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Lϕ-VALUED CESÀRO SEQUENCE SPACES

Haryadi, Supama and Atok Zulijanto

Abstract. In this paper, we characterized the matrices of operators that transform the
generalized Cesàro sequence space to the convergence sequence space in Banach spaces. Our
results generalize the characterization of the sequence space in Lp, 1 < p < ∞.

1. Introduction

Let X and Y be Banach spaces and A = (Ank) be an infinite matrix of operators
from X into Y . The investigation of characterizations of the class of matrices of oper-
ators that transform an X-valued sequence space into a Y -valued sequence space has
been carried out by several authors (e.g., [6, 7]). Başar et al. in [1] investigated ma-
trices transformation on some sequence spaces related to strong Cesàro summability.
Related to the characterization of matrices of operators, Yilmaz and Ozdemir [13] ex-
amined the Köthe-Toeplitz duals of some vector-valued Orlicz sequence spaces. The
Köthe-Toeplitz duals for the sequences in a generalized Orlicz space are examined
in [4]. In [11], Malkowsky and Veličković determined β-duals on some new sequence
spaces. The duals and matrices transformation on some spaces related to Cesàro
sequence space were also discussed in [10].

Given the generalized Orlicz space Lϕ associated with an Orlicz function ϕ, the
space of all sequences in Lϕ is denoted by ω(Lϕ). For any u ∈ Lϕ and m = 1, 2, . . .,
let emu denote a sequence in Lϕ with emk = u if k = m and emk = θ for k ̸= m. Here,
θ denotes the zero vector in Lϕ. If v = (vk) is a member of ω(Lϕ), then the notation∑∞
k Ankvk is also written as Anv.
Let ϕ be an Orlicz function that satisfies the ∆2-condition. We define the following

spaces:

W0,ϕ =

{
(uk) ∈ ω(Lϕ) : lim

N→∞

1

N

N∑
k=1

∫
E

ϕ(uk(x)) = 0

}
,

2020 Mathematics Subject Classification: 40A30, 40J05

Keywords and phrases: Matrices of operators; Cesàro sequence spaces; Orlicz function.
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98 Operators on the Lϕ-valued Cesàro sequence spaces

Wϕ = {(uk) ∈ ω(Lϕ) : (uk − u0) ∈W0,ϕ for some u0 ∈ Lϕ} ,

W∞,ϕ =

{
(uk) ∈ ω(Lϕ) : sup

N∈N

1

N

N∑
k=1

∫
E

ϕ(uk(x)) <∞
}
.

Let c(Y ) denote the space of all convergent sequences in a Banach space Y and
let W ∈ {W0,ϕ,Wϕ,W∞,ϕ}. In this paper, we give the characterization of the class
(W, c(Y )), i.e. the class of all matrices that transform the spacesW to the space c(Y ).
Based on the characterization, we then determine the class (W, c(Y )) for ϕ = | · |p,
1 < p <∞.

2. Preliminaries

The symbols N and R denote the set of all natural numbers and the set of all real
numbers, respectively. Let ϕ : R → [0,∞) be an Orlicz function, that is, ϕ is even,
continuous, convex, ϕ(x) = 0 if and only if x = 0, and limx→∞ ϕ(x) = ∞. The
complementary to the Orlicz function ϕ is a function ψ such that |xy| ≤ ϕ(x) +ψ(y),
for every x, y ∈ R. For any Orlicz function ϕ, the function ψ defined by ψ(y) =
sup{|y|x−ϕ(x) : x ≥ 0} is an Orlicz function complementary to ϕ. An Orlicz function
ϕ is said to satisfy the ∆2-condition if there is a K > 0 such that ϕ(2x) ≤ Kϕ(x)
for each x ≥ 0 (see e.g., [5]). We denote by ϕ−1 the inverse function of the Orlicz
function ϕ in the non-negative values argument.

Let (ϕ, ψ) be a pair of complementary Orlicz functions and E a bounded closed
subset of R. We denote by Lϕ the space of all Lebesgue measurable real valued
functions u on E such that |

∫
E
u(x)v(x) dx| <∞ for every v with

∫
E
ψ(v(x)) dx <∞.

Furthermore, Lϕ is a Banach space with respect to the Orlicz norm

∥u∥ϕ = sup

{∣∣∣∣ ∫
E

u(x)g(x) dx

∣∣∣∣ : ρψ(u) ≤ 1

}
,

where ρψ(u) =
∫
E
ψ(u(x)) dx (see, e.g., [5, 12]).

By the Luxemburg norm on Lϕ we mean a function ∥ · ∥(ϕ) on Lϕ such that
∥u∥(ϕ) = inf{t > 0 : ρϕ(u/t) ≤ 1}. It can be shown that ∥u∥(ϕ) ≤ ∥u∥ϕ ≤ 2∥u∥(ϕ)
for all u ∈ Lϕ, that is ∥ · ∥ϕ and ∥ · ∥(ϕ) are equivalent. Furthermore, if the Orlicz
function ϕ satisfies the ∆2-condition, then ρϕ(u/∥u∥(ϕ)) = 1 (see, e.g., [5]).

If the Orlicz function ϕ satisfies the ∆2-condition, it can be shown that there exists
a constant c > 0 such that∫

E

ϕ(au(x)) dx ≤ cϕ(a), for each a > 0 and ∥u∥ϕ ≤ 1 (1)

(see [4]). In [3], we showed that the space W∞,ϕ is complete with respect to the
Luxemburg norm

∥u∥ = inf

{
t > 0 : sup

N∈N

1

N

N∑
k=1

∫
E

ϕ

(
uk(x)

t

)
≤ 1

}
.

Furthermore, Wϕ is a closed subspace of W∞,ϕ.
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Let B(Lϕ, Y ) be the collection of all bounded linear mappings from Lϕ into Y
and Y ∗ denote the continuous dual of Y . We also write ⟨f, y⟩ = f(y) for f ∈ Y ∗

and y ∈ Y . The adjoint of T ∈ B(Lϕ, Y ) is an operator T ∗ ∈ B(Y ∗, L∗
ϕ) such that

⟨f, Tu⟩ = ⟨T ∗f, u⟩ for all f ∈ Y ∗ and u ∈ Lϕ. The notations U and U∗ represent the
sets {u ∈ Lϕ : ∥u∥ϕ ≤ 1} and {f ∈ Y ∗ : ∥f∥ ≤ 1}, respectively. Recall that for every
y ∈ Y , y ̸= θ, there exists f ∈ U∗ such that ∥y∥Y = f(y).

Let (Tk) be a sequence in B(Lϕ, Y ) and f ∈ U∗. Since for each k, T ∗
k f ∈ L∗

ϕ, then
there exists uk ∈ U such that

∥T ∗
k f∥ ≤ 2|T ∗

k fuk|. (2)

Let (ak) be a sequence of real numbers and uk as is (2) for each k ∈ N. It is clear
that the sequence (vk) with

vk = |ak|sgn (T ∗
k fuk)uk (3)

is a sequence in Lϕ.

On Lp, 1 ≤ p <∞, by taking ϕ(x) = |x|p, it is well known that ϕ(∥u∥(ϕ)) = ρϕ(u),
but in the Orlicz space, this property is not always satisfied even if the Orlicz function
ϕ satisfies the ∆2-condition (see [2]). However, if we restrict on the terms of W∞,ϕ,
we have the following result.

Lemma 2.1 ([4]). If an Orlicz function ϕ satisfies the ∆2-condition and (uk) ∈W∞,ϕ,
then there exists c > 0 such that ϕ(∥uk∥ϕ) ≤ cρϕ(uk), ∀k ∈ N.

Let ω denote the space of all sequences in R and let the Orlicz function ϕ satisfy
the ∆2-condition. To discuss our results, we will need the following spaces.

w0,ϕ =

{
(ak) ∈ ω : lim

N→∞

1

N

N∑
k=1

ϕ(ak) = 0

}
,

wϕ = {(ak) ∈ ω : (ak − a0) ∈ w0,ϕ for some a0 ∈ R},

w∞,ϕ =

{
(ak) ∈ ω : sup

N∈N

1

N

N∑
k=1

ϕ(ak) <∞
}
.

In the case of ϕ(x) = |x|p, 1 ≤ p <∞, we write w0,ϕ = w0,p and w∞,ϕ = w∞,p.

Let (ak) be a sequence of real numbers. The notation
∑
r ak stands for the sum

of all ak with 2r ≤ k < 2r+1. For our discussion that follows, we rewrite the results
from [9] in the following version.

Lemma 2.2 ([9]). Let 1 < p <∞, 1
p +

1
q = 1 and (bk) be a sequence of real numbers.

The following statements are equivalent.

(i)
∑∞
k=1 |bk||ak| <∞, for each (ak) ∈ w0,p.

(ii)
∑∞
k=1 |bk||ak| <∞, for each (ak) ∈ w∞,p.

(iii)
∑∞
r=0 2

r/p (
∑
r |bk|q)

1/q
<∞.
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3. Main results

We begin this section by proving the following three theorems, that will be useful for
proving our main results.

Theorem 3.1. Let ϕ be an Orlicz function that satisfies the ∆2-condition and Ak ∈
B(Lϕ, Y ) for each k ∈ N. The following statements are equivalent.

(a)
∑∞
k=1Akuk is convergent for each (uk) ∈W0,ϕ.

(b)
∑∞
k=1 |ak|∥A∗

kf∥ <∞ for each (ak) ∈ w0,ϕ and for each f ∈ U∗.

Proof. Assume (a) is true and let (ak) ∈ w0,ϕ and f ∈ U∗. Define the sequence (vk)
where vk is as in (3) with A∗

k in the place of T ∗
k . Following (1), there exists c > 0

such that

1

N

N∑
k=1

∫
E

ϕ(vk(x)) dx =
1

N

N∑
k=1

∫
E

ϕ(akuk(x)) dx ≤ c

N

N∑
k=1

ϕ(ak) → 0,

whenever N → ∞, i.e. (vk) ∈ W0,ϕ. Hence,
∑∞
k=1Akvk is convergent, and it implies

that
∑∞
k=1A

∗
kfvk is convergent. Since

∑∞
k=1A

∗
kfvk =

∑∞
k=1 |ak||A∗

kfuk|, then we
have

∞∑
k=1

|ak|∥A∗
kf∥ ≤ 2

∞∑
k=1

|ak||A∗
kfuk| <∞.

Thus, (a) implies (b).

Assume (b) is true and take any (uk) ∈ W0,ϕ. By Lemma 2.1, it is easy to see
that (∥uk∥ϕ)k∈N ∈ w0,ϕ, and hence

∑∞
k=1 ∥A∗

kf∥∥uk∥ϕ <∞. Since

∥
n∑

k=m

Akuk∥Y =

∣∣∣∣⟨f, n∑
k=m

Akuk⟩
∣∣∣∣, for some f ∈ U∗

≤
n∑

k=m

|⟨f,Akuk⟩| =
n∑

k=m

|A∗
kfuk| ≤

n∑
k=m

∥A∗
kf∥∥uk∥ϕ,

then ∥
∑n
k=mAkuk∥Y → 0 as m,n → ∞. By the completeness of Y ,

∑∞
k=1Akuk is

convergent. Hence, (b) implies (a). □

Theorem 3.2. Let ϕ be an Orlicz function that satisfies the ∆2-condition and Ak ∈
B(Lϕ, Y ) for each k ∈ N. The following statements are equivalent.

(a)
∑∞
k=1Akuk is convergent for each (uk) ∈W0,ϕ.

(b)
∑∞
k=1Akuk is convergent for each (uk) ∈Wϕ.

Proof. Since W0,ϕ ⊂Wϕ, then (b) implies (a).

For the converse, assume that (a) is true and let (uk) ∈ Wϕ. Let u0 ∈ Lϕ such
that (uk − u0) ∈ W0,ϕ, then

∑∞
k=1Ak(uk − u0) is convergent. Since the function

ϕ satisfies the ∆2-condition, then there exists p > 1 such that ϕ(x) ≤ c|x|p, for
some c > 0 [12, Corollary 5, Chap. II]. It implies w0,p ⊂ w0,ϕ. Let (ak) ∈ w0,p.
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By Theorem 3.1,
∑∞
k=1 |ak|∥A∗

kf∥ < ∞. Hence,
∑∞
r=0 2

r/p(
∑
r ∥A∗

kf∥q)1/q < ∞,
1/p+ 1/q = 1 (see [8]). For any ε > 0, let r0 ∈ N be such that

∞∑
r=r0

2r/p
(∑

r

∥A∗
kf∥q

)1/q

<
ε

∥u0∥ϕ + 1
.

For each m,n ≥ 2r0 ,

∥
n∑

k=m

Aku0∥Y = |⟨f,
n∑

k=m

Aku0⟩|, for some f ∈ U∗

≤
n∑

k=m

|A∗
kfu0| ≤

n∑
k=m

∥A∗
kf∥∥u0∥ϕ ≤

∞∑
r=r0

2r/p
(∑

r

∥A∗
kf∥q

)1/q(
1

2r

∑
r

∥u0∥pϕ

)1/p

≤
∞∑
r=r0

2r/p
(∑

r

∥A∗
kf∥q

)1/q

∥u0∥ϕ < ε.

Since Y is complete, then
∑∞
k=1Aku0 is convergent. Therefore

∞∑
k=1

Akuk =

∞∑
k=1

Ak(uk − u0) +

∞∑
k=1

Aku0

is convergent. Thus, (a) implies (b). □

Theorem 3.3. Let ϕ be an Orlicz function that satisfies the ∆2-condition and Ak ∈
B(Lϕ, Y ) for each k ∈ N. The following statements are equivalent.
(a)

∑∞
k=1Akuk is convergent for each (uk) ∈W∞,ϕ.

(b)
∑∞
k=1 |ak|∥A∗

kf∥ <∞ for each (ak) ∈ w∞,ϕ.

Proof. The proof that (a) implies (b) is analogous to the proof of Theorem 3.1, by
replacing (ak) ∈ w∞,ϕ in the proof of Theorem 3.1.

For the converse, take any (uk) ∈ W∞,ϕ. Since (∥uk∥) ∈ w∞,ϕ, then by (b) we
have

∑∞
k=1 ∥A∗

kf∥∥uk∥ <∞. Since Y is complete, then
∑∞
k=1Akuk is convergent. □

Now, we are in the position to describe the characterizations of matrix operators.
The first characterization is given in the following theorem.

Theorem 3.4. Let ϕ be an Orlicz function that satisfies the ∆2-condition and Ank ∈
B(Lϕ, Y ) for each n, k ∈ N. Then A = (Ank) ∈ (W0,ϕ, c(Y )) if and only if
(a) for each u ∈ Lϕ, there exists Ak ∈ B(Lϕ, Y ) such that Anku→Aku as n→∞, and

(b) supn∈N, f∈U∗
∑∞
k=1 ∥A∗

nkf∥|ak| <∞, for each (ak) ∈ w0,ϕ.

Proof. Let A ∈ (W0,ϕ, c(Y )) and take any u ∈ Lϕ. Then eku ∈ W0,ϕ for any k ∈ N.
Hence, A(eku) ∈ c(Y ), i.e. limn→∞An(e

ku) = limn→∞Anku exists. Since for each
n ∈ N, Ank ∈ B(Lϕ, Y ), then by Banach-Steinhaus’s Theorem, the mapping Ak :
Lϕ → Y where Ak(u) = limn→∞Ank(u), belongs to B(Lϕ, Y ). Thus we have (a).

For proving (b), let (ak) ∈ w0,ϕ and n ∈ N. For each k ∈ N and f ∈ U∗, we have
A∗
nkf ∈ L∗

ϕ. Define the sequence v = (vk) as in (3) with A∗
nk in the place of T ∗

k . By
using (1), it is easy to show that (vk) ∈W0,ϕ, and hence Av ∈ c(Y ). Let M be a real
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number such that supn ∥
∑∞
k=1Ankvk∥Y ≤ M . Since for any natural number s and

f ∈ U∗, ⟨f,
∑s
k=1Ankvk⟩ ≤ ∥f∥∥

∑s
k=1Ankvk∥Y ≤ ∥

∑s
k=1Ankvk∥Y , then we get∑∞

k=1 |ak||A∗
nkf(uk)| =

∑∞
k=1A

∗
nkf(vk) ≤ ∥

∑∞
k=1Ankvk∥Y ≤ M , and this together

with (2) yields (b).
For the sufficiency, let (uk) ∈ W0,ϕ and f ∈ U∗. By (b),

∑∞
k=1 ∥A∗

nkf∥|ak| < ∞,
for each (ak) ∈ w0,ϕ. Following Theorem 3.1,

∑∞
k=1Ankuk is convergent for each n.

Further, we will show that Au ∈ c(Y ).
Let u ∈ Lϕ be arbitrary. Then, by (a) we have |A∗

nkf(u)−A∗
kf(u)| = |⟨f, (Ank −

Ak)u⟩| ≤ ∥f∥∥(Ank − Ak)u∥Y → 0 as n → ∞. For any k ∈ N, let fk ∈ U∗ such
that ∥Akuk∥Y = |⟨fk, Akuk⟩|. First, we will prove that

∑∞
k=1 |A∗

nkfk(uk)| converges
uniformly in n.

For each k ∈ N, let Mk = supn∈N |A∗
nkfk(uk)|. Then there exists n(k) ∈ N such

that Mk ≤ |A∗
n(k)kfk(uk)|+

1
2k
. Since (∥uk∥ϕ)k∈N ∈ w0,ϕ, then by (b) we have

∞∑
k=1

Mk ≤
∞∑
k=1

(
|A∗
n(k)kfk(uk)|+

1

2k

)
≤

∞∑
k=1

(
∥A∗

n(k)kfk∥∥uk∥ϕ +
1

2k

)
<∞.

Since |A∗
nkfk(uk)| ≤ Mk for each k, then by the Weierstrass Test,

∑∞
k=1 |A∗

nkfk(uk)|
converges uniformly in n. Furthermore,

∞∑
k=1

∥Akuk∥Y =

∞∑
k=1

|A∗
kfk(uk)| = lim

n→∞

∞∑
k=1

|A∗
nkfk(uk)| <∞,

and hence, by completeness of Y ,
∑∞
k=1Akuk is convergent. Finally,∥∥∥∥ ∞∑

k=1

(Ank −Ak)uk

∥∥∥∥
Y

≤
∞∑
k=1

∥(Ank −Ak)uk∥Y =

∞∑
k=1

|(A∗
nk −A∗

k)fk(uk)| → 0

whenever n → ∞, i.e. limn→∞
∑∞
k=1Ankuk =

∑∞
k=1Akuk. Thus, (Anu) ∈ c(Y ) for

each (uk) ∈W0,ϕ. Hence, A = (Ank) ∈ (W0,ϕ, c(Y )). □

We also observe the following characterization.

Theorem 3.5. Let ϕ be an Orlicz function that satisfies the ∆2-condition and Ank ∈
B(Lϕ, Y ) for each n, k ∈ N. Then A = (Ank) ∈ (Wϕ, c(Y )) if and only if
(a) for each k there exists Ak ∈ B(Lϕ, Y ) such that Anku→ Aku as n→ ∞ for each
u ∈ Lϕ,

(b) supn∈N, f∈U∗
∑∞
k=1 ∥A∗

nkf∥|ak| <∞, for each (ak) ∈ w0,ϕ,

(c) supn∈N, f∈U∗
∑∞
k=1 ∥(A∗

nk −A∗
k)f∥|ak| <∞, for each (ak) ∈ w0,ϕ.

Proof. Since W0,ϕ ⊂Wϕ, then (a) and (b) are clear by Theorem 3.4. Further, we are
going to prove (c).

Let (ak) ∈ w0,ϕ, f ∈ U∗, and s ∈ N. Define the sequence (vk) as in (3) with T ∗
k

replaced by A∗
nk − A∗

k. It is clear that (vk) ∈ Wϕ. So, it implies supm,n∈N ∥(An −
Am)v∥Y ≤M for some real numberM . Since ⟨f, (Ank−Ak)vk⟩ = |ak||(A∗

nk−A∗
k)fuk|

for every k, then
s∑

k=1

|ak||(A∗
nk −A∗

k)fuk| = |⟨f,
s∑

k=1

(A∗
nk −A∗

k)vk⟩| ≤ ∥
s∑

k=1

(A∗
nk −A∗

k)vk∥Y .
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Further, by (a) we have∥∥∥∥ s∑
k=1

(Ank −Ak) vk

∥∥∥∥
Y

= lim
m→∞

∥∥∥∥ s∑
k=1

(Ank −Amk) vk

∥∥∥∥
Y

.

So,
∑∞
k=1 |ak||(A∗

nk −A∗
k)fuk| ≤M and (c) holds.

For sufficiency, let (uk) ∈Wϕ. Following (a), for every f ∈ Y ∗ and u ∈ Lϕ we have
|⟨f, (Ank − Ak)u⟩| ≤ ∥f∥∥(Ank − Ak)u∥Y → 0 as n → ∞, i.e. limn→∞A∗

nkf(u) =
A∗
kf(u). Let us write

∞∑
k=1

Ankuk =

∞∑
k=1

Akuk +

∞∑
k=1

(Ank −Ak)(uk − u0) +

∞∑
k=1

(Ank −Ak)u0,

where u0 ∈ Lϕ such that (uk − u0) ∈ W0,ϕ. We will examine that every term in the
right-hand side is convergent.

For any k, let fk ∈ U∗ such that ∥Akuk∥Y = |A∗
kfk(uk)|. It has been shown in

the proof of Theorem 3.4, that the assumption (b) implies that
∑∞
k=1 |A∗

nkfk(uk)|
converges uniformly in n. Hence, this result together with (a) yields

∞∑
k=1

∥Akuk∥Y =

∞∑
k=1

|A∗
kfk(uk)| = lim

n→∞

∞∑
k=1

|A∗
nkfk(uk)|

≤ sup
n∈N, f∈U∗

∞∑
k=1

∥A∗
nkf∥∥uk∥ϕ <∞.

By the completeness of Y , it implies
∑∞
k=1Akuk is convergent.

For any k, let vk = uk − u0. By (c) and using the similar way as in the proof of
Theorem 3.4, we can prove that

∑∞
k=1 |(A∗

nk−A∗
k)fk(uk−u0)| is uniformly convergent

in n. Hence,
∞∑
k=1

∥(Ank −Ak)(uk − u0)∥Y =

∞∑
k=1

|(A∗
nk −A∗

k)fk(uk − u0)|

converges to 0 as n→ ∞.
Finally, the sequence (uk), where uk = u0 for every k, is in Wϕ. Therefore, by (c),

Theorem 3.1 and Theorem 3.2,
∑∞
k=1(Ank −Ak)u0 converges to 0 as n→ ∞. Hence,∑∞

k=1Ankuk converges as n→ ∞, i.e. the sequence (
∑∞
k=1Ankuk)n∈N ∈ c(Y ). □

For 1<p<∞, the function ϕ=|·|p is an Orlicz function and satisfies the ∆2-condi-
tion. By using Lemma 2.2 and Theorem 3.5, we can prove the following corollary.

Corollary 3.6. Let 1 < p, q < ∞ with 1
p + 1

q = 1 and Ank ∈ B(Lp, Y ) for every

n, k ∈ N. Then A = (Ank) ∈ (W|·|p , c(Y )) if and only if
(a) for each k there exists Ak ∈ B(Lq, Y ) such that Anku → Aku as n → ∞ for all
u ∈ Lp,

(b) supn∈N, f∈U∗
∑∞
r=0 2

r/p (
∑
r ∥A∗

nkf∥q)
1/q

<∞, and

(c) supn∈N, f∈U∗
∑∞
r=0 2

r/p (
∑
r ∥(A∗

nk −A∗
k)f∥q)

1/q
<∞.

Another main result is given in the following theorem.



104 Operators on the Lϕ-valued Cesàro sequence spaces

Theorem 3.7. Let ϕ be an Orlicz function that satisfies the ∆2-condition and Ank ∈
B(Lϕ, Y ) for every n, k ∈ N. The matrix A = (Ank) ∈ (W∞,ϕ, c(Y )) if and only if

sup
n∈N, f∈U∗

∞∑
k=1

∥A∗
nkf∥|ak| < ∞ for each (ak) ∈ w∞,ϕ, and for any k ∈ N , u ∈ Lϕ,

there exists Ak ∈ B(Lϕ, Y ) such that
(a) limn→∞Anku = Aku,

(b) supn∈N, f∈U∗
∑∞
k=1 ∥(A∗

nk −A∗
k)f∥|ak| <∞, for each (ak) ∈ w∞,ϕ,

(c) supf∈U∗
∑∞
k=1 ∥A∗

kf∥|ak| <∞, for each (ak) ∈ w∞,ϕ.

Proof. For the necessity, let A ∈ (W∞,ϕ, c(Y )) and (ak) ∈ W∞,ϕ. Construct the
sequence v = (vk) as in (3) with T ∗

k replaced by A∗
nk. It is clear that (vk) ∈ W∞,ϕ,

hence Av ∈ c(Y ), and therefore there existsM > 0 such that supn ∥
∑∞
k=1Ankvk∥Y ≤

M . Since for each positive integer s and f ∈ U∗,
s∑

k=1

|A∗
nkf(uk)||ak| =

s∑
k=1

A∗
nkfvk = ⟨

s∑
k=1

Ankvk, f⟩ ≤ ∥
s∑

k=1

Ankvk∥Y ,

then by (2), we have supn∈N, f∈U∗
∑∞
k=1 ∥A∗

nkf∥|ak| <∞. The condition (a) is clear
by Theorem 3.5 and the fact that Wϕ ⊂ W∞,ϕ. The proof of (b) is similar to the
proof of Theorem 3.4 (b).

To prove (c), first we note that
∑∞
k=1 |A∗

nkf(vk)| converges uniformly in n. It
follows from supn∈N, f∈U∗

∑∞
k=1 ∥A∗

nkf∥|ak| <∞. Hence, we have (c) from:
∞∑
k=1

|A∗
kf(uk)||ak| =

∞∑
k=1

|A∗
kf(vk)| = lim

n→∞

∞∑
k=1

|A∗
nkf(vk)| ≤ sup

n
∥Anv∥Y <∞.

For sufficiency, let (uk) ∈ W∞,ϕ. By Theorem 3.3 and following the hypotheses,∑∞
k=1Ankuk converges for each n ∈ N. We will prove that Au ∈ c(Y ).
For any k ∈ N, let fk ∈ U∗ such that ∥(Ank − Ak)uk∥Y = |(A∗

nk − A∗
k)fk(uk)|.

By (b),
∑∞
k=1 |(A∗

nk − A∗
k)fk(uk)| is uniformly convergent in n. Hence, by (a) we

get
∑∞
k=1 |(A∗

nk − A∗
k)fk(uk)| → 0 as n → ∞. Then

∑∞
k=1 ∥(Ank − Ak)uk∥Y =∑∞

k=1 |(A∗
nk − A∗

k)fk(uk)| → 0 as n → ∞. Therefore,
∑∞
k=1Ankuk →

∑∞
k=1Akuk as

n → ∞. By Theorem 3.3 and (c), we get that
∑∞
k=1Akuk converges, which means

that limn→∞
∑∞
k=1Ankuk exists, i.e. (

∑∞
k=1Ankuk)n∈N ∈ c(Y ). □

As a straight consequence, we have the following corollary.

Corollary 3.8. Let 1 < p, q < ∞ with 1
p + 1

q = 1 and Ank ∈ B(Lp, Y ). Then

A = (Ank) ∈ (W∞,|·|p , c(Y )) if and only if sup
n∈N, f∈U∗

∞∑
r=0

2r/p
(∑

r

∥A∗
nkf∥q

)1/q

<∞,

and for any k ∈ N, u ∈ Lp, there exists Ak ∈ B(Lp, Y ) such that
(a) limn→∞Anku = Aku,

(b) supn∈N, f∈U∗
∑∞
r=0 2

r/p (
∑
r ∥(A∗

nk −A∗
k)f∥q)

1/q
<∞, and

(c) supf∈U∗
∑∞
r=0 2

r/p (
∑
r ∥A∗

kf∥q)
1/q

<∞.
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J. Phys., Conf. Ser., 1008 (2018), 012020.
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