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Abstract. In this paper, we study the notions of point-open topology Cp(X,H), open-
point topology Ch(X,H) [resp. Ch(G,H)] and bi-point-open topology Cph(X,H) [resp.
Cph(G,H)] on C(X,H) [resp.C(G,H)], the set of all continuous functions from a topo-
logical space X (topological group G) to a topological group H. In this setting, we study
the countability, separation axioms and metrizability. The equivalent conditions are given
so that the space Ch(G,H) is a zero-dimensional topological group. Further, if G is H⋆⋆-
regular, then Ch(G,H) is Hausdorff if and only if G is discrete. It is shown that under
certain conditions the topological groups Cp(X,H), Ch(X,H) and Cph(X,H) are ω-narrow.
Sufficient conditions are given for the topological spaces Cp(X,H), Ch(X,H) and Cph(X,H)
to be discretely selective and to have a disjoint shrinking.

1. Introduction

The space of real-valued continuous functions are studied extensively in the literature
on topological spaces [1–3,5,6,11]. Let X be any topological space and G, H be any
topological groups. Then C(X,H) denotes the group of all continuous functions from
X to H, equipped with the “ pointwise group operations”. That is, the product of
f ∈ C(X,H) and g ∈ C(X,H) is the function fg ∈ C(X,H) defined by fg(x) =
f(x)g(x) for all x ∈ X, and the inverse element of f is the function h ∈ C(X,H)
defined by h(x) = (f(x))−1 for all x ∈ X. The space C(X,H) with the point-
open (or pointwise convergence) topology is denoted by Cp(X,H) and was studied
by Shakhmatov and Spěvák [14]. It has a subbase consisting of sets of the form
[x, V ]+ = {f ∈ C(X,H) : f(x) ∈ V }, where x ∈ X and V is an open subset of H.
We obtain further properties of Cp(X,H).

2020 Mathematics Subject Classification: 54C35, 54A10, 54C05, 54D10, 54D15, 54E35,
54H11.

Keywords and phrases: Point-open topology; open-point topology; bi-point-open topology;
topological group; zero dimensional; ω-narrow; disjoint shrinking; discrete selection.

56



B. K. Tyagi, S. Luthra 57

Jindal, McCoy and Kundu [8] introduced two new topologies on C(X,R), namely
the open-point topology and the bi-point-open topology. These two topologies on
C(X,R) have been studied in [9, 10, 13]. We study these two topologies on C(X,H)
[resp. C(G,H)], the set of all continuous functions from a topological space X (topo-
logical group G) to a topological group H. The space C(X,H) with the open-point
topology h is denoted by Ch(X,H). It has a subbase consisting of sets of the form
[U, r]− = {f ∈ C(X,H) : f−1(r) ∩ U ̸= ∅}, where r ∈ H and U is an open subset of
X. When H is the real line, the subbasis for the open-point topology in [8] turns out
to be the same as the open-point topology on C(X,H) above.

Now the bi-point-open topology on C(X,H) is obtained by joining of point-open
topology and the open-point topology on C(X,H). In other words, it is the topology
having subbasic open sets of both kinds: [x, V ]+ and [U, r]−, where x ∈ X, V is an
open subset of H, U is an open subset of X and r ∈ H. The bi-point-open topology
on the space C(X,H) is denoted by ph and the space C(X,H) equipped with the
bi-point-open topology ph is denoted by Cph(X,H). One can also view the bi-point-
open topology on C(X,H) as the weak topology on C(X,H) generated by the identity
maps id1 : C(X,H) → Cp(X,H) and id2 : C(X,H) → Ch(X,H).

The behaviors of the spaces Ch(X,H) and Cph(X,H) may be quite different from
the behaviors of Ch(X,R) with open-point topology and Cph(X,R) with the bi-point-
open topology, for instance, Ch(X,R) is never Lindelöf nor second countable. In
contrast to [8], it is shown that under some conditions Ch(X,H) is neither Lindelöf
nor second countable (see Theorem 4.8 and Corollary 4.9) and under certain other
conditions it may be second countable space (see Theorem 4.11). In Section 3, we give
a characterization for Ch(G,H) to be regular and Hausdorff. It is shown that if G is
H⋆⋆-regular, then some equivalent conditions are given so that the space Ch(G,H)
is a zero-dimensional topological group and consequently, it follows that three types
of regularity (H⋆⋆-regularity, H⋆-regularity and H-regularity) coincide on the space
Ch(G,H). We show how the topological property, namely, zero-dimensionality of
Cp(X,H) depends on those of H. In Section 4, we study properties like countability
and metrizability. Also it is found that if H is an ω-narrow topological group, then
Cp(X,H) is an ω-narrow topological group. Further, it is shown that if X is discrete
and H is countable, the topological groups Ch(X,H) and Cph(X,H) are ω-narrow.
In Section 5, we give sufficient conditions for topological spaces Cp(X,H), Ch(X,H)
and Cph(X,H) to be discretely selective and to have a disjoint shrinking. In the final
Section 6, we give some properties of the restriction map.

In notation and the terminology, we follow [6] if not stated otherwise. All topolog-
ical spaces are assumed to be Tychonoff (T1+completely regular) and all topological
groups are assumed to be Hausdorff. N denotes the set of all natural numbers and
ω = N ∪ {0}. R is the additive group of reals with its usual topology. Hd denotes
the group H with discrete topology. The identity elements of group G and H are
denoted by e and ẽ, respectively. Ac denotes the complement of A in a space. The
letters i, j, k, l,m, n denote natural numbers. The symbols Ve and Vẽ denote the
neighborhood basis at e and ẽ in G and H, respectively.
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2. Preliminaries

In this section, a basis is obtained for each of the spaces discussed above. These bases
are useful in establishing many properties of these spaces.

Proposition 2.1 ([3]). Let B be a basis of a topological group H. Then the collection
A = {[x1, B1]

+ ∩ . . . ∩ [xn, Bn]
+ : n ∈ N, xi ∈ X, Bi ∈ B} is a basis of the space

Cp(X,H).

Proposition 2.2. Let B be a basis of a space X. Then the collection A = {[B1, r1]
−

∩ . . . ∩ [Bn, rn]
− : n ∈ N, ri ∈ H, Bi ∈ B} is a basis of the space Ch(X,H).

Proposition 2.3. Let BX and BH be bases of space X and topological group H,
respectively. Then the collection A = {[x1, B1]

+ ∩ . . . ∩ [xn, Bn]
+ ∩ [V1, r1]

− ∩ . . . ∩
[Vm, rm]− : xi ∈ X, rj ∈ H, Bi ∈ BH and Vj ∈ BX , 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis
of the space Cph(X,H).

The following two results are proved similarly to [8, Proposition 2.1 and 2.2].

Theorem 2.4. For each f ∈ C(G,H) and any open set A in Ch(G,H) containing f ,
there exist distinct points y1, . . . , ym in G, points r1, . . . , rm in H and U ∈ Ve such
that f ∈ [y1U, r1]

− ∩ . . . ∩ [ymU, rm]− ⊆ A, where ri = f(yi) for each i = 1, 2, . . . ,m
and for i ̸= j, yiU ∩ yjU = ∅.

Proof. Let A be any open set in Ch(G,H) containing f . Then there exists a basic
open set B = [V1, r1]

− ∩ . . . ∩ [Vn, rn]
− such that f ∈ B ⊆ A, where ri ∈ H and each

Vi is an open set in G. So there exist yi ∈ Vi such that f(yi) = ri for 1 ≤ i ≤ n. If for
some 1 ≤ i < j ≤ n, yi = yj , then ri = rj and yj ∈ Vi ∩ Vj ̸= ∅. As Vi ∩ Vj is open in
G containing yj , there exists a W ∈ Ve such that yjW ⊆ Vi ∩Vj . So f ∈ [yjW, rj ]

− ⊆
[Vi, ri]

− ∩ [Vj , rj ]
−. Take B1 = [V1, r1]

− ∩ . . . ∩ [Vi−1, ri−1]
− ∩ [Vi+1, ri+1]

− ∩ . . . ∩
[Vj−1, rj−1]

− ∩ [Vj+1, rj+1]
− ∩ . . . ∩ [Vn, rn]

− ∩ [yjW, rj ]
−. Clearly, f ∈ B1 ⊆ B. By

proceeding in this way, we get a basic open set B2 = [U1, r1]
− ∩ . . . ∩ [Um, rm]−

such that m ≤ n, f ∈ B2 ⊆ A, and for each 1 ≤ i ≤ m, there exist yi ∈ Ui with
f(yi) = ri and these yi are distinct. Since G is Hausdorff, there exist open sets
Di and Dj , Di ∩ Dj = ∅ for i ̸= j such that yi ∈ D̃i = Di ∩ Ui for all i. Then

e ∈ y−1
1 D̃1 ∩ . . . ∩ y−1

m D̃m = W1. Since G is regular, there exists a U in Ve such
that e ∈ U ⊆ U ⊆ W1. Hence, f ∈ [y1U, r1]

− ∩ . . . ∩ [ymU, rm]− ⊆ A such that
yiU ∩ yjU = ∅ as D̃i ∩ D̃j = ∅. □

Theorem 2.5. For each f ∈ C(X,H) and any open set A in Cp(X,H) containing f ,
there exist distinct points x1, . . . , xm in X, points z1, . . . , zm in H and W ∈ Vẽ such
that f ∈ [x1, z1W ]+∩. . .∩[xm, zmW ]+ ⊆ A, where zi = f(xi) for each i = 1, 2, . . . ,m.

Proof. Let A be any open set in Cp(X,H) containing f . Then there exists a basic
open set B = [x1, V1]

+ ∩ . . . ∩ [xn, Vn]
+ in Cp(X,H) such that f ∈ B ⊆ A. So

f(xi) ∈ Vi. We know tha for any x ∈ X and open sets U1 and U2 in H, [x, U1]
+ ∩

[x, U2]
+ = [x, U1 ∩ U2]

+. Therefore, if for some 1 ≤ i < j ≤ n, xi = xj , then
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f ∈ [x1, V1]
+ ∩ . . .∩ [xi−1, Vi−1]

+ ∩ [xi+1, Vi+1]
+ ∩ . . .∩ [xj−1, Vj−1]

+ ∩ [xj+1, Vj+1]
+ ∩

. . . ∩ [xn, Vn]
+ ∩ [xi, Vi ∩ Vj ]

+ ⊆ B. By proceeding in this way, we get a basic open
set B1 = [x1, V1]

+ ∩ . . . ∩ [xm, Vm]+ such that m ≤ n, f ∈ B1 ⊆ A and xi ∈ X are
distinct. Now f ∈ B1 implies that f(xi) = zi ∈ Vi for each 1 ≤ i ≤ m. As Vi is open
in H containing zi, there exist Wi ∈ Vẽ such that ziWi ⊆ Vi. Take W ∈ Vẽ such
that W ⊆ W1 ∩ . . . ∩Wm. Clearly, ziW ⊆ Vi for each 1 ≤ i ≤ m which implies that
[xi, ziW ]+ ⊆ [xi, Vi]

+. So f ∈ [x1, z1W ]+ ∩ . . . ∩ [xm, zmW ]+ ⊆ A, where xi ∈ X are
distinct, zi ∈ H and W ∈ Vẽ. □

Theorem 2.6. For each f ∈ C(G,H) and any open set A in Cph(G,H) containing
f , there exist distinct points x1, . . . , xm in G, distinct points y1, . . . , yn in G, points
r1, . . . , rn, z1, . . . , zm in H, U ∈ Ve and W ∈ Vẽ such that f ∈ [x1, z1W ]+ ∩ . . . ∩
[xm, zmW ]+ ∩ [y1U, r1]

− ∩ . . .∩ [ynU, rn]
− ⊆ A, where zi = f(xi) for each 1 ≤ i ≤ m,

rj = f(yj) for each 1 ≤ j ≤ n and whenever i ̸= k, yiU ∩ ykU = ∅.

3. A characterization of zero-dimensional topological group

First, we show that the space Ch(X,H) is always T1, which generalizes [8, Proposi-
tion 3.1].

Theorem 3.1. For any space X and topological group H, Ch(X,H) is a T1 space.

Proof. Let f ∈ C(X,H) be arbitrary and g ∈ C(X,H)\{f}. Then there exists a point
x ∈ X such that f(x) ̸= g(x). Since {g(x)} is closed in H, the set F = f−1{g(x)} is
closed in X. Therefore, U = F c is open in X. This implies that [U, g(x)]− is an open
set in Ch(X,H) such that g ∈ [U, g(x)]− ⊆ C(X,H) \ {f}. Thus, C(X,H) \ {f} is
open in Ch(X,H) for any f ∈ C(X,H). Therefore, {f} is closed in Ch(X,H) for any
f ∈ C(X,H). Hence, Ch(X,H) is T1. □

Since arbitrary product of Tychonoff spaces is Tychonoff [6, Theorem 2.3.11] and
a subspace of a Tychonoff space is Tychonoff [6, Theorem 2.1.6], the proof of the
following theorem is immediate.

Theorem 3.2. For any space X and topological group H, Cp(X,H) is a Tychonoff
space.

Theorem 3.3. For any space X and topological group H, Cph(X,H) is a T2 space.

Now we recall some definitions and prove a lemma. Then we show that under
some conditions, Ch(G,H) is a T2 space if and only if G is discrete.

Definition 3.4 ([14]). Given a non-trivial topological group H, a topological space
X is called
(i) H-regular if for each closed set F ⊆ X and every point x ∈ X \ F , there exist an
f ∈ C(X,H) and a point g ∈ H \ {ẽ} such that f(x) = g and f(F ) ⊆ {ẽ}.
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(ii) H⋆-regular if there exists a point g ∈ H \ {ẽ} such that for every closed set
F ⊆ X and each point x ∈ X \ F , there exists an f ∈ C(X,H) such that f(x) = g
and f(F ) ⊆ {ẽ}.
(iii) H⋆⋆-regular provided that, whenever F is a closed subset of X, x ∈ X \ F and
g ∈ H, there exists an f ∈ C(X,H) such that f(x) = g and f(F ) ⊆ {ẽ}.

It is clear that X is H⋆⋆-regular =⇒ X is H⋆-regular =⇒ X is H-regular.
When X is a topological group, the terms from Definition 3.4 remain the same as for
topological space X.

Theorem 3.5. Every H-regular topological space X is completely regular.

Proof. Let X be an H-regular topological space. Let x ∈ X be arbitrary and F be any
closed set in X not containing x. Then there exist an f ∈ C(X,H) and a g ∈ H \ {ẽ}
such that f(x) = g and f(F ) ⊆ {ẽ}. Since g ̸∈ {ẽ}, there exists an h ∈ C(H,R) such
that h(g) = 1 and h{ẽ} = {0}. Then h ◦ f : X → R is a continuous function such
that (h ◦ f)(x) = 1 and (h ◦ f)(F ) = {0}. Hence, X is completely regular. □

Theorem 3.6 ([14, Proposition 2.3]). Let X be a topological space and H be a non-
trivial topological group. Then the following statements hold.
(i) If H is pathwise connected, then X is H⋆⋆-regular.

(ii) If H contains a homeomorphic copy of the unit interval [0, 1], then X is H⋆-regular.

(iii) If X is zero-dimensional in the sense of ind, then X is H⋆⋆-regular.

In particular, in all three cases, X is H-regular.

Lemma 3.7. For any H⋆⋆-regular space X, given distinct points g1, . . . , gn ∈ X and
(not necessarily distinct) points h1, . . . , hn ∈ H, there exists a function f ∈ C(X,H)
such that f(gi) = hi for all i = 1, 2, . . . , n.

Proof. If n = 1, then a constant function serves the purpose. So let n ∈ N and n ≥ 2.
If Y = {g1, . . . , gn}, then for every i ≤ n, the set Fi = Y \ {gi} is closed in X and
does not contain gi. Since X is H⋆⋆-regular, there exists fi ∈ C(X,H) such that
fi(gi) = hi and fi(Fi) = {ẽ}. Clearly, f = f1f2 . . . fn is a continuous function from
X to H such that f(gi) = hi for all i = 1, 2, . . . , n. □

Theorem 3.8. Let G be a H⋆⋆-regular topological group and K be any non-trivial
topological group. Then the following statements are equivalent:
(i) {e} is open in G.

(ii) Ch(G,H) is a zero-dimensional topological group.

(iii) Ch(G,H) is K⋆⋆-regular.

(iv) Ch(G,H) is K⋆-regular.

(v) Ch(G,H) is K-regular.

(vi) Ch(G,H) is completely regular.

(vii) Ch(G,H) is regular.

(viii) Ch(G,H) is Hausdorff.
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Proof. (i) ⇒ (ii) First we will prove that for a discrete topological group G and an
arbitrary topological group H, the space Ch(G,H) = HG

d , where Hd is the group H
endowed with discrete topology. Since G is discrete, every H-valued function on G
is continuous, so C(G,H) = HG. For arbitrary g ∈ G, h ∈ H, we have [{g}, h]− =
{f ∈ C(G,H) = HG : {g} ∩ f−1(h) ̸= ∅} = {f ∈ C(G,H) = HG : f(g) = h}. Since
[{g}, h]− is a subbasic open set in Ch(G,H) and {f ∈ C(G,H) = HG : f(g) = h}
is a subbasic open set in HG

d . Thus Ch(G,H) = HG
d . Now since HG

d is always zero-
dimensional and arbitrary product of topological groups is a topological group, so
Ch(G,H) is a zero-dimensional topological group.
(ii) ⇒ (iii) Since Ch(G,H) is zero-dimensional, Theorem 3.6 (iii) implies that
Ch(G,H) is K⋆⋆-regular.
(iii) ⇒ (iv) ⇒ (v) EveryK⋆⋆-regular (K⋆-regular) space isK⋆-regular (K-regular).
(v) ⇒ (vi) By Theorem 3.5.
(vi) ⇒ (vii) ⇒ (viii) Obvious.
(viii) ⇒ (i) Suppose that {e} is not open in G. This implies that no finite subset
of G is open in G. Also, G \ {e} = G. Let U be an open set in G containing e and
y ∈ U be such that y ̸= e. Then F = G \ U is a closed subset of G not containing
y. Since G is H⋆⋆-regular, there exist f, g ∈ C(G,H) such that f(x) = g(x) for all
x ∈ F and f(y) ̸= g(y). Since Ch(G,H) is a Hausdorff space, there exist disjoint basic
open sets A = [x1W1, t1]

− ∩ . . .∩ [xlWl, tl]
− and B = [y1V1, r1]

− ∩ . . .∩ [ykVk, rk]
− in

Ch(G,H) containing f and g, respectively. There exist ai ∈ xiWi and bi ∈ yiVi such
that f(ai) = ti and g(bi) = ri, respectively. By Theorem 2.4, there exist W1,W2 ∈ Ve

and n ≤ l, m ≤ k such that f ∈ A1 = [a1W1, t1]
− ∩ . . . ∩ [anW1, tn]

− ⊆ A and
g ∈ B1 = [b1W2, r1]

− ∩ . . .∩ [bmW2, rm]− ⊆ B. Take W = W1 ∩W2 so that f ∈ A2 =
[a1W, t1]

− ∩ . . . ∩ [anW, tn]
− ⊆ A and g ∈ B2 = [b1W, r1]

− ∩ . . . ∩ [bmW, rm]− ⊆ B.
Since W is an infinite set, we can choose distinct points wi ∈ aiW and zj ∈ bjW
such that {wi : i = 1, . . . , n} ∩ {zj : j = 1, . . . ,m} = ∅. By Lemma 3.7, there exists
h ∈ C(G,H) such that h(wi) = ti and h(zj) = rj for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.
So we arrived at a contradiction. Hence, {e} is open in G. □

In the above theorem, the implication “(i) ⇒ (ii)” in fact contains a generalized
version of [10, Lemma 3.7].

Corollary 3.9. If a topological space X is discrete, then Cph(X,H) is a topological
group.

Proof. Since X is discrete, Ch(X,H) is a topological group. But Cp(X,H) is always
a topological group, so Cph(X,H) is a topological group. □

Theorem 3.10. If H is a zero-dimensional topological group, then the space
Cp(X,H) is zero-dimensional.

Proof. Since H is zero-dimensional, Tychonoff product HX is zero-dimensional. This
implies that Cp(X,H) is zero-dimensional being a subspace of the zero-dimensional
space HX . □

Corollary 3.11. Let {Hi : i ∈ I}, where I is any index set, be a family of zero-
dimensional spaces, then the space

∏
i∈I Cp(X,Hi) is zero-dimensional.
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Proof. Since arbitrary product of zero-dimensional spaces is zero-dimensional, the
proof follows from Theorem 3.10. □

Corollary 3.12. Cp(X,H) is zero-dimensional for any countable topological group H.

Proof. Since every countable regular space is zero-dimensional, the proof follows from
Theorem 3.10. □

Corollary 3.13. If H is discrete, then Cp(X,H/K) is zero-dimensional for any
space X and any subgroup K of H.

Proof. By [4, Theorem 3.1.14], if H is a locally compact totally disconnected topo-
logical group and K is a closed subgroup of H, then the quotient space H/K is
zero-dimensional, the proof now follows from Theorem 3.10. □

Definition 3.14. A T1 topological space X is said to be S-normal if for any two
non-empty sets A and B with A ∩B = ∅ or A ∩B = ∅ there exist disjoint open sets
U and V containing A and B, respectively.

Example 3.15. Every discrete space is S-normal.

Theorem 3.16. If the topological group H is S-normal, then the space Cp(X,H) is
zero-dimensional.

Proof. The collection A = {[x1, V1]
+ ∩ . . . ∩ [xm, Vm]+ : m ∈ N, xi ∈ X, each Vi is

an open subset of H} is a base for the space Cp(X,H). Let f ∈ ([xi, Vi]
+)c. Then

f(xi) = zi ∈ V c
i . Therefore, {zi}∩Vi = ∅. As H is S-normal, there exist disjoint open

sets Ai and Bi containing zi and Vi, respectively. Then f ∈ [xi, Ai]
+ ⊆ ([xi, Bi]

+)c ⊆
([xi, Vi]

+)c. Hence, the space Cp(X,H) is zero-dimensional. □

4. Metrizability and countability

In [12], it is proved that the space Cp(X,Y ) is first countable if and only if X is a
countable and Y is a first countable space (see [12, Corollary 1.5(a)]), where X is a
completely regular space and Y contains a non trivial path. In the following theorem,
we give sufficient conditions for space Ch(G,H) to be first countable, where G and
H are topological groups.

Theorem 4.1. Let the countable topological group G be such that G is first countable.
Then Ch(G,H) is also first countable.

Proof. Let f ∈ C(G,H) be arbitrary and A be any open set in Ch(G,H) containing f .
Then there exist yi ∈ H and open sets Wi in G such that f ∈ [W1, y1]

− ∩ . . . ∩
[Wm, ym]− ⊆ A. So there exist zi ∈ Wi such that f(zi) = yi. By Theorem 2.4, there
exist W ∈ Ve and n ≤ m such that f ∈ [z1W, y1]

− ∩ . . . ∩ [znW, yn]
− ⊆ A. Without

loss of generality, we assume Ve to be countable as G to be first countable. Clearly,
the collection A = {[z1W, y1]

− ∩ . . . ∩ [znW, yn]
− : zi ∈ G, yi = f(zi), W ∈ Ve} is a

countable neighborhood basis for f . Hence, Ch(G,H) is first countable. □
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The proof of the following theorem is similar to [8, Theorem 5.2].

Theorem 4.2. If Ch(X,H) is separable and H is uncountable, then every non-empty
open subset of X is uncountable.

Corollary 4.3. If Ch(X,H) is separable and H is uncountable, then X is dense in
itself.

Corollary 4.4. If Cph(X,H) is separable and H is uncountable, then every non-
empty open subset of X is uncountable.

Proof. Since the space Cph(X,H) is finer than the space Ch(X,H), the proof follows
from Theorem 4.2. □

Corollary 4.5. If Cph(X,H) is separable and H is uncountable, then X is dense
in itself.

Corollary 4.6. If G is H⋆⋆-regular, Ch(G,H) is separable and H is uncountable,
then Ch(G,H) is not metrizable.

Proof. By Corollary 4.3 and Theorem 3.8, Ch(G,H) is not a Hausdorff space. Hence,
Ch(G,H) is not metrizable. □

Corollary 4.7. If X is countable and H is uncountable, then Ch(X,H) is not sep-
arable.

Proof. If Ch(X,H) is separable, then, by Theorem 4.2, every non-empty open subset
of X is uncountable. But X is countable. Hence, Ch(X,H) is not separable. □

In [8], it is shown that spaces Ch(X) and Cph(X) are never Lindelöf or second
countable. In the following results we show that this is in fact true for spaces Ch(X,H)
and Cph(X,H) for any uncountable topological group H.

Theorem 4.8. Let H be an uncountable topological group. Then the space Ch(X,H)
is not Lindelöf.

Proof. It is enough to prove that there exists an uncountable closed and discrete subset
of Ch(X,H). Let A be the set of all constant functions in C(X,H). Let f ∈ C(X,H)
be arbitrary and x ∈ X. Then Uf = [X, f(x)]− is an open neighborhood of f whose
intersection with A is finite. Thus, A is an uncountable closed and discrete subset of
Ch(X,H). Hence, Ch(X,H) is not Lindelöf. □

Corollary 4.9. Let H be an uncountable topological group. Then the space Ch(X,H)
is not second countable.

Corollary 4.10. Let H be an uncountable topological group. Then the space Cph(X,H)
is neither Lindelöf nor second countable.

Note that Corollary 4.9 gives a necessary condition for a second countable space
Ch(X,H). Now, in the next theorem, we give sufficient conditions for Ch(X,H) to
be second countable.
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Theorem 4.11. Let X be a countable discrete space and H be countable. Then
Ch(X,H) is second countable.

Proof. Since X is discrete, Ch(X,H) = HX
d , where Hd is the group H with discrete

topology. Since Hd is countable and discrete, Hd is second countable. Also X is
countable, so Ch(X,H) = HX

d is second countable. □

The proof of the first of next two theorems is similar to [16, Theorem S.171.], while
the second is similar to [8, Proposition 4.5].

Theorem 4.12. Let X be a H⋆⋆-regular space such that Cp(X,H) has a countable
π-base at some of its points, then X is countable.

Theorem 4.13. Let f be the identity element of Ch(X,H). If f has countable pseu-
docharacter in Ch(X,H) and X is H-regular. Then X has a countable π-base.

Theorem 4.14. For any discrete space X, the following statements are equivalent:

(i) Ch(X,H) is metrizable.

(ii) Ch(X,H) is first countable.

(iii) X has a countable π-base.

(iv) X is countable.

Proof. (i) ⇔ (ii) Since X is discrete, Ch(X,H) = HX
d is a topological group. In a

topological group, first countability is equivalent to metrizability.
(ii) ⇔ (iii) Since Ch(X,H) is first countable and T1 space, Ch(X,H) has a countable
pseudocharacter. So X has a countable π-base by Theorem 4.13.
(iii) ⇔ (iv) The proof is obvious.
(iv) ⇔ (i) Since X is discrete, Ch(X,H) = HX

d , where Hd is the group H with
discrete topology. Since Hd is metrizable and X is countable, HX

d is metrizable. □

Corollary 4.15. For H⋆⋆-regular topological group G, Ch(G,H) is metrizable if and
only if G is countable and discrete.

Proof. Since Ch(G,H) is metrizable, Ch(G,H) is regular. So by Theorem 3.8, G is
discrete. The proof follows by Theorem 4.14. □

Recall that a semitopological group G is called ω-narrow if for every open neigh-
borhood V of the neutral element e in G, there exists a countable subset A of G such
that AV = V A = G (see [4, Section 2.3]).

Theorem 4.16. For an ω-narrow topological group H, Cp(X,H) is ω-narrow.

Proof. Since the Tychonoff product of an arbitrary family of ω-narrow topological
groups is an ω-narrow topological group [4, Proposition 3.4.3], HX is ω-narrow. Also
Cp(X,H) is a topological subgroup of HX . So Cp(X,H) is ω-narrow as subgroup of
an ω-narrow topological group [4, Theorem 3.4.4]. □

The next three corollaries follow directly from Theorem 4.16 and Propositions 3.4.5,
3.4.8 and 3.4.3 from [4], respectively.

Corollary 4.17. For an ω-narrow topological group H, Cp(X,H) is first countable
if and only if it is second countable.
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Corollary 4.18. For a separable topological group H, Cp(X,H) is ω-narrow.

Corollary 4.19. Let {Hi : i ∈ I}, where I is any index set, be a family of ω-narrow
topological groups. Then

∏
i∈I Cp(X,Hi) is ω-narrow.

Theorem 4.20. If X is discrete and H is countable, then Ch(X,H) is an ω-narrow
topological group.

Proof. Since X is discrete, Ch(X,H) = HX
d is a topological group, where Hd is the

group H with discrete topology. We know that every countable topological group
is ω-narrow and arbitrary product of ω-narrow topological group is ω-narrow. So,
Ch(X,H) = HX

d is an ω-narrow topological group. □

Theorem 4.21. If X is a discrete space, then Ch(X,H) = Cph(X,H).

Proof. The proof is similar to [10, Proposition 3.6]. □

Corollary 4.22. If X is discrete and H is countable, then Cph(X,H) is an ω-narrow
topological group.

Proof. The proof follows from Theorem 4.20 and Theorem 4.21. □

5. Discrete selection and disjoint shrinking

Definition 5.1 ([7]). A topological space X is called a P -space if every Gδ set of X
is open.

Definition 5.2 ( [15]). A space X is discretely selective if for any sequence µ =
{Un : n ∈ ω} of non-empty open subsets of X, there exists a closed discrete set
D = {xn : n ∈ ω} such that xn ∈ Un for each n ∈ ω. The set D will be called a
selection for the family µ.

In [15], it is proved that Cp(X) is discretely selective if and only if the space X is
uncountable. The following theorems give sufficient conditions for spaces Cp(X,H),
Ch(X,H) and Cph(X,H) to be discretely selective.

Theorem 5.3. Let H be an uncountable P -group and X be an uncountable H⋆⋆-
regular space. Then Cp(X,H) is discretely selective.

Proof. Let {Un : n ∈ ω} be a sequence of non-empty open subsets of the space
Cp(X,H). For each n ∈ ω, let fn ∈ Un. Then for each n ∈ ω, there exists a non-
empty basic open set An = [yn1 , V

n
1 ]+∩ . . .∩ [ynln , V

n
ln
]+ such that fn ∈ An ⊆ Un, where

yn1 , . . . , y
n
ln

∈ X, V n
1 , . . . , V n

ln
are non-empty open subsets of H. By the construction

of the proof of Theorem 2.5, we can assume that yn1 , . . . , y
n
ln

are distinct points in X.
For each n ∈ ω, let fn(y

n
i ) = rni for each i = 1, . . . , ln. Clearly, Y = {yni : i = 1, . . . , ln,

n ∈ ω} is a countable subset of X. So let p ∈ X \Y . Since X is H⋆⋆-regular, for each
n ∈ ω there exists a function gn ∈ C(X,H) such that gn(y

n
i ) = rni and gn(p) = hn for
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all i = 1, . . . , ln, where all hn are distinct points inH. Clearly, gn ∈ Un for each n ∈ ω.
Since H is a P -group, there exists a sequence, say ⟨Hn⟩, of non-empty open subsets
of H such that hn ∈ Hn for all n ∈ ω and whenever m ̸= n, Hm ∩Hn = ∅. Therefore,
the set D = {hn : n ∈ ω} is closed and discrete in H. To prove that D̃ = {gn : n ∈ ω}
is a closed and discrete set in Cp(X,H), let f ∈ C(X,H) and let f(p) = h ∈ H.
Since D is closed and discrete in H, there exists an open neighborhood Uh of h whose
intersection with D is finite. This gives us an open neighborhood Uf = [p, Uh]

+ of f

in Cp(X,H) whose intersection with D̃ is finite. Hence, D̃ is closed and discrete in
Cp(X,H). □

Theorem 5.4. Let X be a H⋆⋆-regular space such that X◦, the set of isolated points,
is uncountable and |H| ≥ ω . Then Ch(X,H) is discretely selective.

Proof. Let {Un : n ∈ ω} be a sequence of non-empty open subsets of the space
Ch(X,H). For each n ∈ ω, let fn ∈ Un. Then for each n ∈ ω, there exists non-empty
basic open set An = [V n

1 , rn1 ]
− ∩ . . . ∩ [V n

ln
, rnln ]

− such that fn ∈ An ⊆ Un, where
rn1 , . . . , r

n
ln

∈ H and V n
1 , . . . , V n

ln
are non-empty open subsets of X. For each n ∈ ω

there exist points yn1 , . . . , y
n
ln

in X such that rni = fn(y
n
i ) for each i = 1, . . . , ln. By the

construction of the proof of [8, Proposition 2.1], we can assume that yn1 , . . . , y
n
ln

are
distinct points of X. Let Yn = {yn1 , . . . , ynln} for each n ∈ ω. Clearly, Y =

⋃
n∈ω Yn

is a countable subset of X. So let p ∈ X◦ \ Y . Since X is H⋆⋆-regular and |H| ≥ ω,
for each n ∈ ω, there exists a function gn ∈ C(X,H) such that gn(y

n
i ) = rni and

gn(p) = hn for all i = 1, . . . , ln, where we can assume that the elements hn ∈ H are
distinct. Clearly gn ∈ Un for each n ∈ ω. Consider the set D = {gn : n ∈ ω}. To see
that D is discrete and closed in Ch(X,H), let f ∈ C(X,H), Then [{p}, f(p)]− is an
open neighborhood of f whose intersection with D is finite. Hence, D is closed and
discrete. □

Theorem 5.5. Let G be a countable metric group. Then Ch(G,H) is discretely se-
lective if and only if Ch(G,H) is discrete.

Proof. Since G is a countable metric group, Theorem 4.1 implies that Ch(G,H) is
first countable. Thus, proof follows from [15, 3.2(b)]. □

Theorem 5.6. Let X be a H⋆⋆-regular space such that X◦ is uncountable and |H| ≥
ω. Then Cph(X,H) is discretely selective.

Proof. Let {On : n ∈ ω} be a sequence of non-empty open subsets of the space
Cph(X,H). For each n ∈ ω, let fn ∈ On. Then for each n ∈ ω, there exists a non-
empty basic open set An = [xn

1 , U
n
1 ]

+ ∩ . . . ∩ [xn
tn , U

n
tn ]

+ ∩ [V n
1 , rn1 ]

− ∩ . . . ∩ [V n
ln
, rnln ]

−

such that fn ∈ An ⊆ On, where xn
1 , . . . , x

n
tn ∈ X, rn1 , . . . , r

n
ln

∈ H and V n
1 , . . . , V n

ln
are non-empty open subsets of X, Un

1 , . . . , U
n
tn are non-empty open subsets of H.

For each n ∈ ω, there exist points yn1 , . . . , y
n
ln

∈ X and points zn1 , . . . , z
n
tn ∈ H such

that fn(y
n
i ) = rni and fn(x

n
j ) = znj for each i = 1, . . . , ln, j = 1, . . . , tn. Without

loss of generality, assume that yn1 , . . . , y
n
ln

are distinct points in X and xn
1 , . . . , x

n
tn are

distinct points in X. Let Yn = {yn1 , . . . , ynln} ∪ {xn
1 , . . . , x

n
tn} for each n ∈ ω. Clearly,
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Y =
⋃

n∈ω Yn is a countable subset of X. So let p ∈ X◦ \ Y . Since X is H⋆⋆-
regular and |H| ≥ ω, for each n ∈ ω, there exists a function gn ∈ C(X,H) such that
gn(y

n
i ) = rni , gn(x

n
j ) = znj and gn(p) = hn for all i = 1, . . . , ln and for all j = 1, . . . , tn,

where we can assume that the elements hn ∈ H are distinct. Clearly gn ∈ On for
each n ∈ ω. Consider the set D = {gn : n ∈ ω}. To see that D is discrete and closed
in Cph(X,H), let f ∈ C(X,H). Then [{p}, f(p)]− is an open neighborhood of f in
Cph(X,H) whose intersection with D is finite. Hence, D is closed and discrete. □

Definition 5.7. [15] Given a space X, a sequence {Un : n ∈ ω} of non-empty open
subsets of X is said to have a disjoint shrinking if for every n ∈ ω, there exists a
non-empty open set Vn ⊆ Un such that Vm ∩ Vn = ∅ for m ̸= n.

In [15], it is proved that every sequence of non-empty open sets in Cp(X) has a
disjoint shrinking if and only if the space X is uncountable. The following theorems
give sufficient conditions for such sequence to have a disjoint shrinking in spaces
Cp(X,H), Ch(X,H) and Cph(X,H).

Theorem 5.8. Let H be an uncountable P -group and X be an uncountable H⋆⋆-
regular space. Then Cp(X,H) has a disjoint shrinking.

Proof. Let {Un : n ∈ ω} be a sequence of non-empty open subsets of the space
Cp(X,H). For each n ∈ ω, let fn ∈ Un. As in Theorem 5.3, we can construct a
countable subset Y of X. Let p ∈ X \ Y . Since H is an uncountable P -group, there
exist a sequence, say ⟨hn⟩, of distinct points of H and a sequence, say ⟨Wn⟩, of non-
empty open subsets of H such that hn ∈ Wn for all n ∈ ω and whenever m ̸= n,
Wm ∩ Wn = ∅. Since X is H⋆⋆-regular, On = Un ∩ [p,Wn]

+ ⊆ Un is a non-empty
open subset of Cp(X,H) and On∩Om = ∅ for all n ̸= m, as f ∈ On∩Om implies that
f(p) ∈ Wn ∩Wm, a contradiction. Hence, every sequence of non-empty open sets in
Cp(X,H) has a disjoint shrinking. □

Theorem 5.9. Let X be a H⋆⋆-regular space such that X◦ is uncountable and H
be an uncountable topological group. Then every sequence of non-empty open sets in
Ch(X,H) has a disjoint shrinking.

Proof. Let {Un : n ∈ ω} be a sequence of non-empty open subsets of the space
Ch(X,H). For each n ∈ ω, let fn ∈ Un. As in Theorem 5.4, we can construct a
countable subset Y of X, where Y =

⋃
n∈ω Yn =

⋃
n∈ω{yn1 , . . . , ynln} and fn(y

n
i ) = rni

for all i = 1, . . . , ln. Let p ∈ X◦ \Y . Consider the set B = {rni : i = 1, . . . , ln, n ∈ ω}.
Since B is a countable subset of H, choose distinct points sn ∈ H \ B for each
n ∈ ω. Since X is H⋆⋆-regular, for each n ∈ ω, there exist functions gn ∈ C(X,H)
such that gn(y

n
i ) = rni and gn(p) = sn for all i = 1, . . . , ln. For every n ∈ ω,

On = Un∩ [{p}, sn]− ⊆ Un is a non-empty open subset of Ch(X,H) and On∩Om = ∅
for all n ̸= m, since f ∈ On∩Om implies that f(p) = sn = sm, a contradiction. Hence,
every sequence of non-empty open sets in Ch(X,H) has a disjoint shrinking. □

Theorem 5.10. Let X be a H⋆⋆-regular space such that X◦ is uncountable and H
be an uncountable topological group. Then every sequence of non-empty open sets in
Cph(X,H) has a disjoint shrinking.
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Proof. Let {On : n ∈ ω} be a sequence of non-empty open subsets of the space
Cph(X,H). For each n ∈ ω, let fn ∈ On. As in Theorem 5.6, we can construct a
countable subset Y of X, where Y =

⋃
n∈ω Yn =

⋃
n∈ω({yn1 , . . . , ynln} ∪ {xn

1 , . . . , x
n
tn})

and fn(y
n
i ) = rni , fn(x

n
j ) = znj for all i = 1, . . . , ln, j = 1, . . . , tn. Let p ∈ X◦ \ Y .

Consider the set B = {rni : i = 1, . . . , ln, n ∈ ω}. Since B is a countable subset of
H, choose distinct points sn ∈ H \ B for each n ∈ ω. Since X is H⋆⋆-regular, for
each n ∈ ω, there exist functions gn ∈ C(X,H) such that gn(y

n
i ) = rni , gn(x

n
j ) = znj

and gn(p) = sn for all i = 1, . . . , ln and for all j = 1, . . . , tn. For every n ∈ ω,
Dn = On∩[{p}, sn]− ⊆ On is a non-empty open subset of Cph(X,H) andDn∩Dm = ∅
for all n ̸= m, since f ∈ Dn∩Dm implies that f(p) = sn = sm, a contradiction. Hence,
every sequence of non-empty open sets in Cph(X,H) has a disjoint shrinking. □

6. Restriction maps

The following theorem is easy to prove (for instance, see [16, p. 96]).

Theorem 6.1. If X is an H⋆⋆-regular topological space, then the space Cp(X,H) is
dense in HX .

A map f : X → Y , where X is any non-empty set and Y is a topological space, is
called almost onto if f(X) is dense in Y . If A is a subspace of X, then the restriction
map πA : C(X,H) → C(A,H) is defined by πA(f) = f |A for all f ∈ C(X,H) and
studied by many authors (see [9, 11]).

Theorem 6.2. Let X be an H⋆⋆-regular space and A be a subspace of X. Then for
the map πA : Cp(X,H) → Cp(A,H), the following statements hold.
(i) The map πA is continuous.

(ii) The map πA is almost onto.

(iii) The map πA is an injection if and only if A is dense in X.

(iv) The map πA is a homeomorphism if and only if A = X.

Proof. (i) Let [x, U ]+ be any subbasic open set in Cp(A,H), where x ∈ A and U
is open in H. If π−1

A [x, U ]+ = ∅, then it is open. So let π−1
A [x, U ]+ ̸= ∅. In this

case, π−1
A [x, U ]+ = [x, U ]+ which is an open set in Cp(X,H). Thus, the map πA is

continuous.
(ii) Let U = [x1, V1]

+ ∩ . . . ∩ [xn, Vn]
+ be any non-empty basic open set in Cp(A,H),

where xi ∈ A and Vi is open in H, whenever 1 ≤ i ≤ n. Without loss of generality,
assume that xi are distinct. Let f ∈ U . Then f(xi) ∈ Vi. Let f(xi) = ri for all
i = 1, . . . , n. Since X is H⋆⋆-regular, there exists a function h ∈ C(X,H) such that
h(xi) = ri for all i = 1, . . . , n. Therefore, πA(h) ∈ U and hence, πA is almost onto.
(iii) Suppose that A is not dense in X. Take any x ∈ X \ A. Since X is H-regular,
there exist f ∈ C(X,H) and g1 ∈ H \ {ẽ} such that f(x) = g1 and f(A) ⊆ {ẽ}.
Thus, πA(f) = πA(E), where E(x) = ẽ for all x ∈ X. But f ̸= E, a contradiction.
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Conversely, let A be dense in X and f , g be any two distinct members of Cp(X,H).
Then h = fg−1 is a continuous function. Consider the non-empty open set U =
h−1(H \{ẽ}). Since A is dense in X, let y ∈ A∩U . Clearly, f(y) ̸= g(y) which means
that πA(f) ̸= πA(g) and thus, πA is an injection.
(iv) Let πA be a homeomorphism. So A is dense in X by (iii). If A ̸= X, then there
exists x ∈ X \ A. The set B = {f ∈ Cp(X,H) : f(x) = g1} is not dense in Cp(X,H)
because it does not intersect the non-empty open set [x,H \ {g1}]+. But πA(B) is
dense in Cp(A,H) as follows: let g ∈ Cp(A,H) and V = [y1, U1]

+ ∩ . . . ∩ [yn, Un]
+

be any non-empty basic open set in Cp(A,H) containing g, where yi are distinct
members of A and Ui are non-empty open sets in H. Then there exists f ∈ Cp(X,H)
such that f(x) = g1 and f(yi) = g(yi) for all i ≤ n. Thus πA(f) ∈ V ∩ πA(B) which
proves that πA(B) is dense in Cp(A,H). Hence, πA

−1 is not continuous as B is not
dense in Cp(X,H). Hence, if πA is a homeomorphism, then A = X. Conversely, if
X = A, then πA is the identity map and hence, a homeomorphism. □

Theorem 6.3. Let A be an open subspace of a H⋆⋆-regular space X and πA : Ch(X,
H) → Ch(A,H) be the restriction map. Then the following statements hold.
(i) The map πA is continuous.

(ii) The map πA is almost onto.

(iii) The map πA is an injection if and only if A is dense in X.

(iv) If X is discrete, then the map πA is a homeomorphism if and only if A = X.

Proof. (i) Let [U, r]− be any subbasic open set in Ch(A,H), where r ∈ H and U is
open in A. If π−1

A [U, r]− = ∅, then it is open. So let π−1
A [U, r]− ̸= ∅. In this case,

π−1
A [U, r]− = [U, r]− which is an open set in Ch(X,H) as A is an open subset of X.

Thus, the map πA is continuous.
(ii) Let U = [V1, r1]

− ∩ . . . ∩ [Vn, rn]
− be any non-empty basic open set in Ch(A,H),

where ri ∈ H and Vi is open in A, whenever 1 ≤ i ≤ n. Let f ∈ U ; then there exist
yi ∈ Vi such that f(yi) = ri for all i = 1, . . . , n. Without loss of generality, assume
that yi are distinct. Since X is H⋆⋆-regular, there exists a function h ∈ C(X,H) such
that h(yi) = ri for all i = 1, . . . , n. Therefore, πA(h) ∈ U and hence, πA is almost
onto.
(iii) The proof is on the similar lines of Theorem 6.2 (iii).
(iv) Let πA be a homeomorphism. So A is dense in X by (iii). Since X is discrete,
we have A = X. Conversely, if A = X, then πA is the identity map and hence, a
homeomorphism. □

Theorem 6.4. Let A be an open subspace of an H⋆⋆-regular space X and πA : Cph(X,
H) → Cph(A,H) be the restriction map. Then the following statements hold.
(i) The map πA is continuous.

(ii) The map πA is almost onto.

(iii) The map πA is an injection if and only if A is dense in X.

(iv) If X is discrete, then the map πA is a homeomorphism if and only if A = X.
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Proof. The proof follows from Theorem 6.2 and Theorem 6.3. □
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