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ON WEAKLY STRETCH RANDERS METRICS

Akbar Tayebi, Asma Ghasemi and Mehdi Sabzevari

Abstract. The class of weakly stretch Finsler metrics contains the class of stretch met-
ric. Randers metrics are important Finsler metrics which are defined as the sum of a Riemann
metric and a 1-form. In this paper, we prove that every Randers metric with closed and
conformal one-form is a weakly stretch metric if and only if it is a Berwald metric.

1. Introduction

In [5], L. Berwald introduced the non-Riemannian curvature, so-called stretch curva-
ture as a natural extension of Landsberg curvature. He denoted it by Σ and proved
that Σ = 0 if and only if the length of a vector remains unchanged under the paral-
lel displacement along an infinitesimal parallelogram. A Finsler metric is said to be
stretch metric if Σ = 0. Then Matsumoto investigated the class of stretch metrics
with scalar flag curvature [8]. In [12], Shibata showed that every stretch metric of
non-zero scalar flag curvature is a Riemannian metric of constant sectional curvature.
In [13], he proved that a Kropina metric F = α2/β has vanishing stretch curvature if
and only if it is a Berwald metric. Bácsó-Matsumoto showed that a Douglas metric
on a manifold of dimension n ≥ 3 is R-quadratic if and only if it is a stretch metric
with horizontally constant mean Berwald curvature [3]. In [9], Najafi-Bidabad-Tayebi
proved that every R-quadratic Finsler metric is a stretch metric.

In 1941, Randers published a paper concerned with an asymmetric metric in the
four-space of general relativity. His metric is in the form F = α + β, where α =√
aij(x)yiyj is gravitation field and β = bi(x)y

i is the electromagnetic field. He
regarded these metrics not as Finsler metrics but as “affinely connected Riemannian
metrics”. This metric was first recognized as a kind of Finsler metric in 1957 by
Ingarden, who first named them Randers metrics. In [22], Tayebi-Tabatabeifar showed
that a Randers metric F = α + β with closed one-form β is a stretch metric if and
only if it is a Berwald metric. In [21], Tayebi-Sadeghi characterized the stretch (α, β)-
metrics of non-Randers type with vanishing S-curvature. In [4], Bácsó-Szilasi showed

2020 Mathematics Subject Classification: 53B40, 53C60.

Keywords and phrases: Weakly stretch metric; Berwald metric; Randers metric.

174



A. Tayebi, A. Ghasemi, M. Sabzevari 175

that if the stretch tensor of a Finsler metric depends only on the position, then it
vanishes identically. Recently, Tayebi-Najafi proved that a homogeneous (α, β)-metric
is a stretch metric if and only if it is a Berwald metric [18].

Taking the trace with respect to gy in first and second variables of Σy gives rise to

the mean stretch curvature Σ̄y. A Finsler metric is said to be weakly stretch metric if
Σ̄ = 0. In [10], Najafi-Tayebi showed that every compact weakly stretch manifold is a
weakly Landsberg manifold. Then, they proved a rigidity theorem stating that every
compact weakly stretch manifold with negative flag curvature reduces to a Riemannian
manifold. In [16], Tayebi-Izadian studied a square metrics F = α + 2β + β2/α with
vanishing Douglas curvature. They showed that F is a weakly stretch metric if and
only if it reduces to a Berwald metric.

By definition, we have the following

{Berwald metrics} ⊆ {R-quadratic metrics}
⊆ {Stretch metrics} ⊆ {Weakly stretch metrics}.

In [7], Li-Shen found the necessary and sufficient condition under which a Randers
metric is R-quadratic. It follows that a weakly stretch Randers metric is not a Berwald
metric, in general. Najafi-Tayebi showed that every generalized Berwald Randers
metric is a weakly stretch metric if and only if it is a Berwald metric [10]. A Finsler
manifold (M,F ) is called a generalized Berwald manifold if there exists a covariant
derivative ∇ on M such that the parallel translations induced by ∇ preserve the
Finsler function F . If the covariant derivative ∇ is also torsion-free, then (M,F )
is called a Berwald manifold. It is interesting to find some curvature properties
conditions under which a weakly stretch Randers metric reduces to a Berwald metric.
Then, we prove the following.

Theorem 1.1. Let F = α+ β be a Randers metric on a manifold M and β a closed
and conformal 1-form with respect to α. Then F is a weakly stretch metric if and
only if it is a Berwald metric.

Theorem 1.1 is a generalization of [22, Theorem 1.1] which indicated that a Ran-
ders metric with closed 1-form and vanishing stretch curvature is a Berwald metric.

In Theorem 1.1, the condition on 1-form is necessary. See the following examples.

Example 1.2 ([7]). Let |.| and ⟨, ⟩ denote the Euclidean norm and the inner product
in Rn, respectively. Consider the following Randers metric defined nearby the origin
in Rn

F :=

√
|y|2 − (|xQ|2|y|2 − ⟨y, xQ⟩2)

1− |xQ|2
− ⟨y, xQ⟩

1− |xQ|2
,

where Q = (qij) is an anti-symmetric matrix. F is a weakly stretch metric but it is
not a Berwald metric when Q ̸= 0.

Example 1.3. Let us consider the well-known Shen’s fish tank metric as follows. Let
X = (x, y, z) ∈ B3(1) ⊂ R3 and Y = (u, v, w) ∈ TxB3(1). Put

F =

√
(−yu+ xv)2 + (u2 + v2 + w2)(1− x2 − y2)

1− x2 − y2
+

xv − yu

1− x2 − y2
.
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The Shen’s fish tank metric F is a weakly stretch metric which is not a Berwald
metric [11].

There are many Riemannian metrics with nontrivial closed and conformal 1-forms.
See the following.

Example 1.4 ([23]). The Riemmannian metric α = eρ
√
|y|2 − κ⟨x, y⟩2 has closed

and conformal 1-form expressed as β = c
√
1− κ|x|2e2ρ⟨x, y⟩, where κ = κ(|x|2) and

ρ = ρ(|x|2) are two arbitrary functions such that 1− κ|x|2 > 0.

Every Randers metric F = α + β is a Douglas metric if and only if the 1-form β
is a closed 1-form [2]. Then by Theorem 1.1, we get the following.

Corollary 1.5. Let F = α + β be a Randers metric on a manifold M and β con-
formal 1-form with respect to α. Then F is a weakly stretch metric with vanishing
Douglas curvature if and only if it is a Berwald metric.

2. Preliminaries

Let M be an n-dimensional C∞ manifold. Denote by TxM the tangent space at
x ∈M , and by TM =

⋃
x∈M TxM the tangent bundle of M . A Finsler metric on M

is a function F : TM → [0,∞) which has the following properties:
(i) F is C∞ on TM0 := TM \ {0};

(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ;

(iii) for each y ∈ TxM , the following quadratic form gy on TxM is positive definite,

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
s,t=0

, u, v ∈ TxM.

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, define
Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0
is called the Cartan torsion. It is well known that C = 0

if and only if F is Riemannian. For y ∈ TxM0, define the mean Cartan torsion Iy by
Iy(u) := Ii(y)u

i, where Ii := gjkCijk. By Deicke Theorem, F is Riemannian if and
only if Iy = 0.

The horizontal covariant derivatives of C along geodesics give rise to the Lands-
berg curvature Ly : TxM×TxM×TxM → R defined by Ly(u, v, w) := Lijk(y)u

ivjwk,
where Lijk := Cijk|sy

s. The family L := {Ly}y∈TM0
is called the Landsberg curva-

ture. A Finsler metric is called a Landsberg metric if L=0.
The horizontal covariant derivatives of I along geodesics give rise to the mean

Landsberg curvature Jy(u) := Ji(y)u
i, where Ji := gjkLijk = Ii|sy

s. A Finsler metric
is said to be weakly Landsbergian if J = 0 [15].
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Define the stretch curvatureΣy : TxM×TxM×TxM×TxM → R byΣy(u, v, w, z) :=
Σijkl(y)u

ivjwkzl, where Σijkl := 2(Lijk|l − Lijl|k).

Here “ | ” denotes the horizontal derivation with respect to the Berwald connection
of F . A Finsler metric is said to be stretch metric if Σ = 0 [5].

Taking an average on two first indices of the stretch curvature, we get a new
non-Riemannian curvature, namely, mean stretch curvature. For y ∈ TxM0, define
Σ̄y : TxM × TxM → R by Σ̄y(u, v) := Σ̄ij(y)u

ivj , where Σ̄ij := gklΣklij .

A Finsler metric is said to be weakly stretch metric if Σ̄ = 0. Every Landsberg
metric or stretch metric is a weakly stretch metric.

Given a Finsler manifold (M,F ), a global vector field G is induced by F on TM0,
which in a standard coordinate (xi, yi) for TM0 is given by G = yi ∂

∂xi −2Gi(x, y) ∂
∂yi ,

where

Gi(x, y) :=
1

4
gil

{
[F 2]xkylyk − [F 2]xl

}
.

The vector field G is called the associated spray to (M,F ).

For a tangent vector y ∈ TxM0, define By : TxM ×TxM ×TxM → TxM and Ey :
TxM×TxM → R by By(u, v, w) := Bi

jkl(y)u
jvkwl ∂

∂xi |x and Ey(u, v) := Ejk(y)u
jvk,

where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
, and Ejk :=

1

2
Bm

jkm.

The non-Riemannian quantities B and E are called the Berwald curvature and mean
Berwald curvature of F , respectively. F is a Berwald (resp. weakly Berwald) metric
if it satisfies B = 0 (resp. E = 0).

Let F = αϕ(s), s = β/α, be an (α, β)-metric, where ϕ = ϕ(s) is a C∞ on (−b0, b0)
with certain regularity, α =

√
aij(x)yiyj is a Riemannian metric and β = bi(x)y

i is a

1-form on a manifoldM . For an (α, β)-metric, let us define bi|j by bi;jθ
j := dbi−bjθji ,

where θi := dxi and θji := Γj
ikdx

k denote the Levi-Civita connection form of α. Let

rij :=
1

2
(bi;j + bj;i), sij :=

1

2
(bi;j − bj;i), ri0 := rijy

j , r00 := rijy
iyj , rj := birij ,

si0 := sijy
j , sj := bisij , s

i
j = aimsmj , s

i
0 = sijy

j , r0 := rjy
j , s0 := sjy

j .

Put Q :=
ϕ′

ϕ− sϕ′
, ∆ := 1 + sQ+ (b2 − s2)Q′, Θ :=

Q− sQ′

2∆
,

Ψ :=
Q′

2∆
=

ϕ′′

2
[
(ϕ− sϕ′) + (b2 − s2)ϕ′′

] ,
where b2 := aijbibj . Let Gi = Gi(x, y) and Gi

α = Gi
α(x, y) denote the coefficients of

F and α, respectively, in the same coordinate system. By definition, we have

Gi = Gi
α + Pyi +Qi, (1)

where P := α−1Θ[r00 − 2αQs0], Q
i := αQsi0 + Ψ[r00 − 2αQs0]b

i. Simplifying (1)
yields the following

Gi = Gi
α + αQsi0 + (r00 − 2αQs0)(α

−1Θyi +Ψbi). (2)

Clearly, if β is parallel with respect to α, that is rij = 0 and sij = 0, then P = 0 and
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Qi = 0. In this case, Gi = Gi
α are quadratic in y and F reduces to a Berwald metric.

β is conformal with respect to α if rij = caij , where c = c(x) is a scalar function on
M . Also, β is a closed 1-form if sij = 0. For more details, see [17,19].

For an (α, β)-metric F = αϕ(s), the mean Landsberg curvature is given by

Jj =− 1

∆α2(b2 − s2)

[
Φ

∆
+ (n+ 1)(Q− sQ′)

]
(r0 + s0)hi

− hi
2α3∆(b2 − s2)

(
ψ1 + s

Φ

∆

)(
r00 − 2αQs0

)
− Φ

2α3∆2

[
αQ(α2si − s0yi)− αQ′s0hi + α2∆si0

− α2(ri0 − 2αQsi)− (r00 − 2αQs0)yi
]
, (3)

where Φ := −(Q−sQ′)(n∆+1+sQ)−(b2−s2)(1+sQ)Q′′, Ψ1 :=
√
b2 − s2∆

1
2

[√
b2−s2Φ

∆
3
2

]′
,

hi := αbi − syi.

3. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. For this aim, we remark that the
mean stretch curvature is given by following

Σ̄ij := gklΣklij = 2gkl(Lkli|j − Lklj|i). (4)

For the Berwald connection, we have gij|k = −2Lijk. Then, we get

(gij)|k = 2Lij
k. (5)

(5)
=⇒ gklLkli|j = Ji|j − 2Lkl

jLkli. (6)

(4),(6)
=⇒ Σ̄ij = 2(Ji|j − Jj|i). (7)

By (7), F is a weakly stretch metric if and only if Ji|j = Jj|i.

Lemma 3.1. Let F = α + β be a Randers metric on a manifold M and β a closed
and conformal 1-form with respect to α. Suppose that F is a weakly stretch metric.
Then the following hold

A4α
4 +A2α

2 +A0 = 0, (8)

A5α
4 +A3α

2 +A1 = 0, (9)

where

A0 := −2(n+1)r00;0β
4+(2n+1)r200β

3,

A1 := −8(n+1)r00;0β
3+(8n+5)r200β

2,

A2 := 4(n+1)r0;0β
3−2(n+1)(5+b2)r00;0β

2−(6n+4)r0r00β
2+

[
6n+4+(4n+3)b2

]
r200β,

A3 := 12(n+1)r0;0β
2−4(n+1)(1+b2)r00;0β−4(3n+2)r0r00β+(4n+3)b2r200,

A4 := 12(n+1)r0;0β−2(n+1)b2r00;0−2(3n+2)r0r00,
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A5 := 4(n+1)r0;0 and b2 := aijb
ibj .

Proof. For a Randers metric ϕ = 1 + s, we have

Q = Q− sQ′ = 1, ∆ = 1 + s,

Φ = −(n+ 1)(1 + s), Ψ1 =
n+ 1

2(1 + s)
(s2 + 2s+ b2).

(10)

By assumption, β is a closed and conformal 1-form with respect to α. Thus it satisfies
bi;j = caij , where c = c(x) is a scalar function on M , which implies that

sij = 0, si = 0, rij = caij , ri = cbi. (11)

By putting (11) in (2), we get Gi = Ḡi +
r00
2F

yi. Also, putting (10) and (11) in (3)

imply that

Ji = − n+ 1

4α3(1 + s)2
r00hi +

n+ 1

2α3(1 + s)

[
α2r0i − r00yi

]
. (12)

Taking a horizontal derivation of (12) with respect to the Berwald connection of F
yields the following

Ji|j =− (n+1)r00
4α4(1+s)3

[
α(1+s)(α|jbi+αbi|j−s|jyi−syi|j)−(αbi−syi)

(
3(1+s)α|j+2αs|j

)]
+

n+1

4α6(1+s)2
[
2(1+s)(2αri0α|j+α

2ri0|j−yir00|j−r00yi|j)α3

−2α2(α2ri0−r00yi)(3α|j+3sα|j+αs|j)
]
− (n+1)(αbi−syi)

4α3(1+s)2
r00|j ,

where yi = ααyi . The following holds

α|j =
∂α

∂xj
−Gm

j

∂α

∂ym
=

∂α

∂xj
− Ḡm

j

∂α

∂ym
− ∂α

∂ym

(2rj0ym + r00δ
m
j

2F
− Fjr00y

m

2F 2

)
=− αrj0

F
− r00yj

2αF
+
αFjr00
2F 2

. (13)

Also, we have

bi|j =
∂bi
∂xj

−Gm
j

∂bi
∂ym

− bmΓm
ij = rij −

rijβ + ri0bj + r0jbi
F

+
(2Fjri0 + 2Fir0j + Fijr00)β + (Fibj + Fjbi)r00

2F 2
− FjFir00β

F 3
. (14)

By (13) and (14), we get

β|j = r0j −
1

2F 2

[
2Frj0β + Fr00bj − Fjr00β

]
,

s|j =
1

α
rj0 −

1

2α2F

[
αr00bj − sr00yj

]
.

(15)

The following holds

yi|j =
r00yiFj + (2α2r0j + r00yj)Fi + (2α2ri0 + r00yi)Fj + α2r00Fij

2F 2

− α2r00FiFj

F 3
− 4rj0yi + 2ri0yj + r00aij + 2α2rij

2F
. (16)
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Since F is a weakly stretch metric, we get Ji|jy
j = 0. Thus Ji|jy

jbi = 0. By
putting (13), (14), (15) and (16) in Ji|jy

jbi = 0, one can get the following
r00
A

[
2(s+b2)r00α

2β−4r00α
2b2F−2(2r0β+r00b

2)Fα2+6βFr00β+4βFr0α
2+αr0

−2β(s+b2)r00α
2−sr00+4(1+s)(αb2−sβ)r00α2

]
+
n+1

BF

[
2F 2(α2ri0|0b

i−r00|0β)

−4Fr0r00α
2+r00[3Fr00β+2Fr0α

2−(s+b2)r00α
2]+4Fr00(α

2r0−r00β)
]
α2

− n+1

4α3(1+s)2
(αb2−sβ)r00|0 = 0, (17)

where A := 16α6(1 + s)4, B := 4α6(1 + s)2. By a simple calculation, we get

rij|k =rij;k − 2

F

[
rijr0k + rikrj0 + rkjri0

]
+

1

2F 2

[
Fi(2r0kr0j + r00rkj)

+ Fj(2r0kri0 + r00rik) + 2Fk(2ri0r0j + r00rij) + (Fjkri0 + Fikr0j)r00
]

− Fk

F 3
(r0jFi + ri0Fj)r00. (18)

Multiplying (18) with yjyk implies that

ri0|0 = ri0;0 −
6

F
r00ri0 +

1

2F 2
(5r00Fi + 11Fri0)r00. (19)

Contracting (19) with yi implies that

r00|0 = r00;0 −
2

F
r200. (20)

By putting (19) and (20) in (17), we get

A5α
5 +A4α

4 +A3α
3 +A2α

2 +A1α+A0 = 0. (21)

By (21), we get (8) and (9). □

Proof (of Theorem 1.1). Since rij = caij then we have r00 = cα2, ri0;j = cxjyi and
r00;0 = c0α

2, where yi = aimy
m and c0 := cxiyi. Putting these relations in (8) and (9)

imply that

b2
[
(4n+3)βc2−2(n+1)c0

]
α4+2

[
(n+1)(1−b2)c0β2−(2n+1)c2β3

]
α2+2(n+1)c0β

4 = 0,[
(4n+3)b2c2

]
α4+

[
−(4n+3)β2c2−4(n+1)b2βc0

]
α2+4(n+1)c0β

3 = 0. (22)

From here, we have θα2 = c0β
4, where θ := δα2 + ηβ2, and δ and η are two 1-forms

on M . This means that α2|c0β, which contradicts with the positive-definiteness of
α. Then c0 = 0. In this case, (22) reduces to following (4n + 3)c2(b2α2 − β2) = 0.
It is easy to see that b2α2 − β2 = 0 contradicts with the positive-definiteness of α.
Hence, c = 0. In this case, (11) implies that β is parallel with respect to α and then
F reduces to a Berwald metric. □

Corollary 3.2. Let F = α+β be a non-Riemannian Randers metric on a manifold
M and β conformal 1-form with respect to α. Then F is a weakly stretch metric with
vanishing mean Berwald curvature if and only if it is a Berwald metric.

Proof. In [6], it is proved that a Randers metric has vanishing mean Berwald curvature
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if and only if the following holds

rij = −bisj − bjsi. (23)

Contracting (23) with yiyj implies that

r00 = −2βs0. (24)

Let β be a conformal 1-form with respect to α, i.e., rij = caij , where c = c(x) is a
scalar function on M . Multiplying it with yiyj yields

r00 = cα2. (25)

By (24) and (25), we have

cα2 = −2βs0. (26)

Since F is a non-Riemannian metric, then (26) implies that c = 0. In this case, we
get rij = 0 and (24) implies that si = 0. By the same method used in the proof
of [10, Theorem 1.3], we get sij = 0. Thus F reduces to a Berwald metric. □
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