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HARNACK ESTIMATES FOR THE POROUS MEDIUM EQUATION
WITH POTENTIAL UNDER GEOMETRIC FLOW

Shahroud Azami

Abstract. Let (M, g(t)), t ∈ [0, T ) be a closed Riemannian n-manifold whose Rieman-
nian metric g(t) evolves by the geometric flow ∂

∂t
gij = −2Sij , where Sij(t) is a symmetric

two-tensor on (M, g(t)). We discuss differential Harnack estimates for positive solution to
the porous medium equation with potential, ∂u

∂t
= ∆up + Su, where S = gijSij is the trace

of Sij , on time-dependent Riemannian metric evolving by the above geometric flow.

1. Introduction

There are many results about the Harnack estimates for parabolic equations. The
study of differential Harnack estimates and applications for parabolic equation origi-
nated in the famous paper [11] of Li and Yau, in which they discovered the celebrated
differential Harnack estimate for any positive solution to the heat equation with po-
tential on Riemannian manifolds with a fixed Riemannian metric. Afterwards, this
method played an important role in the study of geometric flows, for instance, Hamil-
ton proved Harnack inequalities for the Ricci flow on Riemannian manifolds with
weakly positive curvature operator [7] and mean curvature flow [8], see also [3, 5].
Also, many authors have obtained recently a differential Harnack estimate for solu-
tions of the parabolic equation on Riemannian manifold along the geometric flow, for
instance, Fang in [6] proved differential Harnack estimates for backward heat equation
with potentials under an extended Ricci flow and Ishida in [10] studied differential
Harnack estimates for heat equation with potentials along the geometric flow.

Let M be a closed Riemannian manifold with a one parameter family of Rieman-
nian metric g(t) evolving by the geometric flow

∂

∂t
gij(x, t) = −2Sij(x, t) (1)
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16 The porous medium equation with potential under geometric flow

where Sij is a general time-dependent symmetric two-tensor on (M, g(t)). For exam-
ple, (1) becomes Ricci flow whenever Sij = Rij is the Ricci tensor, where it introduced
by Hamilton [9].

In [4], Cao and Zhu obtained Aronson-Bénilan estimates for the porous medium
equation (PME) with potential

∂u

∂t
= ∆up +Ru (2)

along the Ricci flow, where R is the scalar curvature ofM . Differential equation (2) is
a nonlinear parabolic equation and has applications in mathematics and physics. For
p > 1 differential equations PME describe physical processes of gas through porous
medium, heat radiation in plasmas [15]. Motivated by the above works, in this paper,
we consider equation of type (2) with a linear forcing term

∂u

∂t
= ∆up + Su (3)

under the geometric flow (1), where S = gijSij , ∆ is the Laplace operator with respect
to the evolving metric g(t) of the geometric flow (1) and prove differential Harnack
estimates for positive solutions to (3). Notice also that for any smooth solution u
of (3) we have

∂

∂t
(

∫
M

u dµ) =

∫
M

∂u

∂t
dµ+ u

∂dµ

∂t
=

∫
M

(
∂u

∂t
− Su) dµ =

∫
M

∆up dµ = 0.

For p = 1, (3) is simply the equation ∂u
∂t = ∆u + Su, for which differential Harnack

estimates for positive solution have been studied in [10]. Suppose that u is a positive
solution of (3) and v = p

p−1u
p−1. Then we can rewrite (3) as follows

∂v

∂t
= (p− 1)v∆v + |∇v|2 + (p− 1)Sv. (4)

To state the main results of the current article, analogous to definition fromMüller [13]
we introduce evolving tensor quantities associated with the tensor Sij .

Definition 1.1. Let g(t) be a solution of the geometric flow (1) and let X = Xi ∂
∂xi ∈

X (M) be a vector field on (M, g(t)). We define

I(S,X) =(Rij − Sij)XiXj , H(S,X) =
∂S

∂t
+
S

t
− 2∇iSX

i + 2SijXiXj ,

D(S) =
∂S

∂t
−∆S − 2|Sij |2, E(S,X) =D(S) + 2I(S,X) + 2(2∇iSij −∇jS)X

j .

2. Main results

The main results of this paper are the following.

Theorem 2.1. Let g(t), t ∈ [0, T ) be a solution to the geometric flow (1) on a
complete Riemannian n-manifold M satisfying

E(S,X) ≥ 0, H(S,X) ≥ 0, Ric ≥ −(n− 1)k1, −k2g ≤ Sij ≤ k3g, S ≥ 0,
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for all vector fields X and each time t ∈ [0, T ). Suppose u is a smooth positive solution
to equation (3) with p > 1 and v = p

p−1u
p−1. Then for any d ∈ [2,∞), on the geodesic

ball Qρ,T , we have

|∇v|2

v
− 2

vt
v

− S

v
− d

t
≤ 2n(p− 1)

1 + n(p− 1)
(
E1vmax

ρ2
+ E2), (5)

where E1 =
(
p2n+ 1

2

√
k1ρ+

9
4

)
c1(p−1), E2 =

√
c2(k2+k3)

2+1 and c1, c2 are absolute
positive constants.

When ρ → ∞, we can get the gradient estimates for the nonlinear parabolic
equation (3).

Corollary 2.2. Let g(t), t ∈ [0, T ) be a solution to the geometric flow (1) on a
complete Riemannian n-manifold M satisfying

E(S,X) ≥ 0, H(S,X) ≥ 0, Ric ≥ −(n− 1)k1, −k2g ≤ Sij ≤ k3g, S ≥ 0,

for all vector fields X and each time t ∈ [0, T ). Suppose u is a bounded smooth positive
solution to equation (3) with p > 1 and v = p

p−1u
p−1. Then for any d ∈ [2,∞), we

have
|∇v|2

v
− 2

vt
v

− S

v
− d

t
≤ 2n(p− 1)

1 + n(p− 1)
E2, (6)

where E2 =
√
c2(k2 + k3)

2 + 1 and c2 is absolute positive constant.

As an application, we get the following Harnack inequality for v.

Theorem 2.3. With the same assumption as in Corollary 2.2, if d ≥ 2, then for
any points (x1, t1) and (x2, t2) on M × [0, T ) with 0 < t1 < t2 we have the following
estimate

v(x1, t1) ≤ v(x2, t2)(
t2
t1
)

d
2 exp

( Γ

2vmin
+ (

n(p− 1)

1 + n(p− 1)
E2)(t2 − t1)

)
, (7)

where E2 is the constants in Corollary 2.2 and Γ = infγ
∫ t2
t1
(S + |dγdt |

2) dt with the

infimum taking over all smooth curves γ(t) in M , t ∈ [t1, t2], so that γ(t1) = x1 and
γ(t2) = x2.

Our results in this article are similar to those of Cao and Zhu [4] in the case
Sij = Rij .

3. Examples

3.1 Static Riemannian manifold

In this case we have Sij = 0 and S = 0. Then D = 0, H(S,X) = 0 and I(S,X) =
RijXiXj . Thus the assumption in Theorems 2.1, 2.3 and Corollary 2.2 can be replaced
by Rij ≥ 0.



18 The porous medium equation with potential under geometric flow

3.2 The Ricci flow

The Ricci flow was defined for the first time by Hamilton as follows

∂

∂t
gij = −2Rij .

In this case we get Sij = Rij and S = R the scalar curvature. Along the Ricci flow
we have

∂R

∂t
= ∆R+ 2|Ric|2, 2∇iRil −∇lR = 0.

Therefore, I(S,X) = 0, D(S) = 0, E(S,X) = 0, H(S,X) = ∂R
∂t + R

t − 2∇iRX
i +

2RijXiXj .
Notice that for any vector field X = Xi ∂

∂xi on M , if g(t) is a complete solution
to the Ricci flow with bounded curvature and nonnegative curvature operator then
from [7] we have H(S,X) ≥ 0, that is g(t) has weakly positive curvature operator.
Hence, the assumption in Theorems 2.1, 2.3 and Corollary 2.2 hold.

3.3 List’s extended Ricci flow

Extended Ricci flow was defined by List in [12] as follows{
∂
∂tgij = −2Rij + 4∇if∇jf,
∂f
∂t = ∆f, (g(0), f(0)) = (g0, f0),

where f : M → R is a smooth function. In this case, Sij = Rij − 2∇if∇jf and
S = R− 2|∇f |2. Along the extended Ricci flow we have

∂S

∂t
= ∆S + 2|Ric|2 + 4|∆f |2, 2∇iSil −∇lS + 4∆f∇lf = 0.

Therefore, we obtain I(S,X) = 2(∇Xf)
2 ≥ 0, D(S) = 4|∆f |2, E(S,X) = 4|∆f −

∇Xf |2 ≥ 0.

3.4 Müller coupled with harmonic map flow

Let (N,h) be a fixed Riemannian manifold. The harmonic-Ricci flow on M was
introduced by Müller in [14] as follows{

∂
∂tgij = −2Rij + 2α(t)∇if∇jf,
∂f
∂t = τgf, (g(0), f(0)) = (g0, f0)

where τgf is the tension field of the map f : M → N with respect to the metric
g(t) and α(t) is a positive non-increasing real function with respect to t. In this case,
Sij = Rij − α(t)∇if∇jf and S = R− α(t)|∇f |2. Along this flow we have

∂S

∂t
= ∆S + 2|Ric|2 + 2α(t)|τgf |2 − (

∂α(t)

∂t
)|∇f |2, 2∇iSil −∇lS + 2α(t)τgf∇lf = 0.

Therefore, we obtain

I(S,X) = α(t)∇if∇jfXiXj = α(t)(∇Xf)
2 ≥ 0,

D(S) = 2α(t)|τgf |2 − (
∂α(t)

∂t
)|∇f |2,
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and E(S,X) = 2α(t)|τgf −∇Xf |2 − (
∂α(t)

∂t
)|∇f |2.

Thus, E(S,X) ≥ 0 holds if α(t) ≥ 0 ia a non-increasing function. Notice that,
to the best our knowledge, it is still unknown whether H(S,X) ≥ 0 is preserved
under harmonic-Ricci flow in particular case of extended Ricci flow under suitable
assumptions.

4. Proofs of the results

In this section, we suppose that u is a smooth positive solution to the equation (3)
and v = p

p−1u
p−1. In order to prove the main results, we need the following lemmas

and proposition.

Lemma 4.1. Let (M, g(t)) be a complete solution to the geometric flow (1) in some
time interval [0, T ]. Suppose that v is a positive solution of (4),

L =
∂

∂t
− (p− 1)v∆ (8)

and F =
|∇v|2

v
− b

vt
v

+ (1− b)
S

v
− d

t

=− b(p− 1)∆v + (1− b)
|∇v|2

v
− b(p− 1)S + (1− b)

S

v
− d

t
. (9)

Then for any constants b, d we have

L(F ) =2p∇iF∇iv − [
b− 1

v
+ p− 1]

(∂S
∂t

− 2∇iS∇iv + 2Sij∇iv∇jv
)

− 2(p− 1)(Rij − Sij)∇iv∇jv − 2(p− 1)|∇2v +
b

2
Sij |2 +

(b− 2)2

2
(p− 1)|Sij |2

+ (p− 1)(1− b)D(S)− 1

b
F 2 − [(p− 1)S − 2(1− b)

b

S

v
+

2d

bt
]F

− (1− b)2

b

S2

v2
+ (1− b)

|∇v|2

v2
S +

1− b

b

|∇v|4

v2
− d2

bt2
− d(p− 1)

S

t

+ 2
1− b

b

d

t

S

v
+
d

t2
− b(p− 1)(2∇iSil −∇lS)∇lv. (10)

Proof. First of all, we have the following evolution equations, under the flow (1),

∂

∂t
(∆v) =2Sij∇i∇jv +∆(vt)− gij

∂

∂t
(Γk

ij)∇kv (11)

∂

∂t
|∇v|2 =2Sij∇iv∇jv + 2∇ivt∇iv (12)

gij
∂

∂t
Γk
ij =− gkl(2∇iSil −∇lS). (13)

Then from (4), (11) and (13) we get

∂

∂t
(∆v) =2Sij∇i∇jv + (p− 1)v∆2v + (p− 1)(∆v)2 + 2(p− 1)∇i(∆v)∇iv
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+∆|∇v|2 + (p− 1)∆(Sv) + (2∇iSil −∇lS)∇lv. (14)

Using the Bochner-Weitzebnböck formula 1
2∆|∇v|2 = ∇i(∆v)∇iv+|∇2v|2+Rij∇iv∇jv,

we obtain

L(∆v) =2p∇i(∆v)∇iv + 2Sij∇i∇jv + (p− 1)(∆v)2 + 2|∇2v|2 + 2Rij∇iv∇jv

+ (p− 1)v∆S + 2(p− 1)∇iS∇iv + (p− 1)S∆v + (2∇iSil −∇lS)∇lv (15)

On the other hand, again (4) and (12) imply that

L(|∇v|2) =2Sij∇iv∇jv + 2(p− 1)|∇v|2∆v + 2∇i|∇v|2∇iv + 2(p− 1)v∇iS∇iv

+ 2(p− 1)S|∇v|2 − 2(p− 1)v|∇2v|2 − 2(p− 1)vRij∇iv∇jv. (16)

It follows that

L( |∇v|
2

v
) =

1

v
L(|∇v|2)− |∇v|2

v2
L(v) + 2(p− 1)∇i(

|∇v|2

v
)∇iv

=2p∇i(
|∇v|2

v
)∇iv +

2

v
Sij∇iv∇jv + 2(p− 1)

|∇v|2

v
∆v +

|∇v|4

v2

+ 2(p− 1)∇iS∇iv + (p− 1)
|∇v|2

v
S − 2(p− 1)|∇2v|2

− 2(p− 1)Rij∇iv∇jv. (17)

Also, we obtain

L(S
v
) = 2p∇i

S

v
∇iv +

|∇v|2

v2
S − 2

v
∇iS∇iv +

1

v

∂S

∂t
− (p− 1)

S2

v
− (p− 1)∆S. (18)

From (9), (15), (17) and (18) we get

L(F ) =(1− b)L( |∇v|
2

v
)− b(p− 1)L(∆v)− b(p− 1)L(S) + (1− b)L(S

v
)− L(d

t
)

=2p∇iF∇iv +
1− b

v

(∂S
∂t

− 2∇iS∇iv + 2Sij∇iv∇jv
)
− 2(p− 1)|∇2v|2

− (p− 1)
(
b
∂S

∂t
+ (1− b)∆S − 2∇iS∇iv + 2Rij∇iv∇jv

)
− 2b(p− 1)Sij∇i∇jv − b(p− 1)2(∆v)2 + 2(1− b)(p− 1)

|∇v|2

v
∆v

− b(p− 1)2S∆v + (1− b)(p− 1)
|∇v|2

v
S + (1− b)

|∇v|4

v2
+ (1− b)

|∇v|2

v2
S

− (1− b)(p− 1)
S2

v
− b(p− 1)(2∇iSil −∇lS)∇lv +

d

t2
.

Since ∆S = ∂S
∂t − 2|Sij |2 −D(S) and

− b(p− 1)2(∆v)2 + 2(1− b)(p− 1)
|∇v|2

v
∆v − b(p− 1)2S∆v

+ (1− b)(p− 1)
|∇v|2

v
S + (1− b)

|∇v|4

v2
+ (1− b)

|∇v|2

v2
S − (1− b)(p− 1)

S2

v

=− 1

b

(
−F + (1− b)

|∇v|2

v
− b(p− 1)S + (1− b)

S

v
− d

t

)2
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− 2
1− b

b

|∇v|2

v

(
F − (1− b)

|∇v|2

v
+ b(p− 1)S − (1− b)

S

v
+
d

t

)
+ (p− 1)S

(
F − (1− b)

|∇v|2

v
+ b(p− 1)S − (1− b)

S

v
+
d

t

)
+ (1− b)(p− 1)

|∇v|2

v
S + (1− b)

|∇v|4

v2
+ (1− b)

|∇v|2

v2
S − (1− b)(p− 1)

S2

v

=− 1

b
F 2 − [(p− 1)S − 2(1− b)

b

S

v
+

2d

bt
]F − (1− b)2

b

S2

v2
+ (1− b)

|∇v|2

v2
S

+
1− b

b

|∇v|4

v2
− d2

bt2
− d(p− 1)

S

t
+ 2

1− b

b

d

t

S

v
,

we have

L(F ) =2p∇iF∇iv +
1− b

v

(∂S
∂t

− 2∇iS∇iv + 2Sij∇iv∇jv
)

− (p− 1)
(∂S
∂t

− 2∇iS∇iv + 2Rij∇iv∇jv
)
+ 2(p− 1)(1− b)|Sij |2

+ (p− 1)(1− b)D(S)− 2(p− 1)|∇2v|2 − 2b(p− 1)Sij∇i∇jv −
1

b
F 2

− [(p− 1)S − 2(1− b)

b

S

v
+

2d

bt
]F − (1− b)2

b

S2

v2
+ (1− b)

|∇v|2

v2
S +

1− b

b

|∇v|4

v2

− d2

bt2
− d(p− 1)

S

t
+ 2

1− b

b

d

t

S

v
+
d

t2
− b(p− 1)(2∇iSil −∇lS)∇lv.

The equation (10) follows directly from here. □

Definition 4.2. Suppose that g(t) evolves by (1). Let S be the trace of Sij and
X = Xi ∂

∂xi be a vector field on M . We define

Eb(S,X) = (b− 1)D(S) + 2I(S,X) + b(2∇iSij −∇jS)X
j

where b is a constant.

Proposition 4.3. Let g(t), t ∈ [0, T ) be a solution to the geometric flow (1) on a
closed Riemannian n-manifold M satisfying

Eb(S,X) ≥ 0, H(S,X) ≥ 0, Ric ≥ −(n− 1)k1, −k2g ≤ Sij ≤ k3g, S ≥ 0,

for all vector fields X and each time t ∈ [0, T ). Suppose u is a smooth positive solution
to the equation (3) with p > 1 and v = p

p−1u
p−1. Then for any b ∈ [2,∞) and d ≥ b,

on the geodesic ball Qρ,T , we have

|∇v|2

v
− b

vt
v

− (b− 1)
S

v
− d

t
≤ bα(

E4vmax

ρ2
+ E5) + E6, (19)

where α = bn(p−1)
2+bn(p−1) , E4 =

(
b2p2n
4(b−1) +

√
k1ρ
2 + 9

4

)
c3(p − 1), E5 =

√
c4(k2 + k3)

2 +

2(b−2)
b (k2 + k3) + 1 and E6 = n(k2 + k3)(b− 2)

√
b(p−1)α

2 .

Proof. Let x, x0 ∈M and d(x, x0, t) be the geodesic distance x from x0 with respect
to the metric g(t). Choose a smooth cut-off function ψ(s) defined on [0,+∞) with
ψ(s) = 1 for 0 ≤ s ≤ 1

2 , ψ(s) = 0 for 1 ≤ s and ψ(s) > 0 for 1
2 < s < 1 such that
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−c1ψ
1
2 ≤ ψ′(s) ≤ 0 and −c2 ≤ ψ′′(s) ≤ c2 for some absolute constants c1, c2 > 0. For

any fixed point x0 ∈M and any positive number ρ > 0, we define ϕ(x, t) = ψ( r(x,t)2ρ )

on Qρ,T = B(x0, 2ρ) × [0, T ) ⊂ M × [0,+∞), where B(x0, 2ρ) is the ball of radius
2ρ > 0 centered at x0 and r(x, t) = d(x, x0, t). Using an argument of Calabi [2],
since ψ(s) is in general Lipschitz we can assume everywhere smoothness of ϕ(x, t)
with support in Qρ,T . By the Laplacian comparison theorem in [1], the Laplacian of

the distance function satisfies ∆r(x, t) ≤ (n − 1)
√

|k1| coth(2
√
|k1|ρ), for all x ∈ M ,

d(x, x0) ≤ 2ρ. From the definition of ϕ, a direct calculation shows that

|∇ϕ|2

ϕ
=

|ψ′|2|∇r|2

4ψρ2
≤ c1
ρ2
, and

∆ϕ =
ψ′∆r

2ρ
+
ψ′′|∇r|2

4ρ2
≥ − c1

2ρ
(n− 1)

√
|k1| coth(2

√
|k1|ρ)−

c1
4ρ2

≥ −
c1
√

|k1|
2ρ

− c1
4ρ2

.

On the other hand, along the geometric flow (1), for a fixed smooth path γ : [a, b] →M

whose length at time t is given by d(γ) =
∫ b

a
|γ′(s)|g(t) ds, where s is the arc length

along the path, we have

∂d(γ)

∂t
= −

∫ b

a

|γ′(s)|−1
g(t)Sij(X,X) ds,

where X is the unit tangent vector to the path γ. −k2g ≤ Sij ≤ k3g results that
−(k2 + k3)g ≤ Sij ≤ (k2 + k3)g, hence supM |Sij |2 ≤ n(k2 + k3)

2. Now, we get

∂ϕ

∂t
=
ψ′

2ρ

∂r

∂t
=
ψ′

2ρ

∫
γ

Sij(X,X) ds ≤
√
c2(k2 + k3)

2.

Suppose that tϕF achieves its positive maximum value at (v0, t0). Then at (x0, t0),
we have ∇(tϕF )(x0, t0) = 0, ∂

∂t (tϕF )(x0, t0) ≥ 0, L(tϕF )(x0, t0) ≥ 0. Suppose that

y = |∇v|2
v + S

v , ỹ = tϕy, z = vt
v + S

v + d
bt , z̃ = tϕz, then F = y− bz, tϕF = ỹ− bz̃ and

from Lemma 4.1 we get

L(F ) =2p∇iF∇iv − [
b− 1

v
+ p− 1]

(∂S
∂t

− 2∇iS∇iv + 2Sij∇iv∇jv
)

− 2(p− 1)(Rij − Sij)∇iv∇jv − 2(p− 1)|∇2v +
b

2
Sij |2

+
(b− 2)2

2
(p− 1)|Sij |2 + (p− 1)(1− b)D(S)− 1

b
F 2

− [(p− 1)S − 2(1− b)

b

S

v
+

2d

bt
]F − b− 1

b
y2 − (b− 1)(b− 2)

b
y
S

v

− d2

bt2
− d(p− 1)

S

t
+ 2

1− b

b

d

t

S

v
+
d

t2
− b(p− 1)(2∇iSil −∇lS)∇lv.

Therefore,

tϕL(tϕF ) =tϕ2F + t2ϕϕtF + t2ϕ2L(F )− (p− 1)t2ϕvF∆ϕ− 2t2(p− 1)ϕv∇iϕ∇iF

=ϕ(ỹ − bz̃) + tϕt(ỹ − bz̃)− (p− 1)tv∆ϕ(ỹ − bz̃)− 2t2(p− 1)ϕv∇iϕ∇iF

+ 2pt2ϕ2∇iF∇iv − t2ϕ2[
b− 1

v
+ p− 1]H(S,∇v)− 2(p− 1)t2ϕ2|∇2v
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+
b

2
Sij |2 +

(b− 2)2

2
(p− 1)t2ϕ2|Sij |2 −

1

b
(ỹ − bz̃)2

− [(p− 1)S − 2(1− b)

b

S

v
+

2d

bt
]t2ϕ2F − b− 1

b
ỹ2 − (b− 1)(b− 2)

b
tϕ
S

v
ỹ

− d(p− 1)tϕ2S + 2
1− b

b
dtϕ2

S

v
− t2ϕ2(p− 1)Eb(S,∇v)

− d

b
(d− b)ϕ2 + tϕ2(

b− 1

v
+ p− 1)S.

On the other hand, we have

t20ϕ
2∇iF∇iv = −t20ϕF∇iϕ∇iv ≤ t20ϕF |∇iϕ||∇iv| ≤

√
c1
ρ
ỹ

1
2 (t0v)

1
2 (ỹ − bz̃),

− (p− 1)t0v∆ϕ(ỹ − bz̃) ≤ (p− 1)t0v(
c1
√
k1

2ρ
+

c1
4ρ2

)(ỹ − bz̃),

− 2(p− 1)t20vϕ∇iϕ∇iF = 2(p− 1)t20v|∇ϕ|2F ≤ 2(p− 1)t0v
c1
ρ2

(ỹ − bz̃),

and − 2(p− 1)t20ϕ
2|∇2v +

b

2
Sij |2 ≤ −2(p− 1)t20ϕ

2

n
(∆v +

b

2
S)2

=− 2(p− 1)t20ϕ
2

n

(
− F

b(p− 1)
− b− 1

b(p− 1)

|∇v|2

v
+
b− 2

2
S − b− 1

b(p− 1)

S

v

)2

=− 2

b2n(p− 1)

(
ỹ − bz̃ + (b− 1)ỹ − b(b− 2)

2
(p− 1)t0ϕS

)2

.

Thus 0 ≤t0ϕL(t0ϕF )

≤(ỹ − bz̃) + t0
√
c2(k2 + k3)

2(ỹ − bz̃) + (p− 1)t0v(
c1
√
k1

2ρ
+

c1
4ρ2

)(ỹ − bz̃)

+ 2(p− 1)t0v
c1
ρ2

(ỹ − bz̃) + 2p

√
c1
ρ
ỹ

1
2 (t0v)

1
2 (ỹ − bz̃)

− 2

b2n(p− 1)

(
ỹ − bz̃ + (b− 1)ỹ − b(b− 2)

2
(p− 1)t0ϕS

)2

+
(b− 2)2

2
(p− 1)t20ϕ

2S2 − 1

b
(ỹ − bz̃)2.

Notice that (r + s)2 ≥ r2 + 2rs results in

− 2

b2n(p− 1)

(
ỹ − bz̃ + (b− 1)ỹ − b(b− 2)

2
(p− 1)t0ϕS

)2

≤− 2

b2n(p− 1)
(ỹ − bz̃)2 − 4(b− 1)

b2n(p− 1)
ỹ(ỹ − bz̃) +

2(b− 2)

bn
t0ϕS(ỹ − bz̃).

Hence

0 ≤(ỹ − bz̃) + t0
√
c2(k2 + k3)

2(ỹ − bz̃) + (p− 1)t0v(
c1
√
k1

2ρ
+

c1
4ρ2

)(ỹ − bz̃)
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+ 2(p− 1)t0v
c1
ρ2

(ỹ − bz̃) + 2p

√
c1
ρ
ỹ

1
2 (t0v)

1
2 (ỹ − bz̃)− 1

bα
(ỹ − bz̃)2

− 4(b− 1)

b2n(p− 1)
ỹ(ỹ − bz̃) +

2(b− 2)

bn
t0ϕS(ỹ − bz̃) +

(b− 2)2

2
(p− 1)t20ϕ

2S2

≤(ỹ − bz̃)

[
− 4(b− 1)

b2n(p− 1)
ỹ + 2p

√
c1
ρ
ỹ

1
2 (t0v)

1
2 + (

c1
√
k1

2ρ
+

c1
4ρ2

+ 2
c1
ρ2

)(p− 1)t0v

]
+ (ỹ − bz̃)

[
t0
√
c2(k2 + k3)

2 +
2(b− 2)

b
t0(k2 + k3) + 1

]
+

(b− 2)2

2
(p− 1)t20n

2(k2 + k3)
2 − 1

bα
(ỹ − bz̃)2,

where α = bn(p−1)
2+bn(p−1) . For a > 0, the inequality −ax2 + bx ≤ b2

4a implies that

− 4(b− 1)

b2n(p− 1)
ỹ + 2p

√
c1
ρ
ỹ

1
2 (t0v)

1
2 ≤ b2p2nc1

4(b− 1)ρ2
(p− 1)t0v.

Therefore,

0 ≤(ỹ − bz̃)

[(
b2p2nc1

4(b− 1)ρ2
+
c1
√
k1

2ρ
+

c1
4ρ2

+ 2
c1
ρ2

)
(p− 1)t0v + t0

√
c2(k2 + k3)

2

+
2(b− 2)

b
t0(k2 + k3) + 1

]
+

(b− 2)2

2
(p− 1)t20n

2(k2 + k3)
2 − 1

bα
(ỹ − bz̃)2.

If 0 ≤ −ax2 + bx+ c for a, b, c > 0, then x ≤ b
a +

√
c
a . Hence

ỹ − bz̃ ≤bα
[(

b2p2nc1
4(b− 1)ρ2

+
c1
√
k1

2ρ
+

c1
4ρ2

+ 2
c1
ρ2

)
(p− 1)t0v + t0

√
c2(k2 + k3)

2

+
2(b− 2)

b
t0(k2 + k3) + 1

]
+ t0n(k2 + k3)(b− 2)

√
b(p− 1)α

2
.

If d(x, x0, τ) < ρ, then ϕ(x, τ) = 1. Since (x0, t0) is the maximum point for tϕF in
Qρ,T , we have τF (x, τ) = (τϕF )(x, τ) ≤ (t0ϕF )(x0, t0), for all x ∈ M , such that
d(x, x0, τ) < ρ and τ ∈ [0, T ] is arbitrary. Then we have

F ≤bα
[(

b2p2nc1
4(b− 1)ρ2

+
c1
√
k1

2ρ
+

c1
4ρ2

+ 2
c1
ρ2

)
(p− 1)v +

√
c2(k2 + k3)

2

+
2(b− 2)

b
(k2 + k3) + 1

]
+ n(k2 + k3)(b− 2)

√
b(p− 1)α

2
.

Proof of Theorem 2.1. In Proposition 4.3, suppose that b = 2. Then inequal-
ity (5) follows from (19).

Proof of Corollary 2.2. If u is bounded onM× [0, T ], then assume that ρ→ ∞.
Then the inequality of Theorem 2.1 yields (6).

Proof of Theorem 2.3. For any curve γ(t), t ∈ [t1, t2], from γ(t1) = x1 to
γ(t2) = x2, we have

log
v(x2, t2)

v(x1, t1)
=

∫ t2

t1

d

dt
log v(γ(t), t) dt =

∫ t2

t1

vt
v

+
∇v
v

dγ

dt
dt.
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From the inequality xy ≥ −x2

2 − y2

2 for any x, y, it follows ∇v.dγdt ≥ − |∇v|2
2 − 1

2 |
dγ
dt |

2.
Hence,

log
v(x2, t2)

v(x1, t1)
≥

∫ t2

t1

(
vt
v

− |∇v|2

2v
− 1

2v
|dγ
dt

|2) dt.

Corollary 2.2 implies that

log
v(x2, t2)

v(x1, t1)
≥
∫ t2

t1

(
− n(p− 1)

1 + n(p− 1)
E2 −

S

2vmin
− d

2t
− 1

2vmin
|dγ
dt

|2
)
dt

=− n(p− 1)

1 + n(p− 1)
E2(t2 − t1)− (

t2
t1
)

d
2 − 1

2vmin

∫ t2

t1

(
S + |dγ

dt
|2
)
dt.

By taking exponents, we arrive at (7).
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