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FIBONACCI NUMBERS WHICH ARE CONCATENATIONS OF
THREE REPDIGITS

Fatih Erduvan and Refik Keskin

Abstract. In this study, it is proved that the only Fibonacci numbers which are con-
catenations of three repdigits are 144, 233, 377, 610, 987, 17711.

1. Introduction

Let (F),) be the sequence of Fibonacci numbers given by Fy = 0, F; = 1, and
F,=F,_1+ F,_o, for n > 2. Binet formula for the n'* Fibonacci number is

an_ﬂn

\/5 )

are the roots of the characteristic equation

F, =

5 1—+/5

+éx/’ and § — 2w/7

22 — 2 —1=0. It can be seen that 1 < a <2, -1 < <0 and a8 = —1. A relation

between nt" Fibonacci number F,, and « is given by

a" ?<F,<a™! forn>1. (1)

The inequality (1) can be proved by induction. Given k > 1, we say that N is a
concatenations of k repdigits, if N can be written in the form

where o =

dy . dids. .. do. . dy.. . dp
mq times mo times my, times

In [1], the authors solved the problem of finding the Fibonacci numbers which are
concatenations of two repdigits. In [6,7] Ddamulira determined all the tribonacci
numbers that are concatenations of two repdigits, respectively. In [10], Trojovsky
considered Fibonacci numbers of the form
F,=ab...bc...c,
——

m times k times
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156 Fibonacci numbers which are concatenations of three repdigits

where a > 1, 0 < a,b,c <9 with 2 < k < m. He showed that the largest Fibonacci
numbers of the above form is 17711. Motivated by these studies, in this paper, we
study the equation

F,=d;...didy...dods...d3, (2)
N e N —
m1 times mo times mgs times
where di,my,mg,m3 > 1 and 0 < dy,do,d3 < 9. That is, we find all Fibonacci
numbers which are concatenations of three repdigits. It is shown that the only Fi-
bonacci numbers which are concatenations of three repdigits are 144, 233, 377, 610,
987, 17711. In Section 2, we introduce necessary lemmas. Then we prove our main
theorem in Section 3.

2. Auxiliary results

Let n be an algebraic number of degree d with minimal polynomial
d

apz’ + ez 4+ .+ ag=ao H (117 - 77(“) € Z[z],
i=1

where the a;’s are relatively prime integers with ag > 0 and the 1(?)’s are conjugates
of . Then

h(n) = é <logao n Zd:log (max{m(% 1})) (3)

is called the logarithmic height of 7. In particularly, if n = a/b is a rational number
with ged(a,b) = 1 and b > 1, then h(n) = log (max {|al, b}).

For algebraic numbers 1 and +, the function h has the following basic properties
(see [4]):

h(n£7) < h(n) +h(y) +1og2, h(ny™") < h(n) +h(y), h(n™) = |m|h(n).
Now, we give a theorem which is deduced from [9, Corollary 2.3] and provides a large
upper bound for the subscript n in the equations (2) (also see [5, Theorem 9.4]).

LEMMA 2.1. Assume that v1,72,...,7: are positive real algebraic numbers in a real
algebraic number field K of degree D, by, b, ..., by are rational integers, and A :=
’ylfl ...'yft — 1 is not zero. Then

|A| > exp (—1.4- 302 t*5. D?(1 +log D)(1 +log B)A1 As ... Ay) ,
where B> max {|b1],...,|b:|} and A;>max{Dh(vy;),|log~:|,0.16} for alli=1,... t.

The following lemma is given in [3]. This lemma is an immediate variation of the
result due to Dujella and Pethd from [8], which is a version of a lemma of Baker and
Davenport [2]. It will be used to reduce the upper bound for the subscript n in the
equation (2). Let ||z|| = min {|z — n| : n € Z} for any real number x.

LEMMA 2.2. Let M be a positive integer, let p/q be a convergent of the continued
fraction of the irrational number vy such that ¢ > 6M, and let A, B, i be some real
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numbers with A > 0 and B > 1. Let € := ||uq|| — M||vqll. If € > 0, then there exists
no solution to the inequality 0 < |uy — v + p| < AB™"Y, in positive integers u,v, and

w with u < M and w > loglgqu/e).

The following lemma is given in [11].

LEMMA 2.3. Leta,z € R. If0<a <1 and |z| < a; then

<M.|x| and |z| < _
a 1—e@

[log(1 + x) e —1].

3. Main theorem

THEOREM 3.1. The only Fibonacci numbers which are concatenations of three repdig-
its are 144, 233, 377, 610, 987, 17711.

Proof. Assume that the equation (2) holds. Since the number Fj49 has 31 digits,
1 < my,mq,mg <29 for n < 149. Then by using Mathematica program, we can find
all the solutions to the equation (2) for d; > 0,0 < dj,ds,ds < 9,and 1 <n < 149. In
this case, we see that F,, € {144,233,377,610,987,17711}. From now on, we assume
that n > 150 and we rule out di = dy # ds and d; # d2 = d3 in equation (2) since
these cases have been solved in [1]. Furthermore, the case d; = d2 = d3 in equation (2)
is impossible since the largest repdigit in Fibonacci sequence is Fjy = 55, which has
two digits. As

Fn:dl...dldQ...d2d3...d3Zdl...dl X 10m2+m3+d2...d2 X 1Om3+d3...d3,
——N N —— — ——

m1 times mo times m3 times mq times mo times ms times
dy(10mr — 1 do(10m2 — 1 d3(10ms — 1
we get Fn — 1( )10m2+m3 _|_ 2( )10m3 + 3( )’ (4)
9 9 9
1
ie. F, = 5 (d10™Fm24ms — (dy — dy) 10721 — (dy — d3) 10™* —dg) .  (5)

Combining the right-hand side of inequality of (1) with (4), we obtain
fpmitmatmetl < <ot < 10"
From this, we get m; + mo + ms < n. Now, we can rewrite equation (5) as
9a™ — dyV/5 - 1M Tmtma
= 98" — (dy — d3) V5 -10™2F™3 — (dy — d3) V5 - 10™3 — ds /5. (6)
Taking absolute values of both sides of the equation (6), we get
9a™ — dyV/5 - 10 TS
< 918" + |dy — da| V5 - 10m2T™ 4 |dy — d| V5 - 10™2 4 d3V/5
< 9a™" 4+ 9V5-10m2 ™ +9v/5-10™2 4 9v/5
< 9o +V/5(9-10m2T™s £ 9. 10™2 4 (0.9) - 10™2)
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=9a"" + V5 10™3(9 - 10™2 + (9.9)) < 9a " + V5 - 10™3(9 - 10™ + (0.99) - 10™2)
< (0.09) @~ "10™2 1M 42234 10™2 M < 22,341 - 10™2 T,

where we have used the fact that n > 150. Therefore, it is seen that

907 — dy /5 107 | < 22341 - 107, (7)

Dividing both sides of (7) by div/5 - 10™1+™2F™ms e obtain

9 e —me—m 22.341 - 10m2tms 9.992
at1pTmTmeTms | < . (8)
diV/5 dy/5 - 10mi+matms 10
Now, let us apply Lemma 2.1 with v; := ﬁ,vg = a,y3 := 10 and by := 1,by :=
n,bs := —my — mg — mg. Note that the numbers v;,72, and 3 are positive real
numbers and elements of the field K = Q(v/5). The degree of the field K is 2. So
D = 2. It can be seen that Ay := ﬁa"m—ml—mz—m — 1 is nonzero. Moreover,
since
9 9 log 5
h(vi) = h <h(-=)+h5) <log9+ —= < 3.1,
= (22 ) <n () + 1) <tog -+ 22
log v
and h(y2) = h(a) = 5 < 0.25, h(y3) = h(10) =log10 < 2.31

by (3), we can take A; := 6.2, Ay := 0.5, and A3 := 4.62. On the other hand, as
m1 +ma +m3 < n and B > max {|1], |n|,|—-m1 — m2 — ms|}, we can take B := n.
Thus, taking into account the inequality (8) and using Lemma 2.1, we obtain

(9.992) - 107™ > |Aq] > exp (C - (1 +1ogn)),

where C' = —1.4-30°9-3%5.22. (1 +log2)-(6.2)-(0.5)-(4.62). By a simple computation,
it follows that

mqlog 10 < 1.39 - 10'3 - (1 + log n) + log(9.992). 9)
Rearranging the equation (5) as
9a™ — dyV/5 - 10 Tmtms
= 98" — (dy — d3) V5 - 10™2T™3 — (dy — d3) V/510™3 — d3V/5 (10)
and taking absolute values of both sides of the equation (10), we get

’904" ~(d110™ — (dy — dg)) V5 - 1072+

< 98" + |dy — d3| V5 - 10™ + dsv/5 < 9™ + 95 - 10™2 + 9V/5
< 9a7"4+V5(9-10™ +9) < 9a " +V/5(9 - 102 4+(0.9) - 10™*) < 22.15 - 10™2,
ie., ’9@" — (d110™ — (dy — dy)) V5 - 1072+
Dividing both sides of (11) by (d;10™ — (d; — d2)) /5 - 10™2%™3  we obtain
9 1.11

1-— .
’ ((d110m1 —(d1 —d2)) V5 10m=
a, v3 := 10 and by := 1, by := n, bz :=

<22.15-10™. (11)

> a107m2TME ) <

3 — 9 —
Taking v := @10 —(d—da)vE’ 2 T
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—msg — mg, we can apply Lemma 2.1. The numbers ~1, 72, and 3 are positive real
numbers and elements of the field K = Q(v/5) and so D = 2. One can verify

1 9
that A2 = 1 <(d110m17(dlid2))\/g
properties of the logarithmic height, we get

) a™10~™27™3 ig nonzero. By using (3) and the

9
h(m) =h ((dlwml =) \/5)
< h(9) + h(V5) + h(d10™) + h (dy — dy) + log2

log 5
< 3log9+ % +mi1log10 + log 2 < 8.1 + m, log 10,

1
h(qs) = h(a) = Ogo‘ < 0.25,
and h(v3) = h(10) = log 10 < 2.31.
So, we can take Ay := 16.2 + 2mq log 10, A5 := 0.5, and A3z :=4.62. As ma+m3z <n
and B > max {|1],| — n|,|—ma — mg|}, we can take B := n. Thus, taking into account

the inequality (12) and using Lemma 2.1, we obtain
1.11-1072 > |Ag| > exp (C - (1 + logn) (16.2 + 2m4 log 10))
ie., mylog 10 < 2.25 - 102 - (1 4 logn) (16.2 + 2m; log 10) + log(1.11),  (13)
where C' = —1.4-306-3%5.22(1 +1og2) - (0.5) - (4.62). Rearranging the equation (5) as
90" — (d110™ ™2 — (dy — d3) 10™2 — (dy — d3)) V5 - 10™2 = 98" —d3  (14)
and taking absolute values of both sides of the equation (14), we get
‘Qa”— (d110™M2 — (dy —dy) 1072 — (dy—dy)) V/5-10™ | <9 |B]" +ds=9a " +9<9.1,

ie., ’904" — (dy10™ 4™ — (dy — dy) 10™2 — (dy — d3)) V/5 - 10™
If we divide both sides of (15) by 9a™, we obtain

mi+mo _ mz __ — d-
- ((dllo (dh — d3) 10™ — (d — dy)) ﬁ) 1o

<9.1. (15)

5 <1.02-a~". (16)

mi1+mo _ mo _
Taking 71 = ((d110 14m2 (4, d;)lo 2 (dy ds))\/5>’ ry = 7 = 10 and by = 1,
bs := —n, b3 := mg, we can apply Lemma 2.1. The numbers 71,72 and 73 are positive

real numbers and elements of the field K = Q(v/5) and so D = 2. One can verify that
A3 . ((d110m1+m2 — (d1 — dg) 10m2 — (d2 — d3)) \/5) a0

9
is nonzero. By using (3) and the properties of the logarithmic height, we get

h(n1) = h <<d110’”1*m2 Gl d29> 10™2 — (dy — d3)) \/5>

< h(V5) + h(9) + h(d;10™F™2) 1+ h((dy — d2) 10™2) + h (dy — ds) + 21og 2
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log 5
< O§ + 41og 9+ (m1 + ma)log 10 + ma log 10 + 21log 2
< 10.98 + (m1 + m2)log 10 4+ my log 10,
1
h(72) = h(a) = Ogo‘ <025, and h(ys) = h(10) = log 10 < 2.31.
So, we can take A; := 21.96 + 2m log 10 + 4ms log 10, Ay := 0.5, and Az := 4.62.
As m3 < n and B > max{|1|,| — nl|,|ms|}, we can take B := n. Thus, taking into

account the inequality (16) and using Lemma 2.1, we obtain
1.02-a™" > |As] > exp (C - (1 4+ logn) (21.96 + 2m4 log 10 + 4m4 log 10))

ie., nloga—Ilog(1.02) < 2.25-10"(1+1logn) (21.9642m; log 10-+4ms log 10) ,
(17)

where C' = —1.4-30%-3%%.22(1 +log2) - (0.5) - (4.62). Using the inequalities (9), (13)
and (17), a computer search with Mathematica gives us that n < 1.36 - 10%°.

Now, let us try to reduce the upper bound on n by applying Lemma 2.2. Let

9
z1 := (my1 + ma + mg3)log 10 — nlog o — log (\/5d> .
1

From (8), it is seen that |z = |e7* — 1] < £922 < 0.9995 for my > 1. Choosing a :=
0.9995, by Lemma 2.3, we get the inequality
log(2000) 9.992  75.99

0.9995  10™ 10m

21| = [log(z + 1)| <
Thus, it follows that

9 75.99
0< log10 —nl -1 < .
(mq 4+ mg + m3) log nlog o og(\/5d1>’ Tom
Dividing this inequality by log a, we get
log 10 log(9/v/5d
0 < |(my + my +mg)~2— —n — (Og(/m> <157.92-107™.  (18)
log o log o
log 1
Now, we can apply Lemma 2.2. Put v := IOgg 0 ¢Q, u:= —%, A :=157.92,
og o

B :=10and w := m;. Let M := 1.36-10%. Then M > my+mo+ms and denominator

of the 97" convergent of v exceeds 6 M. Furthermore, € := ||uqor| — M ||yqor| > 0.12.

08 (A97/€) _ 49,62 < . Somy < 19.
log B

Now replace (13) by (17). Substituting this upper bound for m; into (17), we obtain

n < 1.12-10%2. Now, let

Thus, the inequality (18) has no solutions for

9
Z9 1= (m2+m3)log10—nloga—10g( )
(d110™ — (dy — d2)) V5

From (12), it is seen that |z| = |[e7*> — 1| < 1.11- 1072 < 0.2 for my > 1. Choosing
a = 0.2, we get the inequality
log(10/8) 111 _ 1.24

— 1
|22 = llog(z + 1) < =75 {gmz < Toms
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by Lemma 2.3. Thus, it follows that
9

(d110m1 — (d1 — dg)) \/5
Dividing both sides of the above inequality by log o, shows that
log10 N log (9/(d110™ — (dy — d2))V/5)
log v log

0< (m2+m3)log10—nloga—log( )‘<1.24~10m2.

<257-107™2. (19)

0< (ng +m3)

log 10

Putting v := and taking mo +ms < M := 5.57- 103!, we find that ¢r3, the de-
1
og «

log(9/(d110m1—(d1 d2))V5)

nominator of the 73" convergent of v exceeds 6 M. Taking p :=
and considering the fact that m; <49, d; #ds, 1 < d; <9 and 0 < ds < 9 a quick
computation with Mathematica gives us the equality € = e(p) := ||pgrs|| — M ||*yq73|| >
0.00001. Let A := 2.57, B := 10 and w := mg in Lemma 2.2. Then with the help
of Mathematica, we can say that the inequality (19) has no solution for log(loAg’iqg/é) <
39.51 < mgy. Therefore my < 42. Substituting this upper bound for m; and mo

into (17), we obtain n < 1.15- 10'7. Now, let

(di10™F™2 — (dy — d2) 10™2 — (d3 — d)) \/5>
2 .

From (16), one can write |z| = |e*® — 1] < 1.02- ™" < 0.01 for n > 150. Choosing
a = 0.01, we get the inequality

z3 1= m3log10—nloga—|—log<

o3l = log + 1)) < EU00/9) 102 108
by Lemma 2.3. Thus, it follows that
(d110m1+m2— (d1—dg) 10™2— (dg—dg)) ‘ < 1.03
9
Dividing both sides of the above inequality by log «, we get
m3 log 10 _n+log ((d110mF+m2— (dy—dp) 10m2 — (dp—d3)) V/5/9)

log «v log v

0< ‘mg log 10—n log a+ log .
an

2.15
< .

an

0< (20)

log 10

Putting v := . and taking M := 1.15-10'7, it is seen that M > ms and qs, the
og

denominator of the 48" convergent of v exceeds 6M.

mq+m mo
Taking p := (G (dl d2)10™2 —(da—ds)) V5/9) and considering the fact

that m; <49, mo < 39,1 <d; < 9 and 0 < ds,d3 <9, a quick computation with
Mathematica gives us the equality € = e(u) := ||uqas|| — M||vqas|| > 0 except for the
case dy = dg # d3, dy # do = d3 and d; = dy = d3. Let A := 2.15, B := « and
w := n in Lemma 2.2. Then with the help of Mathematica, we can say that the
inequality (20) has no solution for k’g(lfg%/e) < 147.17 < n. Therefore n < 147. This

contradicts our assumption that n > 150. This completes the proof. O
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