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Abstract. A generalization of regular magic squares with magic sum g is an sqg-corner
(or square corner) magic square. It is a magic square satisfying the condition that the sum
of 4 entries, square symmetrically placed with respect to the center, equals 47“. Using the
sqg-corner magic squares of order n, a construction of sq-corner magic squares of order n + 2
is derived. Moreover, this construction provides some nonsingular classical sq-corner magic
squares of all orders. In particular, a nonsingular regular magic square of any odd order can

be constructed under this new method, as well.

1. Introduction

An n xn matrix M over C whose sum of n entries in any row and any column equals a
constant y is called a semi-magic square, and if n entries on each of its cross diagonals
also sum to u, then M is called a magic square with a magic sum p. One of the
special types of magic squares widely studied is a regular magic square, an n X n
complex magic square M = [m, ;] such that

21

Mg j + Mppl—intl—j = o
Mattingly showed in [6] that a regular magic square of any even order is singular.
However, this is not the case for an odd-order regular magic square, which leads to
many attempts to construct a nonsingular regular magic square of odd order. Lee
and et. al. introduced in [3] a construction of nonsingular regular magic squares whose
orders are odd primes and powers of odd primes by using a centroskew S-circulant
matrix A with the first row of A defined as a; = j — 1 for j = 1,2,...,("7"‘1).
Their construction also lead to further study of singularity of regular magic squares,
e.g., see [2,4]. In our work, we are more interested in studying the singularity of its
generalization. Rungratgasame and et. al. introduced in [7] a generalization of regular
magic squares, called corner magic squares, which will be defined by Definition 1.1.
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To be precise, we shall call a corner magic square a sq-corner magic square. This
work will give a construction of a nonsingular sg-corner magic square of any order
n > 3.

DEFINITION 1.1. An n X n complex magic square M = [m; ;] with a magic sum g is
said to be a sg-corner (square corner) magic square if

4
Mi i + Mnt1—i),(n+1—i) T M (nt1—4) T M(nt1—3),i = #, foralli=1,2,3,...,n.

Both regular and sq-corner magic squares can be symbolically illustrated in the
following table where the same symbols represent associated entries added to be a
constant.

Magic squares n=4 n=>5 n==6
>~ v o 0 A &>
. v 2o & * 3 2 Sk < O S o
< < <& > O] @ * S] ®
regular D S (g 8.9 g % (3 ® 6 * B o o
& PaN v "~ % A 5 v - > | | > Q O <q
*» A . o v L)
L) L)
- S * o * ® ®
sq-corner 2 ® o Iy o :
L) L) -~ -~ ® ®
» »

It is obvious that a regular magic square is sq-corner. However, a sq-corner magic
square need not be regular, e.g. the magic square with Frénicle index 175:

1 12 8 13
4 7 11 2
Fs=115 6 10 3
4 9 5 16

is regular and sq-corner whereas the magic squares in [5] with Frénicle indices 181
and 268 in Dudeney Group XI and VII, respectively

1 12 13 8 2 5 16 11
6 9 4 5 8 12 1 13

Fai=|o9 7 14 11| 24 Pes=|g ¢ 14 4|
15 6 3 10 15 10 3 6

are sq-corner but not regular.

The matrices F1g1 and Fygg are examples of nonsingular sq-corner magic squares.
In particular, these show that a sq-corner magic square of even order need not be
singular. To study the singularity of sq-corner magic squares that we construct in
this paper, we will find a method to determine their determinants.

2. A construction of nonsingular sq-corner magic squares

Recall that a square matrix is nonsingular if all of its eigenvalues are nonzero. In [1],
Amir-Moéz and Fredricks showed the connection between eigenvalues of a magic
square and its related magic square as follows.
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THEOREM 2.1. If M is an n X n magic square and p is a complex number, then
M + pE has the same eigenvalues as M except that p is replaced by p + pn.

For any n x n magic square M, the corresponding zero magic square of order n is
defined to be Zp; = M — Pp. From Theorem 2.1, Z); has the same eigenvalues as

M except that p is replaceg by 0. It implies that Z; has no repeated zero eigenvalue
if M is nonsingular. Next, we will construct an extended zero magic square of order
(n+2) x (n+2) when a magic square of order n is given. For any n € N, we say that
a=(a1,as,...,a,) € R" is zero-sum if >, a; = 0.

DEFINITION 2.2. Let Z be a zero magic square of order n. For a zero-sum a =
(ai,...,any1) € R we define an extended (n + 2) X (n + 2) matrix with respect
to Z, denoted by Sza, as follows:

ay as  cc Gptl 0
a2 —a2
Sza=| : z
Qp41 —Qn41
0 —az -+ —ap1  —a

Then Szd is a zero magic square of order n + 2. In particular, if Z is a zero sq-corner
magic square, then so is Szd.

EXAMPLE 2.3. Let us consider the following regular zero magic square of order 5
produced by an S-circulant matrix (see [2]),

0 1 2 -2 -1

-1 0 1 2 =2

cC=(-2 -1 0 1 2

2 -2 -1 0 1

1 2 -2 -1 0
We choose @ = (—3,1,0,1,0,1). Then

-3 1 0 1 0 1 0]
1 0 1 2 -2 -1 -1
0 -1 0 1 2 =2 0
Seg=|1 -2 -1 0 1 2 -1
0 2 -2 -1 0 1 0
1 1 2 -2 -1 0 -1
|0 -1 0 -1 0 -1 3

is a zero sq-corner magic square of order 7 which has 1575z + 23023 — 102° — 27 as

its characteristic polynomial, i.e., Sc@ has no repeated zero eigenvalue.

We directly obtain the following proposition from Definition 2.2 to construct a
regular zero magic square of any odd order. Let J denote the permutation matrix
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obtained by writing 1 in each of the cross diagonal entries and 0 elsewhere, that is,

0 1
J = . .
1 0
PROPOSITION 2.4. For a reqular zero magic square Z of odd order n, the sq-corner
magic square with respect to Z, Szd, where d = (x,0,y,vJ), U is an 1 x ("T_l) matriz
and J is of order "T_l, viewed as
T vy vJ 0
ot —T
Y Z R
JoT —JoT

0o —-v -y —-uvJ -z

is also a regular zero magic square of order n + 2.

The main result of this work is to derive a nonsingular magic square of order
n + 2 once a nonsingular sq-corner magic square of order n is given. Here we shall
begin with a definition of a submatrix and some of its properties in order to find a
determinant of a matrix later on.

DEFINITION 2.5. Let A be an n X n matrix. For index sets X', ¥ C {1,...,n}, let
A[X, Y] be a submatrix of A obtained by keeping entries positioned on the rows and
columns with indices in X and )Y, respectively. If X = ), then A[X, X] is a principal
submatriz of A, denoted by A[X]. Let X< = {1,...,n} \ X denote the index set
complementary to X. Then A[X¢] = A[{1,...,n}\ X].

Let e denote a column vector containing all 1’s and e; a column vector whose ‘"

row entry is 1 and O elsewhere. For an m x m matrix M and a vector @ € R", we
define [M ]f} py and [M ](C(%’k) as matrices formed by replacing the k" row and the &'}
column of M by the vector @, respectively.

The next lemma shows that the determinant of a matrix can be written in terms
of a determinant of a principal submatrix.

LEMMA 2.6. Let Z be an nxn zero magic square. Then det(Z+\E) = n?Xdet Z[{t}€]
forte{l,...,n}.

Proof. The result immediately holds for A = 0. Since the magic sum of Z is zero, we
can apply elementary column operations to have that det(Z 4+ AE) =

Z{t}¢] nXe
det[Z + )\E](C;z/\e,t)' Furthermore, det([Z + )\E](Cn)\e,t)) = det [ [{0} ] nz/\]' Hence,

det(Z + AE) = n?Xdet Z[{t}]. O
LEMMA 2.7. Let M be an (n+1) x n matriz of the form [@, Z]T where @ € R"™ and Z is

a zero magic square of order n. Then fori € {3,...,n+1}, det M[{i}°,{1,...,n}] =
(—1)idet M[{2}¢,{1,...,n}].
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Proof. Since Z is a zero magic square, —e! Z = e{ Z+---+e] Z+el [ Z+---+el Z,
and hence the desired results can be obtained by using elementary row operations. U

THEOREM 2.8. Let Z be an nxn zero magic square. Let@ = (a1, az,...,a,41) € R*1
be zero-sum. For A € R, det(Sza@ + AE) = —a?(n + 2)?Adet Z[{1}€].

Proof. By using elementary row and column operations and a3 = —as—ag—- - —an11,
the determinant of Szd + \E is

(a1 +X  ax+ A a3+ A
as + A
as + A Z + \E
det i
an+1+)\
L A —as+ A —asz+ A
_CL1+)\ CL2+)\ a5+)\
as + A
as + A 7+ \E
=det .
an+1+)\
_a1+2/\ 2\ 2\
_al—i—)\ (12+>\ (Lg-l—)\
as + A
as + A Z + \E
=det .
an+1+)\
[ (n+2)A (n+2)A (n+2)A
_a1+)\ CL2+>\ 113+/\
CL2+)\
as + A Z 4+ \E
=det .
an+1+)\
(n+2)A (n+2X (n+2)A
_a1 az asz -+ Gp41
a2
as A
=(n+ 2)*det .
Ap41
A A A A

We write

Ap+1 + A A i
—ag + A
—az + A
—On41 +A
—Opg1+A —ar+ A
Ap+1 + A ay + 2)\_
2\
2\
2\
2\ 4x |
Ap+1 + A ay + 2 ]
2A
2A
22X
(n+2)A 2(n+2)A|
i1+ A (n+2)A]
(n+2)A
(n+2)A
(n+2)A
(n+2)A  (n+2)2A]
0]
0
0
0
A—
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aj az -+ QAp Ap41
az
det(Szd + AE) =(n +2)*\det Q, where Q = 7
a’n
Ap+1
To determine the formula of the determinant of (), we pick the first column of @ and
find all of its cofactors. Let b = (as2,as,...,ant1). For k > 3, Q[{k}, {1}°] can be
viewed as the submatrix of [5, Z]T by deleting the (k — 1)™ row of Z. By apply-
ing Lemma 2.7, det Q[{k}°, {1}¢] = (=1)* det Q[{2}¢,{1}¢]. From the assumption of
ngz a; = —aq, we have
n+1

detQ =Y a;i(=1)""" det Q[{i}*, {1}]
i=1

n+1

= —azdet Q[{2}% {1}°] + Z ai(=1)"(=1)" det Q[{2}°, {1}]

= (a2t a3+ +an) et QU2)°, {1)] = ar - det((Z]1L ).

By applying elementary column operations, we get

—a; az--- ay,
0
det([Z]{él)) =det | . 211}
0
Then det @ = a1(—aq) - det Z[{1}°]. O

From Theorem 2.8 and Lemma 2.6, the following corollary is obtained immediately.

COROLLARY 2.9. For a zero-sum @ = (a1, ...,4n4+1),

9 2
det(Szd + AE) = —a?(n: ) det(Z + \E).

EXAMPLE 2.10. Let us consider the following nonsingular regular magic square of
order 9,

0545 45 45 4
51 545 4 5 4 3
45456 23 34
543 4562 43
M=|4 523 456 34
5462 3 45 43
455 6 23 43 4
54 3 43 4373
4 3 4 3 43 4 3 8




278 A generalization of nonsingular regular magic squares

with the magic sum 36. This regular magic square is originally an extended ma-
trix from the S-circulant matrix C' of order 5 given in Example 2.3. To be precise,
M = SSC&‘E-"- 4E, where @ = (—3,1,0,1,0,1) and b= (—4,1,0,1,0,1,0,1). Using
Corollary 2.9,

det M = —(—4)? (3)2 [—(—3)2 (;)2 det(C + 4F)

showing that M is nonsingular.

= 1166400,

Theorem 2.8 and Corollary 2.9 provide us the following result.

THEOREM 2.11. Let M be a nonsingular magic sq-corner square of order mn. For a
zero-sum @ = (a1,as2,as,...,an+1) and X € R, the sqg-corner magic square Sz,, i+ \E
is nonsingular if and only if a;, \ # 0.

Proof. By Theorem 2.1, det(Zyp; + AE) # 0 if and only if A # 0. By Corollary 2.9,
det(Sz,,@ + AE) # 0 if and only if a; # 0 and \ # 0. 0

Our construction here shows that starting from any nonsingular sq-corner magic
square of order 3, by repeatedly choosing appropriate A and @, we can construct non-
singular sg-corner magic square of any odd order, and similarly for the even order
cases.

From Proposition 2.4, a noteworthy special case of Theorem 2.11 is the next
corollary.

COROLLARY 2.12. For a regular zero magic square Z of odd order n with no repeated
zero eigenvalue, the reqular zero magic squares Sz(x,v,y,vJ) of order n+2 have also
no repeated zero eigenvalue when x is nonzero.

In conclusion, we construct a nonsingular sq-corner magic square Sz,,d + AE of
order n 4+ 2 when we know a nonsingular sq-corner magic square M of order n by
choosing A\ # 0 and @ = (a1, az, . ..,a,+1) such that a; # 0. If we begin with

-13 -4 8 9

-4 7 =9 6
8 -9 11 -10}|’
9 6 —10 -5

by our construction, we can derive a sequence of nonsingular sq-corner magic squares

of even orders: 4,6,8,10,.... Also, if M is a nonsingular regular magic square of order
3, then this construction will provide a sequence of nonsingular regular magic squares
of odd orders: 3,5,7,9,.... Our construction here depends on the choices of A and a

which gives another form of a nonsingular regular magic square different from those
given in [2,3].
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