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EXISTENCE OF ONE WEAK SOLUTION FOR ELLIPTIC
EQUATIONS INVOLVING A GENERAL OPERATOR IN

DIVERGENCE FORM

S. Amirkhanlou, Mohsen Khaleghi Moghadam and Yasser Khalili

Abstract. In this article, we establish the existence of at least one non-trivial classical
solution for a class of elliptic equations involving a general operator in divergence form,
subject to Dirichlet boundary conditions in a smooth bounded domain in RN . A critical
point result for differentiable functionals is discussed. Our technical approach is based on
variational methods. In addition, an example to illustrate our results is given.

1. Introduction

The purpose of this paper is to establish the existence of at least one weak solution
for the following elliptic Dirichlet problem{

−div(a(x,∇u)) = λk(x)f(u), in Ω,

u = 0, on ∂Ω,
(1)

where Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω, p > N ,
a : Ω̄ × RN → RN is a suitable continuous map of gradient type, and λ is a positive
real parameter. Further, f : R → R and k : Ω̄ → R+ are two continuous functions.

The operator −div(a(x,∇u)) arises, for example, from the expression of the p-
Laplacian in curvilinear coordinates. We refer to the overview papers [2, 3, 8, 13] for
the investigation on Dirichlet problems involving a general operator in divergence
form. For example, De Nápoli and Mariani in [2] studied the existence of solutions
to equations of p-Laplacian type. They proved the existence of at least one solution,
and under further assumptions, the existence of infinitely many solutions. In order to
apply mountain pass results, they introduced a notion of uniformly convex functional
that generalizes the notion of uniformly convex norm. Duc and Vu in [3] studied the
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158 Elliptic equations involving a general operator in divergence form

non-uniform case. The authors established the existence and multiplicity of weak so-
lutions of a problem involving a uniformly convex elliptic operator in divergence form.
They discussed the existence of one nontrivial solution by the mountain pass lemma,
when the nonlinearity has a (p− 1)-superlinear growth at infinity, and two nontrivial
solutions by minimization and mountain pass when the nonlinear term has a (p− 1)-
sublinear growth at infinity. Molica Bisci and Repovš in [8], exploiting variational
methods, investigated the existence of three weak solutions for the problem (1). They
analyzed several special cases and presented a concrete example of an application
by finding the existence of three nontrivial weak solutions for an uniformly elliptic
second-order problem on a bounded Euclidean domain.

In [1], Colasuonno, Pucci and Varga studied different and very general classes
of elliptic operators in divergence form looking at the existence of multiple weak
solutions. Their contributions represent a nice improvement, in several directions, of
the results obtained by Kristály et al. in [4] in which a uniform Dirichlet problem
with parameter is investigated.

Our goal is to establish some new criteria for system (1) to have at least one
non-trivial classical solution by applying the following critical points theorem due to
Ricceri [11, Theorem 2.1].

Theorem 1.1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two
Gâteaux differentiable functionals such that Φ is sequentially weakly lower semicon-
tinuous, strongly continuous and coercive in X and Ψ is sequentially weakly upper
semicontinuous in X. Let Iλ be the functional defined as Iλ := Φ − λΨ, λ ∈ R, and
for every r > infX Φ, let φ be the function defined as

φ(r) := inf
u∈Φ−1(−∞,r)

supv∈Φ−1(−∞,r) Ψ(v)−Ψ(u)

r − Φ(u)
.

Then, for every r > infX Φ and every λ ∈ (0, 1
φ(r) ), the restriction of the functional

Iλ to Φ−1(−∞, r) admits a global minimum, which is a critical point (precisely a local
minimum) of Iλ in X.

The above result is related to the celebrated three critical points theorem of Pucci
and Serrin [9,10]. We refer the interested reader to the papers in which Theorem 1.1
has been successfully employed to the existence of at least one nontrivial solution for
boundary-value problems.

In [6], Molica Bisci and Rădulescu, applying mountain pass results studied the ex-
istence of solutions to nonlocal equations involving the p-Laplacian. More precisely,
they proved the existence of at least one nontrivial weak solution, and under addi-
tional assumptions, the existence of infinitely many weak solutions. In [5], they also
established, by using an abstract linking theorem for smooth functionals, a multiplic-
ity result on the existence of weak solutions for a nonlocal Neumann problem driven
by a nonhomogeneous elliptic differential operator.

Inspired by the above results, in the present paper, we are interested to discuss the
existence of at least one weak solution for the problem (1). Precisely, in Theorem 3.1
we establish the existence of at least one weak solution for the problem (1) under an
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asymptotical behaviour of the nonlinear datum at zero. We present Example 3.7 in
which the hypotheses of Theorem 3.1 are fulfilled. We also list some consequences
and the main results.

We refer to the recent monograph by Molica Bisci, Rădulescu and Servadei [7] for
related problems concerning the variational analysis of solutions of some classes of
nonlocal problems.

2. Preliminaries

In this section, we first introduce some notations and some necessary definitions.
Assume that Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω.
Further, denote by X the space W 1,p

0 (Ω) endowed with the norm

∥u∥ :=
(∫

Ω

|∇u(x)|p dx
)1/p

.

The functional Iλ : X → R associated with (1) is introduced as Iλ(u) := Φ(u)−λΨ(u),
for every u ∈ X, where

Φ(u) :=

∫
Ω

A(x,∇u(x)) dx and Ψ(u) :=

∫
Ω

k(x)F (u(x)) dx,

for every u ∈ X, where k : Ω̄ → R+ is a positive and continuous function, and F (s) =∫ s

0
f(t)dt, for every s ∈ R. By standard arguments, Φ is Gâteaux differentiable and

sequentially weakly lower semicontinuous and its Gâteaux derivative is the functional
Φ′(u) ∈ X∗, given by

Φ′(u)(v) :=

∫
Ω

a(x,∇u(x))∇v(x) dx,

for every v ∈ X. Moreover, Ψ is a Gâteaux differentiable sequentially weakly upper
continuous functional whose Gâteaux derivative is given by

Ψ′(u)(v) :=

∫
Ω

k(x)f(u(x))v(x) dx,

for every v ∈ X. Fixing the real parameter λ, a function u : Ω → R is said to be a
weak solution of (1) if u ∈ X and∫

Ω

a(x,∇u(x))∇v(x) dx− λ

∫
Ω

k(x)f(u(x))v(x) dx = 0,

for every v ∈ X. Therefore, the critical points of Iλ are exactly the weak solutions
of (1). If p > N, let

sup

{
maxx∈Ω |u(x)|

∥u∥
: u ∈ W 1,p

0 (Ω), u ̸= 0

}
< +∞.

It is well-known [12, formula (6b)] that by putting

m :=
N− 1

p

√
π

[
Γ
(
1 +

N

2

)] 1
N
( p− 1

p−N

)1− 1
p

(meas(Ω))
1
N − 1

p ,
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one has

∥u∥∞ =max
x∈Ω̄

|u(x)| ≤ m∥u∥, (2)

for every u ∈ X. Here Γ is the Gamma function defined by

Γ(t) :=

∫ +∞

0

zt−1e−zdz (∀t > 0) ,

and “meas(Ω)” denotes the usual Lebesgue measure of Ω.

3. Main results

In this section, we formulate our main results on the existence of at least one weak
solution for the problem (1).

Let p ≥ 1 and let Ω ⊆ RN be a bounded Euclidean domain, where N ≥ 2.
Further, let A : Ω̄×RN → R and let A = A(x, ξ) be a continuous function in Ω̄×RN ,
with continuous gradient a(x, ξ) := ∇ξA(x, ξ) : Ω̄× RN → RN , and assume that the
following conditions hold:

(α1) A(x, 0) = 0, for all x ∈ Ω.

(α2) A satisfies Λ1|ξ|p ≤ A(x, ξ) ≤ Λ2|ξ|p for all x ∈ Ω̄, ξ ∈ RN , where Λ1 and Λ2

are positive constants.

(α3) a satisfies the growth condition |a(x, ξ)| ≤ c(1 + |ξ|p−1) for all x ∈ Ω, ξ ∈ RN ,
c > 0.

(α4) A is p-uniformly convex, that is A(x, ξ+η
2 ) ≤ 1

2A(x, ξ)+ 1
2A(x, η)− k|ξ− η|p, for

every x ∈ Ω̄, ξ, η ∈ RN and some k > 0.

Our main result is the following theorem.

Theorem 3.1. Assume that

sup
γ>0

γp{(
max
|ξ|≤γ

F (ξ)
)
∥k∥L1

} >
mp

Λ1
, (3)

and lim sup
ξ→0+

F (ξ)

|ξ|p
= +∞, (4)

lim inf
ξ→0+

F (ξ)

|ξ|p
> −∞. (5)

There exists a positive number γ such that problem (1) has a non-zero weak solution
u for every λ belonging to interval Λ defined by

Λ :=
]
0,

Λ1γ
p

mp
{(

max
|ξ|≤γ

F (ξ)
)
∥k∥L1

}[
,

and problem (1) admits at least one nontrivial and nonnegative weak solution in X.
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Moreover, we have limλ→0+ ∥uλ∥X = 0 and the real function

λ →
∫
Ω

a(x,∇u(x))∇v(x) dx− λ

∫
Ω

k(x)f(u(x))v(x) dx

is negative and strictly decreasing in the open interval Λ.

Proof. Fix λ ∈ Λ. Our aim is to apply Theorem 1.1 where Φ and Ψ are the functionals
introduced in Section 2. Clearly, Φ is coercive since, by condition (α2), it follows that
Φ(u) ≥ Λ1∥u∥p → +∞, when ∥u∥ → ∞. As seen before, the functionals Φ and Ψ
satisfy the regularity assumptions requested in Theorem 1.1. Note that the critical
points of the functional I are the solutions of the problem (1). Now, we look on the
existence of critical points of the functional Iλ := Φ − λΨ in X. The condition (3)
ensures that there exists γ̄ > 0 such that

γ̄p(
max
|ξ|≤γ̄

F (ξ)
)
∥k∥L1(Ω)

>
mp

Λ1
.

To this end, set r := Λ1γ̄
p

mp . Let u ∈ X be such that Φ(u) < r, i.e.
∫
Ω
A(x,∇u(x)) dx < r.

Hence the above relation together with condition (α2) implies that ∥u∥ <
(

r
Λ1

) 1
p

.

Owing to (2) we have ∥u∥∞ ≤ γ̄. By simple calculations and from the definition of
φ(r), one has

φ(r) = inf
Φ(u)<r

(
supΦ(v)<r Ψ(v)

)
−Ψ(u)

r − Φ(u)

≤
supΦ(v)<r Ψ(v)

r
≤ mp

(
max
|ξ|≤γ̄

F (ξ)
)
∥k∥L1

Λ1γ̄p
.

since 0 ∈ Φ−1(−∞, r) and Φ(0X) = Ψ(0X) = 0. Hence, putting

λ∗ =
Λ1γ̄

p

mp
{(

max
|ξ|≤γ̄

F (ξ)
)
∥k∥L1

} .

Theorem 1.1 ensures that for every λ ∈ (0, λ∗) ⊆ (0, 1
φ(r) ), the functional Iλ admits

at least one critical point (local minimum) uλ ∈ Φ−1(−∞, r). Now for every fixed
λ ∈ (0, λ∗) we show that uλ ̸= 0 and the map (0, λ∗) ∋ λ 7→ Iλ(uλ), is negative. To
this end, let us verify that

lim sup
∥u∥→0+

Ψ(u)

Φ(u)
= +∞. (6)

Owing to our assumptions (4) and (5), we can fix a sequence {ξn} ⊂ R+ converging

to zero and two constants σ, κ (with σ > 0) such that limn→+∞
F (ξn)
|ξn|p = +∞,

F (ξ) ≥ κ|ξ|p, for every ξ ∈ [0, σ]. Now, fix two sets C,D ⊂ Ω of positive measures
with C ⊂ D and a function v ∈ X such that:
(i) v(x) ∈ [0, 1] for every x ∈ Ω, (ii) v(x) = 1 for every x ∈ C,

(iii) v(x) = 0 for every x ∈ Ω \D.
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Hence, fix M > 0 and consider a real positive number η with

M <
ηmeas(C) + κ

∫
D\C |v(x)|p dx

Λ1∥v∥p
.

Then, there is n0 ∈ N such that ξn < σ and F (ξn) ≥ η|ξn|p, for every n > n0. Now,
for every n > n0, recalling the properties of the function v (that is 0 ≤ ξnv(t) < σ for
n sufficiently large), one has

Ψ(ξnv)

Φ(ξnv)
=

∫
C
F (ξn) dx+

∫
D\C F (ξnv(x)) dx

Φ(ξnv)
>

ηmeas(C) + κ
∫
D\C |v(x)|p dx

Λ1∥v∥p
> M.

Since M can be considered arbitrarily large, it follows that limn→∞
Ψ(ξnv)
Φ(ξnv)

= +∞,

from which (6) follows. Hence, there exists a sequence {wn} ⊂ X strongly converging
to zero, wn ∈ Φ−1(−∞, r) and Iλ(wn) = Φ(wn) − λΨ(wn) < 0. Since uλ is a global
minimum of the restriction of Iλ to the set Φ−1(−∞, r), we deduce that

Iλ(uλ) < 0, (7)

so that uλ is not trivial. From (7) we easily see that the map

(0, λ∗) ∋ λ 7→ Iλ(uλ), (8)

is negative.

Now, we prove that limλ→0+ ∥uλ∥ = 0. Since Φ is coercive and for λ ∈ (0, λ∗) the
solution uλ ∈ Φ−1(−∞, r), one has that there exists a positive constant L such that
∥uλ∥ ≤ L for every λ ∈ (0, λ∗). Therefore, there exists a positive constant N such
that ∣∣∣ ∫

Ω

k(x)f(uλ(x))uλ(x) dx
∣∣∣ ≤ N∥uλ∥ ≤ NL, (9)

for every λ ∈ (0, λ∗). Since uλ is a critical point of Iλ, we have I ′λ(uλ)(v) = 0 for any
v ∈ X and every λ ∈ (0, λ∗). In particular I ′λ(uλ)(uλ) = 0; that is,

Φ′(uλ)(uλ) = λ

∫
Ω

k(x)f(uλ(x))uλ(x) dx, (10)

for every λ ∈ (0, λ∗). Then, since 0 ≤ Λ1∥uλ∥p ≤ Φ′(uλ)(uλ), by (10) it follows that
0 ≤ Λ1∥uλ∥p ≤ λ

∫
Ω
k(x)f(uλ(x))uλ(x) dx, for any λ ∈ (0, λ∗). Letting λ → 0+,

by (9) we have limλ→0+ ∥uλ∥ = 0. Finally, we show that the map λ 7→ Iλ(uλ) is
strictly decreasing in (0, λ∗). For our aim we see that for any u ∈ X,

Iλ(u) = λ
(Φ(u)

λ
−Ψ(u)

)
. (11)

Now, let us fix 0 < λ1 < λ2 < λ∗ and let uλi
be the global minimum of the functional

Iλi
restricted to Φ(−∞, r) for i = 1, 2. Also, let

mλi
=

(Φ(uλi
)

λi
−Ψ(uλi

)
)
= inf

v∈Φ−1(−∞,r)

(Φ(v)
λi

−Ψ(v)
)
,

for i = 1, 2. Clearly, (8) and (11), since λ > 0, imply that mλi < 0, for i = 1, 2.
Moreover, since 0 < λ1 < λ2, we have mλ2 ≤ mλ1 . Hence, we obtain Iλ2(uλ2) =
λ2mλ2

≤ λ2mλ1
< λ1mλ1

= Iλ1
(uλ1

), which means the map λ 7→ Iλ(uλ) is strictly
decreasing in λ ∈ (0, λ∗). Since λ < λ∗ is arbitrary, we observe λ 7→ Iλ(uλ) is strictly
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decreasing in (0, λ∗). The proof is complete. □

Remark 3.2. If f is non-negative then the solution ensured in Theorem 3.1 is non-
negative. Indeed, let u∗ be a non-trivial weak solution of the problem (1), then u∗ is
non-negative. Arguing by a contradiction, assume that the set A = {x ∈ Ω;u∗(x) <
0} is non-empty and of positive measure. Put v̄(x) = min{u∗(x), 0}. Using this fact
we get that u∗ is also a solution of (1), so for every v̄ ∈ X we have∫

Ω

a(x,∇u(x))∇v(x) dx− λ

∫
Ω

k(x)f(u(x))v(x) dx = 0,

and by choosing v̄ = u∗ and since f is non-negative, we have

0 ≤ Λ1∥u∗∥pA ≤
∫
A

(
a(x,∇u∗(x))∇u∗(x) dx

)
dt = λ

∫
A
k(x)f(u∗(x))u∗(x) dx ≤ 0,

hence ∥u∗∥2A ≤ 0 which contradicts the fact that u∗ is a non-trivial solution. Hence,
u∗ is positive.

Remark 3.3. We observe that Theorem 3.1 is a bifurcation result in the sense that
the pair (0, 0) belongs to the closure of the set

{(uλ, λ) ∈ X × (0,+∞) : uλ is a non-trivial weak solution of (1)}
in X ×R. Indeed, by Theorem 3.1 we have that ∥uλ∥ → 0 as λ → 0. Hence, there
exist two sequences {uj} in X and {λj} in R+ (here uj = uλj

) such that λj → 0+ and
∥uj∥ → 0, as j → +∞. Moreover, we emphasize that due to the fact that the map
(0, λ∗) ∋ λ 7→ Iλ(uλ) is strictly decreasing, for every λ1, λ2 ∈ (0, λ∗), with λ1 ̸= λ2,
the solutions uλ1

and uλ2
ensured by Theorem 3.1 are different.

Remark 3.4. Here, employing Ricceri’s variational principle, we are looking for the
existence of critical points of the functional Iλ naturally associated to system (1). We
emphasize that by direct minimization, we cannot argue, in general for finding the
critical points of Iλ. Because, in general, Iλ can be unbounded from the following in
X. Indeed, for example, in the case when f(ξ) = 1 + |ξ|γ−2ξ for ξ ∈ R with γ > 2,
for any fixed u ∈ X\{0} and ι ∈ R, we obtain

Iλ(ιu) = Φ(ιu)− λ

∫
Ω

F (ιu(x)) dx ≤ ιpΛ1∥u∥p − λι∥u∥L1 − λ
ιγ

γ
∥u∥γLγ → −∞

as ι → +∞. Hence, we cannot use direct minimization to find critical points of the
functional Iλ.

Remark 3.5. For a fixed γ̄ > 0 let

γ̄p(
max
|ξ|≤γ̄

F (ξ)
)
∥k∥L1

>
mp

Λ1
.

Then the result of Theorem 3.1 holds with ∥uλ∥∞ ≤ γ̄ where uλ is the ensured weak
solution in X.

Remark 3.6. If in Theorem 3.1 the function f(ξ) ≥ 0 for every ξ ∈ R, then the
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condition (3) acquires the simpler form

sup
γ>0

γp

F (γ)∥k∥L1

>
mp

Λ1
. (12)

Moreover, if the assumption

lim sup
γ→+∞

γp

F (γ)∥k∥L1

>
mp

Λ1
,

is satisfied, then condition (12) automatically holds.

Now we present an example in which the hypotheses of Theorem 3.1 are satisfied.

Example 3.7. Let Ω = {(x, y) ∈ R2 : x2+y2 ≤ 4}. Consider the autonomous problem{
−div(a(x,∇u)) = λ log(1 + u4), in Ω,

u = 0, on ∂Ω,
(13)

where k(x) = 1. By choosing p = 4, we have

lim
ξ→0+

F (ξ)

ξ4
= lim

ξ→0+

∫ ξ

0
log(1 + t4) dt

ξ4
= +∞.

Hence, Theorem 3.1 implies that problem (13) admits at least one weak solution in X.
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[6] G. Molica Bisci, V. Rădulescu, Mountain pass solutions for nonlocal equations, Ann. Acad.
Sci. Fenn., Math., 39 (2014), 579–592.
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