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FIXED POINTS OF ALMOST SUZUKI TYPE Zs-CONTRACTIONS
IN S-METRIC SPACES

G. V. R. Babu, P. Durga Sailaja and G. Srichandana

Abstract. In this paper, we introduce almost Suzuki type Zs-contractions and prove the
existence and uniqueness of fixed points of such mappings in complete S-metric spaces. Our
results generalize Theorem 1 from [N. Mlaiki, N. Yılmaz Özgür, Nihal Taş, Mathematics, 7
(583) 2019, 12 pages] and Theorem 3.1 from [S. Sedghi, N. Shobe, A. Aliouche, Mat. Vesnik,
64 (3) (2012), 258-266]. We give illustrative examples in support of our result.

1. Introduction and preliminaries

In 2008, Suzuki [19] defined a new generalized Banach contraction and proved the ex-
istence and uniqueness of fixed points for this contraction in compact metric spaces.
After this several authors have extended and generalized the result of Suzuki [19]
in different directions [1, 5, 13]. In 2015, Khojasteh, Shukla and Radenović [12] in-
troduced simulation functions and Z-contractions which generalize the Banach con-
traction. Following this domain of research, many authors introduced Z-contractions
involving simulation functions and proved fixed point results on various types of met-
ric spaces. For more works on this, we refer to [2, 4, 7, 11,16,20].

Definition 1.1 ([12]). A mapping ζ : [0,+∞)× [0,+∞) → R is called a simulation
function if it satisfies the following conditions:

(ζ1) ζ(0, 0) = 0;

(ζ2) ζ(t, s) < s− t for all t, s > 0;

(ζ3) if {tn}, {sn} are sequences in (0,+∞) such that lim
n→+∞

tn = lim
n→+∞

sn > 0, then

lim sup
n→+∞

ζ(tn, sn) < 0.
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We denote the set of all simulation functions by Z. The following are examples of
simulation functions.

Example 1.2 ([4, 12]). Let ζ : [0,+∞)× [0,+∞) → R be defined by:
(i) ζ(t, s) = λs− t for all t, s ∈ [0,+∞), where λ ∈ [0, 1).

(ii) ζ(t, s) = s
1+s − t for all t, s ∈ [0,+∞).

(iii) ζ(t, s) = s− kt for all t, s ∈ [0,+∞), where k > 1.

(iv) ζ(t, s) = s
1+s − tet for all t, s ∈ [0,+∞).

(v) ζ(t, s) = s−φ(s)− t for all s, t ∈ [0,+∞) where φ : [0,+∞) → [0,+∞) is a lower
semi continuous function such that φ(t) = 0 if and only if t = 0.

In 2012, Sedghi, Shobe and Aliouche [17] introduced S-metric spaced and studied
their properties. The following are preliminaries on S-metric spaces.

Definition 1.3 ([17]). Let X be a nonempty set. An S-metric on X is a function
S : X3 → [0,+∞) that satisfies the following conditions: for each x, y, z, a ∈ X
(S1) S(x, y, z) = 0 if and only if x = y = z and

(S2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).
The pair (X,S) is called an S-metric space.

Throughout this paper, we denote the set of all real numbers by R, the set of all
natural numbers by N.

Example 1.4 ([17]). Let (X, d) be a metric space. We define S : X3 → [0,+∞) by
S(x, y, z) = d(x, y) + d(x, z) + d(y, z) for all x, y, z ∈ X. Then S is an S-metric on X
and S is called the S-metric induced by the metric d.

Example 1.5 ([9]). Let X = R and S(x, y, z) = |y+z−2x|+ |y−z| for all x, y, z ∈ X.
Then (X,S) is an S-metric space.

Example 1.6 ([18]). Let X = R. Then S(x, y, z) = |x− z|+ |y− z| for all x, y, z ∈ R
is an S-metric on R. This S-metric is called the usual S-metric on R.

Lemma 1.7 ([17]). In an S-metric space, we have S(x, x, y) = S(y, y, x).

Lemma 1.8 ([9]). Let (X,S) be an S-metric space. Then S(x, x, z) ≤ 2S(x, x, y) +
S(y, y, z).

Definition 1.9 ([17]). Let (X,S) be an S-metric space.
(i) A sequence {xn} ⊆ X is said to converge to a point x ∈ X if S(xn, xn, x) → 0
as n → +∞. That is, for each ϵ > 0, there exists n0 ∈ N such that for all n ≥ n0,
S(xn, xn, x) < ϵ and we denote it by lim

n→+∞
xn = x.

(ii) A sequence {xn} ⊆ X is called a Cauchy sequence if for each ϵ > 0, there exists
n0 ∈ N such that S(xn, xn, xm) < ϵ for all n,m ≥ n0.
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(iii) An S-metric space (X,S) is said to be complete if each Cauchy sequence in X
is convergent.

Lemma 1.10 ([17]). Let (X,S) be an S-metric space. If {xn} is a sequence in X that
converges to x, then x is unique.

Lemma 1.11 ([6]). Let (X,S) be an S-metric space. Let {xn} and {yn} be two se-
quences in X and {xn} converges to x in X. Then lim

n→+∞
S(xn, xn, yn)= lim

n→+∞
S(x, x, yn).

Definition 1.12 ([17]). Let (X,S) be an S-metric space. A map F : X → X is said
to be a contraction if there exists a constant 0 ≤ K < 1 such that

S(Fx, Fx, Fy) ≤ KS(x, x, y), for all x, y ∈ X. (1)

Theorem 1.13 ([17]). Let (X,S) be a complete S-metric space and let a map F :
X→X be a contraction. Then F has a unique fixed point u in X.

Lemma 1.14 ([8]). Let (X,S) be an S-metric space and {xn} be a sequence in X such
that limn→+∞ S(xn, xn, xn+1) = 0.

If {xn} is not a Cauchy sequence, then there exist an ϵ > 0 and two sequences
{mk} and {nk} of positive integers with mk > nk > k such that S(xmk

, xmk
, xnk

) ≥ ϵ
with S(xmk−1, xmk−1, xnk

) < ϵ. Also, we have the following:
(i) lim

k→+∞
S(xmk

, xmk
, xnk

) = ϵ (ii) lim
k→+∞

S(xmk−1, xmk−1, xnk
) = ϵ

(iii) lim
k→+∞

S(xmk
, xmk

, xnk−1) = ϵ (iv) lim
k→+∞

S(xmk−1, xmk−1, xnk−1) = ϵ.

For more works on S-metric spaces we refer to [3, 6, 8, 9, 17,18].
In 2019, Mlaiki, Yılmaz Özgür and Nihal Taş [14] introduced Zs-contraction by

using simulation functions and proved the existence and uniqueness of fixed points of
such mapping in complete S-metric spaces.

Definition 1.15 ([14]). Let (X,S) be an S-metric space and T : X → X. If there
exists a ζ ∈ Z such that

ζ(S(Tx, Tx, Ty), S(x, x, y)) ≥ 0 (2)

for all x, y ∈ X, then T is called a Zs-contraction with respect to ζ.

Theorem 1.16 ([14]). Let (X,S) be a complete S-metric space and T : X → X. If
T is a Zs-contraction with respect to ζ, then T has a unique fixed point a ∈ X, and
for every x0 ∈ X the sequence {xn} converges to a, where xn = Txn−1 for all n ∈ N.

Motivated by the works of [10, 13–15], in Section 2 of this paper, we introduce
almost Suzuki type Zs-contraction mappings and prove the existence and uniqueness
of fixed points of such mappings in complete S-metric spaces. Our results generalize
the fixed point theorems of Mlaiki, Yılmaz Özgür and Nihal Taş [14] and Sedghi,
Shobe and Aliouche [17]. We draw some corollaries and give examples in support of
our results.
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2. Main results

In the following we define almost Suzuki type Zs-contraction with respect to a simu-
lation function.

Definition 2.1. Let (X,S) be an S-metric space and T : X → X. If there exist a
ζ ∈ Z and L ≥ 0 such that
1

3
S(x, x, Tx) < S(x, y, z) implies ζ(S(Tx, Ty, Tz), S(x, y, z)+LN(x, y, z)) ≥ 0, (3)

for all x, y, z ∈ X, where N(x, y, z) = min{S(Tx, Tx, x), S(Tx, Tx, y), S(Tx, Tx, z),
S(Tx, y, z)}, then T is called an almost Suzuki type Zs-contraction with respect to ζ.

The following theorem is the main result of this paper.

Theorem 2.2. Let (X,S) be a complete S-metric space and T : X → X be an almost
Suzuki type Zs-contraction with respect to ζ ∈ Z. Then for any x0 ∈ X, the sequence
{xn} defined by xn = Txn−1 for all n = 1, 2, . . . is Cauchy in X, lim

n→+∞
xn = u (say)

in X and u is a unique fixed point in X.

Proof. Let x0 ∈ X and the sequence {xn} be defined as xn = Txn−1 for all n =
1, 2, 3, . . . . If xn0

= xn0+1 = Txn0
for some n0, then xn0

is a fixed point of T .
Therefore, we assume that xn ̸= xn+1, i.e., S(xn, xn, xn+1) > 0, for all n ≥ 0.

STEP 1: We prove that lim
n→+∞

S(xn, xn, xn+1) = 0.

We have 1
3S(xn, xn, Txn) < S(xn, xn, Txn) = S(xn, xn, xn+1), hence from the

inequality (3), we have

0 ≤ ζ(S(Txn, Txn, Txn+1), S(xn, xn, xn+1) + LN(xn, xn, xn+1)). (4)

Here

N(xn, xn, xn+1)=min{S(Txn, Txn, xn), S(Txn, Txn, xn+1), S(Txn, xn, xn+1)}
=min{S(xn+1, xn+1, xn), S(xn+1, xn+1, xn+1), S(xn+1, xn, xn+1)}=0

From the inequality (4) and by using (ζ2), we get

0 ≤ ζ(S(xn+1, xn+1, xn+2), S(xn, xn, xn+1)) < S(xn, xn, xn+1)− S(xn+1, xn+1, xn+2)

which implies that

S(xn+1, xn+1, xn+2) < S(xn, xn, xn+1), for all n = 0, 1, 2, . . . . (5)

Therefore, the sequence {S(xn, xn, xn+1)} is decreasing and converges to some r ≥ 0.
Assume that r > 0.

Let tn=S(xn+1, xn+1, xn+2) and sn=S(xn, xn, xn+1). Since lim
n→+∞

tn= lim
n→+∞

sn=r>0,

by using the inequality (3) and the condition (ζ3), we get that

0 ≤ lim sup
n→+∞

ζ(S(xn+1, xn+1, xn+2), S(xn, xn, xn+1)) < 0,

a contradiction. Therefore r = 0, i.e.

lim
n→+∞

S(xn, xn, xn+1) = 0. (6)
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STEP 2: We prove that {xn} is a Cauchy sequence.

If {xn} is not Cauchy, by Lemma 1.14 there exist an ϵ > 0 and sequences of positive
integers {mk} and {nk} such that mk > nk ≥ k such that S(xmk

, xmk
, xnk

) ≥ ϵ and
S(xmk−1, xmk−1, xnk

) < ϵ satisfying (i)-(iv) of Lemma 1.14.

Now suppose, if possible, there exists a k ≥ k1 such that
1

3
S(xmk−1, xmk−1, xmk

) ≥ S(xmk−1, xmk−1, xnk−1). (7)

On letting k → +∞ in the inequality (7) and using Lemma 1.14 (iv), we get that ϵ ≤ 0,
which is a contraction. Therefore 1

3S(xmk−1, xmk−1, xmk
) < S(xmk−1, xmk−1, xnk−1),

for all k ≥ k1. Now, we have

N(xmk−1, xmk−1, xnk−1)

= min{S(Txmk−1, Txmk−1, xmk−1), S(Txmk−1, Txmk−1, xnk−1),

= min{S(xmk
, xmk

, xmk−1), S(xmk
, xmk

, xnk−1), S(xmk
, xmk−1, xnk−1)}.

By letting k → +∞ and by using the inequality (6), we get

lim
k→+∞

N(xmk−1, xmk−1, xnk−1) = 0. (8)

Let t′k=S(xmk
, xmk

, xnk
) and s′k=S(xmk−1, xmk−1, xnk−1)+LN(xmk−1, xmk−1, xnk−1).

By using Lemma 1.14 and the inequality (8), we obtain that lim
k→+∞

t′k= lim
k→+∞

s′k=ϵ>0.

Now, by the inequality (3) and by (ζ3), we have

0≤ lim sup
k→+∞

ζ(S(xmk
, xmk

, xnk
), S(xmk−1, xmk−1, xnk−1)+LN(xmk−1, xmk−1, xnk−1))<0,

a contradiction.

Therefore, {xn} is a Cauchy sequence. Since (X,S) is a complete S-metric space,
there exists a u ∈ X, such that lim

n→+∞
xn = u.

STEP 3: We now prove that u is a fixed point of T .

Suppose that Tu ̸= u. Then S(u, u, Tu) > 0. We now prove that either

(a) 1

3
S(xn, xn, xn+1) < S(xn, xn, u), or

(b) 1

3
S(xn+1, xn+1, xn+2) < S(xn+1, xn+1, u) (9)

hold for each n = 0, 1, 2, . . .. On the contrary, suppose that 1
3S(xn, xn, xn+1) ≥

S(xn, xn, u) and
1
3S(xn+1, xn+1, xn+2) ≥ S(xn+1, xn+1, u) hold for some n. Therefore,

3S(xn, xn, u) ≤ S(xn, xn, xn+1) = S(xn+1, xn+1, xn) ≤ 2S(xn+1, xn+1, u) + S(xn, xn, u),

which implies that S(xn, xn, u) ≤ S(xn+1, xn+1, u). From the inequality (5), we have

S(xn+1, xn+1, xn+2) < S(xn, xn, xn+1)

≤ 2S(xn, xn, u) + S(xn+1, xn+1, u) ≤ S(xn+1, xn+1, xn+2),

a contradiction. Therefore (9) holds.
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Suppose that (a) holds, i.e. 1
3S(xn, xn, Txn) < S(xn, xn, u) and from (3) we have

0 ≤ ζ(S(Txn, Txn, Tu), S(xn, xn, u) + LN(xn, xn, u)). (10)

Here

N(xn, xn, u) = min{S(Txn, Txn, xn), S(Txn, Txn, u), S(Txn, xn, u)}
= min{S(xn+1, xn+1, xn), S(xn+1, xn+1, u), S(xn+1, xn, u)}.

On letting n → +∞, we have lim
n→+∞

N(xn, xn, u) = 0. From (10), we have

0 ≤ lim sup
n→+∞

ζ(S(xn+1, xn+1, Tu), S(xn, xn, u) + LN(xn, xn, u))

≤ lim sup
n→+∞

(S(xn, xn, u) + LN(xn, xn, u)− S(xn+1, xn+1, Tu))

= lim sup
n→+∞

(S(xn, xn, u) + LN(xn, xn, u))− lim inf
n→+∞

S(xn+1, xn+1, Tu) = −S(u, u, Tu),

Hence S(u, u, Tu) = 0, i.e., u = Tu.

Now suppose (b) holds, i.e. 1
3S(xn+1, xn+1, Txn+1) < S(xn+1, xn+1, u) and from

the inequality (3) we have

0 ≤ ζ(S(Txn+1, Txn+1, Tu), S(xn+1, xn+1, u) + LN(xn+1, xn+1, u)), (11)

where

N(xn+1, xn+1, u) = min{S(Txn+1, Txn+1, xn+1), S(Txn+1, Txn+1, u), S(Txn+1, xn+1, u)}
= min{S(xn+2, xn+2, xn+1), S(xn+2, xn+2, u), S(xn+2, xn+1, u)}.

On letting n → +∞, we have lim
n→+∞

N(xn+1, xn+1, u) = 0. From the inequality (11),

we have

0 ≤ lim sup
n→+∞

ζ(S(xn+2, xn+2, Tu), S(xn+1, xn+1, u) + LN(xn+1, xn+1, u)

≤ lim sup
n→+∞

(S(xn+1, xn+1, u)+LN(xn+1, xn+1, u)−S(xn+2, xn+2, Tu))=−S(u, u, Tu).

Hence S(u, u, Tu) = 0, i.e., u = Tu. Thus, u is a fixed point of T .

STEP 4: We now prove the uniqueness. Suppose that x, y ∈ X are two fixed points
of T such that x ̸= y. Clearly, 1

3S(x, x, Tx) < S(x, x, y). Then by using the inequal-
ity (3), we get

0 ≤ ζ(S(Tx, Tx, Ty), S(x, x, y) + LN(x, x, y)), (12)

where N(x, x, y) = min{S(Tx, Tx, x), S(Tx, Tx, y), S(Tx, x, y)} = 0. Now, from the
inequality (12), we get

0 ≤ ζ(S(x, x, y), S(x, x, y)) < S(x, x, y)− S(x, x, y) = 0 (by (ζ2)),

a contradiction. Therefore x = y.

Theorem 2.3. Let (X,S) be a complete S-metric space. Suppose that there exist
ζ ∈ Z and L ≥ 0 such that
1

3
S(x, x, Tx)<S(x, x, y) implies ζ(S(Tx, Tx, Ty), S(x, x, y)+LN(x, x, y))≥0, (13)

for all x, y ∈ X, where N(x, x, y) = min{S(Tx, Tx, x), S(Tx, Tx, y), S(Tx, x, y)}.
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Then T has a unique fixed point in X.

Proof. Similar to the proof of Theorem 2.2 □

Corollary 2.4. Let (X,S) be a complete S-metric space. Suppose that there exist
ζ ∈ Z and L ≥ 0 and such that

ζ(S(Tx, Tx, Ty), S(x, x, y) + LN(x, x, y)) ≥ 0, (14)

for all x, y ∈ X, where N(x, x, y) is defined as in the inequality (13). Then T has a
unique fixed point in X.

Remark 2.5. If L = 0 in the inequality (13), then Theorem 1.16 follows as a corollary
of Corollary 2.4.

Corollary 2.6. Let (X,S) be a complete S-metric space and T : X ×X → X be a
mapping satisfying the following condition: there exists λ ∈ [0, 1) such that

1

3
S(x, x, Tx)<S(x, x, y) implies S(Tx, Tx, Ty)≤λS(x, x, y), (15)

for all x, y ∈ X. Then T has a unique fixed point in X.

Proof. If we choose simulation function ζ as ζ(t, s) = λs− t, for all s, t ≥ 0, where λ ∈
[0, 1) and if L = 0 in the inequality (13) then the inequality (15) is a special case of the
inequality (13) so that, the conclusion of this corollary follows from Theorem 2.3. □

Remark 2.7. Theorem 1.13 follows as a corollary of Corollary 2.6.

Corollary 2.8. Let (X,S) be a complete S-metric space and T : X ×X → X be a
mapping satisfying

1

3
S(x, x, Tx) < S(x, y, z) implies S(Tx, Ty, Tz) ≤ S(x, y, z)− φ(S(x, y, z)), (16)

for all x, y, z ∈ X, where φ : [0,+∞) → [0,+∞) is a lower semi continuous function
with φ(t) = 0 if and only if t = 0. Then T has a unique fixed point in X.

Proof. We choose ζ(t, s) as in the Example 1.2 (v) and if L = 0 in the inequality (3),
it follows that the conclusion of this corollary holds by applying Theorem 2.2. □

The following example is in support of Theorem 2.2.

Example 2.9. Let X = [ 14 , 1]. We define S : X3 → [0,+∞) by

S(x, y, z) =

{
0, if x = y = z

max{x, y, z}, otherwise.

We define T : X → X by

Tx =

{
1
2 , if x ∈ [ 14 ,

1
2 )

1, if x ∈ [ 12 , 1].

We define ζ : [0,+∞) × [0,+∞) → R by ζ(t, s) = 1
2s − t, s, t ≥ 0. Then ζ is a

simulation function. Let x, y, z ∈ X. We now verify that ζ(S(Tx, Ty, Tz), S(x, y, z)+
LN(x, y, z)) ≥ 0 whenever 1

3S(x, x, Tx) < S(x, y, z).
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Case (i) Let x, y, z ∈ [ 14 ,
1
2 ). We assume without loss of generality that x < y < z. We

have 1
3S(x, x, Tx) =

1
3S(x, x,

1
2 ) =

1
6 < z = S(x, y, z). In this case S(Tx, Ty, Tz) = 0

so that the inequality (3) holds trivially for any L ≥ 0.

Case (ii) Let x, y, z ∈ [ 12 , 1]. We assume that x < y < z. We have 1
3S(x, x, Tx) =

1
3S(x, x, 1) =

1
3 < z = S(x, y, z). In this case S(Tx, Ty, Tz) = 0 so that the inequal-

ity (3) holds trivially for any L ≥ 0.

Case (iii) Let x ∈ [ 14 ,
1
2 ) and y, z ∈ [ 12 , 1]. We assume that y < z. We have

1
3S(x, x, Tx) =

1
3S(x, x,

1
2 ) =

1
6 < z = S(x, y, z).

S(Tx, Tx, x) =S(
1

2
,
1

2
, x) =

1

2
; S(Tx, Tx, y) = S(

1

2
,
1

2
, y) = y

S(Tx, Tx, z) =S(
1

2
,
1

2
, z) = z; S(Tx, y, z) = S(

1

2
, y, z) = z.

N(x, y, z) =min{1
2
, y, z} =

1

2
and S(Tx, Ty, Tz) = S(

1

2
, 1, 1) = 1

We consider

ζ(S(Tx, Ty, Tz),S(x, y, z) + LN(x, y, z) =
1

2
(S(x, y, z) + LN(x, y, z))− S(Tx, Ty, Tz)

≥ 1

2
(LN(x, y, z))− S(Tx, Ty, Tz) =

1

2
(L(

1

2
))− 1 ≥ 0, for any L ≥ 4.

In this case, the inequality (3) holds for any L ≥ 4.

Case (iv) Let x, y ∈ [ 14 ,
1
2 ) and z ∈ [ 12 , 1]. We assume that x < y. We have

1
3S(x, x, Tx) =

1
3S(x, x,

1
2 ) =

1
6 < z = S(x, y, z).

S(Tx, Tx, x) =S(
1

2
,
1

2
, x) =

1

2
S(Tx, Tx, y) =S(

1

2
,
1

2
, y) =

1

2
;

S(Tx, Tx, z) =S(
1

2
,
1

2
, z) = z S(Tx, y, z) =S(

1

2
, y, z) = z.

N(x, y, z) =min{1
2
, z} =

1

2
and S(Tx, Ty, Tz) =S(

1

2
, 1, 1) = 1.

In this case, we have ζ(S(Tx, Ty, Tz), S(x, y, z) + LN(x, y, z)) ≥ 0 for any L ≥ 4
(similarly as in Case (iii)). The inequality (3) holds for any L ≥ 4.

Case (v) Let x, z ∈ [ 14 ,
1
2 ) and y ∈ [ 12 , 1]. We assume that x < z. We have

1
3S(x, x, Tx) =

1
3S(x, x,

1
2 ) =

1
6 < y = S(x, y, z).

S(Tx, Tx, x) =S(
1

2
,
1

2
, x) =

1

2
; S(Tx, Tx, y) =S(

1

2
,
1

2
, y) = y;

S(Tx, Tx, z) =S(
1

2
,
1

2
, z) =

1

2
; S(Tx, y, z) =S(

1

2
, y, z) = y.

N(x, y, z) =min{1
2
, y} =

1

2
and S(Tx, Ty, Tz) =1.

Similarly as in Case (iii), the inequality (3) holds for any L ≥ 4.

Case (vi) Let z ∈ [ 14 ,
1
2 ) and x, y ∈ [ 12 , 1]. We assume that x < y. We have



138 Almost Suzuki type Zs-contractions

1
3S(x, x, Tx) =

1
3S(x, x, 1) =

1
3 < y = S(x, y, z).

S(Tx, Tx, x) =S(1, 1, x) = 1; S(Tx, Tx, y) =S(1, 1, y) = 1;

S(Tx, Tx, z) =S(1, 1, z) = 1; S(Tx, y, z) =S(1, y, z) so that

N(x, y, z) =1 and S(Tx, Ty, Tz) =1.

We consider

ζ(S(Tx, Ty, Tz), S(x, y, z) + LN(x, y, z)) =
1

2
(S(x, y, z) + LN(x, y, z))− S(Tx, Ty, Tz)

≥1

2
(LN(x, y, z))− S(Tx, Ty, Tz) =

1

2
(L(1))− 1 ≥ 0, for any L ≥ 2.

In this case, the inequality (3) holds for any L ≥ 2.

Case (vii) Let y ∈ [ 14 ,
1
2 ) and x, z ∈ [ 12 , 1]. We assume that x < z. We have

1
3S(x, x, Tx) =

1
3S(x, x, 1) =

1
3 < z = S(x, y, z).

S(Tx, Tx, x) =S(1, 1, x) = 1; S(Tx, Tx, y) =S(1, 1, y) = 1;

S(Tx, Tx, z) =S(1, 1, z) = 1; S(Tx, y, z) =S(1, y, z) = 1 so that

N(x, y, z) =1.

In this case, we have ζ(S(Tx, Ty, Tz), S(x, y, z) + LN(x, y, z)) ≥ 0, for any L ≥ 2
(similarly as in Case (vi)).

Case (viii) Let z, y ∈ [ 14 ,
1
2 ) and x ∈ [ 12 , 1]. We assume that y < z. We have

1
3S(x, x, Tx) = 1

3S(x, x, 1) = 1
3 < S(x, y, z). Here N(x, y, z) = 1. In this case,

we have ζ(S(Tx, Ty, Tz), S(x, y, z) + LN(x, y, z)) ≥ 1
2 (L(1))− 1 ≥ 0, for any L ≥ 2.

Therefore T satisfies all the hypotheses of Theorem 2.2, with L = 4, and 1 is the
unique fixed point of T .

The following example is in support of Theorem 2.3.

Example 2.10. Let X = [ 12 , 2]. We define S : X3 → [0,∞) by

S(x, y, z) =

{
0, if x = y = z

max{x, y, z}, otherwise.

Then (X,S) is a complete S-metric space. We define T : X → X by

Tx =

{
2x+1

3 , if x ∈ [ 12 , 1)

2, if x ∈ [1, 2].

We define ζ : [0,∞) × [0,∞) → R by ζ(t, s) = s − 3t, s, t ≥ 0. Then ζ is a sim-
ulation function. Let x, y ∈ X. We now verify that ζ(S(Tx, Tx, Ty), S(x, x, y) +
LN(x, x, y)) ≥ 0 whenever 1

3S(x, x, Tx) < S(x, x, y).
Case (i) Let x, y ∈ [ 12 , 1) with x < y. Here S(x, x, Tx) = 2x+1

3 and S(x, x, y) =

y. Clearly, 1
3S(x, x, Tx) < S(x, x, y). In this case, S(Tx, Tx, Ty) = 2y+1

3 and
N(x, y, z) = 2x+1

3 . Then

ζ(S(Tx, Tx, Ty),S(x, x, y) + LN(x, x, y)) = S(x, x, y) + LN(x, x, y)− 3S(Tx, Tx, Ty)

= y + L(
2x+ 1

3
)− 3(

2y + 1

3
) > 0 for any L ≥ 4.
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Therefore, in this case, the inequality (13) holds for any L ≥ 4.

Case (ii) Let x, y ∈ [1, 2]. We have 1
3S(x, x, Tx) = 1

3S(x, x, 2) = 2
3 < S(x, x, y). In

this case S(Tx, Tx, Ty) = 0 so that the inequality (13) holds trivially for any L ≥ 0.

Case (iii) Let x ∈ [ 12 , 1) and y ∈ [1, 2]. We have 1
3S(x, x, Tx) = 1

3 max{ 2x+1
3 , x} <

S(x, x, y). Here S(Tx, Tx, Ty)=2; S(Tx, Tx, x)= 2x+1
3 ; S(Tx, Tx, y)=y; S(Tx, x, y)=y

and N(x, x, y)=min{ 2x+1
3 , y}= 2x+1

3 . We consider

ζ(S(Tx, Tx, Ty), S(x, x, y) + LN(x, x, y)) = y + L(
2x+ 1

3
)− 3(2) > 0

for any L ≥ 9. Therefore, in this case, the inequality (13) holds for any L ≥ 9.

Case (iv) Let x ∈ [1, 2] and y ∈ [ 12 , 1). We have 1
3S(x, x, Tx) = 2

3 < S(x, x, y) and
N(x, x, y) = 2; We consider ζ(S(Tx, Tx, Ty), S(x, x, y) + LN(x, x, y)) = x + L(2) −
3(2) > 0 for any L ≥ 3. In this case, the inequality (13) holds for any L ≥ 3.

Therefore T satisfies all the hypotheses of Theorem 2.3 with respect to ζ with
L = 9 and 2 is the unique fixed point of T .

Here we observe that T does not satisfy the inequality (1). For example, choose
x = 3

2 , y = 3
4 , we have S(x, x, y) = 3

2 . Now, S(Tx, Tx, Ty) = 2 ≰ KS(x, x, y) for any
K < 1. Hence T does not satisfy the inequality (1). So we conclude from Remark 2.7
that Theorem 2.3 generalizes Theorem 1.13.

Further, we observe that T does not satisfy the inequality (2) for any ζ. If we
choose x = 1

2 , y = 1
4 in the inequality (2), then we have ζ(S(Tx, Tx, Ty), S(x, x, y)) =

ζ( 23 ,
1
2 ) <

1
2 − 2

3 < − 1
6 , a contradiction.

Thus the inequality (2) fails to hold for any ζ. Hence by Remark 2.5, it follows
that Theorem 2.3 is a generalization of Theorem 1.16.
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