manifold if there exists a covariant
derivative V on M such that the parallel translations induced by V preserve the
Finsler function F. If the covariant derivative V is also torsion-free, then (M, F)
is called a Berwald manifold. It is interesting to find some curvature properties
conditions under which a weakly stretch Randers metric reduces to a Berwald metric.
Then, we prove the following.

THEOREM 1.1. Let F = a+ 8 be a Randers metric on a manifold M and 8 a closed
and conformal 1-form with respect to . Then F is a weakly stretch metric if and
only if it is a Berwald metric.

Theorem 1.1 is a generalization of [22, Theorem 1.1] which indicated that a Ran-
ders metric with closed 1-form and vanishing stretch curvature is a Berwald metric.
In Theorem 1.1, the condition on 1-form is necessary. See the following examples.

EXAMPLE 1.2 ([7]). Let |.| and (,) denote the Euclidean norm and the inner product
in R™, respectively. Consider the following Randers metric defined nearby the origin
in R™

p o VP = (2QPIYP — (y,2Q)*)  (y,2Q)
B 1—[zQf? 1—[zQP’

where Q = (q;) is an anti-symmetric matrix. F' is a weakly stretch metric but it is

not a Berwald metric when @ # 0.

ExXAMPLE 1.3. Let us consider the well-known Shen’s fish tank metric as follows. Let
X =(z,y,2) e B3(1) CR3 and Y = (u,v,w) € T, B3(1). Put
V(yu+2v)2 + (u2 + 02 + w?)(1 — 22 — y?) v — yu
+
1—a2—y? 1—a2—y

F =

PR
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The Shen’s fish tank metric F' is a weakly stretch metric which is not a Berwald
metric [11].

There are many Riemannian metrics with nontrivial closed and conformal 1-forms.
See the following.

ExXAMPLE 1.4 ([23]). The Riemmannian metric o = e”+/|y|? — k(z,y)? has closed
and conformal 1-form expressed as 3 = cy/1 — k|z|2e(x, 1), where k = k(|x|?) and
p = p(|z|?) are two arbitrary functions such that 1 — k|z|> > 0.

Every Randers metric F' = a + 8 is a Douglas metric if and only if the 1-form S
is a closed 1-form [2]. Then by Theorem 1.1, we get the following.

COROLLARY 1.5. Let F' = o+ 3 be a Randers metric on a manifold M and § con-
formal 1-form with respect to oo. Then F is a weakly stretch metric with vanishing
Douglas curvature if and only if it is a Berwald metric.

2. Preliminaries

Let M be an n-dimensional C*° manifold. Denote by 7, M the tangent space at
x € M, and by TM = J,c, To M the tangent bundle of M. A Finsler metric on M
is a function F : TM — [0, 00) which has the following properties:

(i) Fis C* on TMy :=TM \ {0};

(ii) F is positively 1-homogeneous on the fibers of tangent bundle T'M;

(iii) for each y € T, M, the following quadratic form g, on T, M is positive definite,

10?1,
g, (u,v) == 2 Be0t [F (y + su+tv)]s1t:0, u,v € Ty M.

Let © € M and F, := F|r,p. To measure the non-Euclidean feature of F,, define
C,: T,M x T,M x T,M — R by

Cy(u,v,w) := %% [gyﬂw(u,v)}tzo, u,v,w € T, M.

The family C := {C, },erMm, is called the Cartan torsion. It is well known that C =0
if and only if F' is Riemannian. For y € T, My, define the mean Cartan torsion I, by
I,(u) := L;i(y)u’, where I; :== ¢g’*Cyj. By Deicke Theorem, F is Riemannian if and
only if I, = 0.

The horizontal covariant derivatives of C along geodesics give rise to the Lands-
berg curvature Ly, : T, M x T, M x T, M — R defined by Ly, (u, v, w) := L;jx(y)u'viw*,
where Liji, := Cyjp)sy°. The family L := {Ly},e7n, is called the Landsberg curva-
ture. A Finsler metric is called a Landsberg metric if L=0.

The horizontal covariant derivatives of I along geodesics give rise to the mean
Landsberg curvature J, (u) := J;(y)u’, where J; := g/* L; ;). = I;jsy°. A Finsler metric
is said to be weakly Landsbergian if J =0 [15].
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Define the stretch curvature 3, : T, M xT, M XT, M xT, M — Rby X, (u,v,w, z) :=
Eijkl(y)uivjwkzl, where Eijkl = Z(Lijk\l — Lijl|k)~

Here “|” denotes the horizontal derivation with respect to the Berwald connection
of F. A Finsler metric is said to be stretch metric if 3 = 0 [5].

Taking an average on two first indices of the stretch curvature, we get a new
non-Riemannian curvature, namely, mean stretch curvature. For y € T, M, define
iy T, M x T, M — R by iy(u,v) = iij(y)uivj7 where iij = gklzkm.

A Finsler metric is said to be weakly stretch metric if £ = 0. Every Landsberg
metric or stretch metric is a weakly stretch metric.

Given a Finsler manifold (M, F), a global vector field G is induced by F' on T' My,
Wﬁich in a standard coordinate (2%, y*) for T My is given by G = y/* aii —2G'(z, y)aiyi,
where

Gi(r,y) = 30" {2y~ [F )

The vector field G is called the associated spray to (M, F).

For a tangent vector y € T, My, define By, : T, M x T, M x T, M — T, M and E,, :
ToM xTyM — R by By (u,v,w) := Bijk.l(y)ujvkwl 25|, and Ey (u,v) := Ejj,(y)uoF,
where

PGt 1
and FEj, = -B"

B jkl jkm -
J 277

T Oyioykoyl
The non-Riemannian quantities B and E are called the Berwald curvature and mean
Berwald curvature of F, respectively. F' is a Berwald (resp. weakly Berwald) metric
if it satisfies B = 0 (resp. E = 0).

Let F = a¢(s), s = 8/a, be an («, 8)-metric, where ¢ = ¢(s) is a C> on (—bg, by)
with certain regularity, « = /a;;(z)y*y7 is a Riemannian metric and 8 = b;(z)y" is a
1-form on a manifold M. For an (o, 3)-metric, let us define b;|; by b;,;07 == db; — ijg,

where 6 := dz’ and 9{ = ngdmk denote the Levi-Civita connection form of «. Let

Tij = 5(1?2’] + bj;i)) Sij = §(bz7] - bj;i)7 Ti0 ‘= T‘Z‘jy], Too ‘= 'I"ijyzy‘?7 Ty = bl’l"ij,
S0 ‘— Sijyj, S5 1= biSij, Sij = aimsmj, Sio = Sijyj, To = T‘jyj, Sp = Sjyj.
¢ 2 2\ A/ Q — sQ’
Put = , A:=1 b° — , ="
! N T+ (" -0 2A

!/ 11
v ::g = 4 ,
20 2[(¢ — s¢’) + (b — s2)¢" |
where b? := a¥b;b;. Let G' = Gi(z,y) and G, = G% (z,y) denote the coefficients of
F and «, respectively, in the same coordinate system. By definition, we have
G'=G, + Py +Q, (1)
where P := a~'O[rgo — 2aQso], Q' = aQs’y + ¥[rgp — 2aQse]b’. Simplifying (1)
yields the following
G' =Gl + aQs) + (ro0 — 20Qs0) (a1 Oy" + Wb'). (2)
Clearly, if B is parallel with respect to «, that is r;; = 0 and s;; = 0, then P = 0 and
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Q' = 0. In this case, G* = G°, are quadratic in y and F reduces to a Berwald metric.
B is conformal with respect to a if r;; = ca;;, where ¢ = ¢(z) is a scalar function on
M. Also, 3 is a closed 1-form if s;; = 0. For more details, see [17,19].

For an (a, 8)-metric F' = ad(s), the mean Landsberg curvature is given by

P
Jj=- m [A +n+ 1)@ - SQ')} (ro + s0)hs
h; P
AR ) (1/11 + SA) (Too - 2aQso)
P

— oAz [0Q(0%si — soy:) — aQ'sohi + a*Asio
~a%(rio ~ 20Q5,) ~ (rw ~ 20Qs0)y]. ®

1 2 2 !
where ® := —(Q—5Q")(NA+14+5Q)—(b*—52)(1+5Q)Q", ¥y := Vb2 — s2A> [7V b;; ﬂ ,
h; = ab; — sy;.

3. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. For this aim, we remark that the
mean stretch curvature is given by following

Sij = 9" Skij = 20" (Liit; — Lijji)- (4)
For the Berwald connection, we have g;j, = —2L;;,. Then, we get
(99 = 2L, (5)
O M Ly = Jigy — 2L Ly, (6)
QD 50 =20y, — T, (7)

By (7), F is a weakly stretch metric if and only if .J;; = J;;.

LEMMA 3.1. Let F = a + B be a Randers metric on a manifold M and B a closed
and conformal 1-form with respect to a. Suppose that F is a weakly stretch metric.
Then the following hold

Aga* + Asa® + Ag = 0, (8)
Asat + Aza® + A =0, )
where
Ag = —2(n+1)ro0,08"+(2n+1)rd, 57,
Ay = —8(n+1)r00,08°+(8n+5)r2 52,
Ay 1= A(n+1)ro08>—2(n+1) (5+b%)700,0 8> — (6n+4) o700 32+ [61+-4+(4n+3)b%] o B,
Az = 12(n+1)ro,0 8% =4(n41) (14+b%) 700,08 —4(3n+2)ror00 B+ (4n+3) b1y,
Ay = 12(n+1)r0,08—2(n+1)b*roo.0—2(3n+2) 70700,
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As :=4(n+1)roo and b? = aijbibj.
Proof. For a Randers metric ¢ = 1+ s, we have
Q=0Q-sQ =1, A=1+s,
n+1
2(1+5)
By assumption, § is a closed and conformal 1-form with respect to a. Thus it satisfies
b;.; = ca;j, where ¢ = c¢(x) is a scalar function on M, which implies that

(10)

d=—-(n+1)(1+s), U, = (82 + 25 + b?).

Sij = 0, S; = O, Tij = ca,»j, r, = Cbi. (11)

By putting (11) in (2), we get G = G + ;L;, y'. Also, putting (10) and (11) in (3)
imply that
n+1 n+1

i = — 55Tk 7[2 i — 1} 12
T = B s 00N T Gaa g [ T0i T Mooy (12)

Taking a horizontal derivation of (12) with respect to the Berwald connection of F'
yields the following

(n+1)roo
Jil :_74a4(1+s)3 [a(l—l—s)(oz‘jbi—l—ozbiu—s|jyi—syi‘j)—(abi—syi)(3(1+s)a|j+2as‘j)]
n+1
T 1a0(17s)2 [2(1-+5)(2arioa;+a®rio  —yiroo ;— ooyl ) o

—2a%(a®rio—rooyi) (30 +3sa);+as);)] - 4a3(1+-s)?

700|355

where y; = aa,:. The following holds

_870‘ — Gmai = 870‘ —_Gm —

OxJ 7 Oym  Oxd T oym  oym
arjo  TooY; - afyroo

ST T oar T op (13)

Also, we have

b

da  Oa (QTjoym +ro0df" FjTooym)
2F 2F?

Q5

o :% _aqm 9b; _ rigB + riob; +710;bi
il = G i gym F
+ (2FjTi0 + 2FiT0j + FijTOO)B + (szg + Fjbi)’l"o() _ FjFiTOOB

m
- b'rnFi]‘ = Tij

e 73 (14)
By (13) and (14), we get
1
Bl = roj — >F2 [2Frjoﬁ + Froob; — FjTOOB]7
1 1 (15)
S5 = Erjo - ﬁ [Oﬁ”oobj - STooyj]-
The following holds
_rooyiFj + (20°r0; + 100y;) Fi + (20%1i0 + rooyi) Fj + &ProoFy
Yilj = 9F2
_aProoFiFy Arjoyi + 2rioy; + Tooaij + 2071 (16)

F3 2F
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Since F is a weakly stretch metric, we get J;;3° = 0. Thus J;;4’0" = 0. By
putting (13), (14), (15) and (16) in Ji‘jyjbi = 0, one can get the following

@ [2(S+b2)7’000425—47’00042122F—2(27’0B+T‘00b2)F@2+6ﬂFTooﬁ+4BFT00L2+O[TO

A
2 2 2 21, N+l o o i
—2B(s+b%)rgoa” —srop+4(1+s) (ab” —sB)repr ]+ﬁ[2F (a*7i0/00" =T00j03)
74F7’0T000¢2+7’00 [3F7”‘00ﬂ+2F7’00[27(54’()2)7’00(12}+4F’I"00 (O[QTofrooﬁ)} O[Q
n+1
_ - (ab?— =0 17
4a3(1+s5)? (ab"=58)r00j0 = 0, (17)
where A := 16a5(1 + )%, B := 4a°(1 + s)?2. By a simple calculation, we get
1
SF2 [Fi(2rokroj + To0Tkj)
+ Fj(2rorrio + roorik) + 2Fk(2rioro; + rooris) + (Fjkrio + Fikros)roo]

2
Tijlk =Tijsk — 3 [TijTOk + TikTj0 + Tkjrio] +

Fy,
- ﬁ(TOjFi + rioF;)roo- (18)
Multiplying (18) with 3/y* implies that
6 1
Tiolo = Ti0:0 — 70070 + W(E)TOOFi + 11Frio)roo- (19)
Contracting (19) with y® implies that
2
Tooj0o = T00;0 — ngo- (20)
By putting (19) and (20) in (17), we get
A5Oé5 + A4Oé4 + A30£3 + A2a2 + Aja+ Ay =0. (21)
By (21), we get (8) and (9). U

Proof (of Theorem 1.1). Since 7;; = ca;; then we have rop = ca?, rip.; = ¢,iy; and
T00:0 = coa?, where y; = a;,y™ and ¢ = c,iy’. Putting these relations in (8) and (9)
imply that

b [(4n+3)Bc®—2(n+1)co] a’+2[(n+1)(1-b%)co 82— (2n+1)c ] a®+2(n+1)co 8* = 0,
[(4n+3)b°c? |+ [~ (4n+3) B2 ? —4(n+1)b*Beg| o +4(n+1)co B = 0. (22)
From here, we have 6a? = cy3*, where 0 := 6o + 032, and § and n are two 1-forms
on M. This means that a?|cy3, which contradicts with the positive-definiteness of
a. Then ¢y = 0. In this case, (22) reduces to following (4n + 3)c?(b?a? — 32) = 0.
It is easy to see that b2a? — % = 0 contradicts with the positive-definiteness of o

Hence, ¢ = 0. In this case, (11) implies that /3 is parallel with respect to « and then
F' reduces to a Berwald metric. O

COROLLARY 3.2. Let F' = a+ f3 be a non-Riemannian Randers metric on a manifold
M and B conformal 1-form with respect to ac. Then F' is a weakly stretch metric with
vanishing mean Berwald curvature if and only if it is a Berwald metric.

Proof. In [6], it is proved that a Randers metric has vanishing mean Berwald curvature
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if and only if the following holds
rij = —bis; — b;s;. (23)
Contracting (23) with y’y’ implies that
roo = —2050. (24)
Let 8 be a conformal 1-form with respect to a, i.e., rj; = ca;j, where ¢ = c(z) is a
scalar function on M. Multiplying it with y*y’ yields

Too = ca’. (25)

By (24) and (25), we have
ca? = —23s. (26)
Since F' is a non-Riemannian metric, then (26) implies that ¢ = 0. In this case, we

get r;; = 0 and (24) implies that s; = 0. By the same method used in the proof
of [10, Theorem 1.3], we get s,; = 0. Thus F reduces to a Berwald metric. O
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