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Abstract. In this paper, we study contact pseudo-Riemannian manifold M admitting
generalized V-Ric vector field. Firstly, for pseudo-Riemannian manifold, it is proved that
V' is an infinitesimal harmonic transformation if M admits V-Ric vector field. Secondly, we
prove that an n-Einstein K-contact pseudo-Riemannian manifold admitting a generalized V-
Ric vector field is either Einstein or has scalar curvature r = %. Finally, we consider
a contact pseudo-Riemannian (k, p)-manifold with a generalized V-Ric vector field.

1. Introduction

A vector field V on a pseudo-Riemannian manifold (M, g) is said to be concircular [5]
if it satisfies

va = I/X, (1)
where v denotes a smooth function on M. If v in (1) is non-constant, then we say V
is non-trivial concircular. A concircular vector field V is called a concurrent vector
field [13] if the function v in (1) is equal to one.

A vector field V on a pseudo-Riemannian manifold (M, g) is said to be conformal
if £y g = 2vg, where £ denotes a Lie derivative. Particularly, we call V' homothetic
and Killing if v is constant and zero, respectively. The authors in [14,15] studied the
geometry of conformal and Killing vector fields on contact Riemannian manifolds.

A generalized V-Ric vector field was introduced by Hinterleitner and Kiosak [9]
and it is defined by

VxV =vQX, forany X on M, (2)
where @ is the Ricci operator. Einstein manifolds are characterized by the proportion-

ality of Ricci tensor Ric to the metric tensor. So, for Einstein manifold, the condition
of vector field V' being concircular could equally be defined by (2). We say that V is
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V-Ric vector field when v in (2) is constant. If v is non-constant, then we say that
the vector field V' is proper generalized V-Ric vector field. Moreover, when v = 0,
the vector field V' is covariantly constant (also Killing). If we take V' = 0, then (2) is
meaningless and hence, we always assume that that generalized Ricci vector filed V' is
non-zero. In [10], it is shown that V-Ric vector fields are closely related to the Ricci
flow introduced by Hamilton [8]. Vashpanov et al. [17] studied geodesic mapping of
spaces with V-Ric vector fields and obtained a solution for integrability conditions of
these equations. Recently, Wang and Wu [19] studied generalized V-Ric vector fields
on K-contact Riemannian manifolds.

An almost contact pseudo-Riemannian manifolds are a natural generalization of al-
most contact Riemannian manifolds (also called almost contact metric structure). The
study of contact structure endowed with pseudo-Riemannian metric were first con-
sidered by Takahashi [16], who focused on Sasakian case. Calvaruso and Perrone [2]
undertook a systematic study of contact structures with pseudo-Riemannian asso-
ciated metrics. Such manifolds have been enormously studied under various points
of view (see [2,11,12,18] and references cited therein). In this paper, we study the
generalized V-Ric vector fields within the framework of contact pseudo-Riemannian
manifolds.

2. Preliminaries

A (2n+1)-dimensional differentiable manifold M endowed with a (1, 1)-tensor field ¢,
a vector field ¢ (called Reeb vector field) and a 1-form 7, is called an almost contact
manifold if these tensors satisfy the following relations

pP=-I+n®¢ nE) =1 ¢£=0, nop=0. (3)
It follows from (3) that the rank of ¢ is 2n. We refer to [1] for more information.

If an almost contact manifold is equipped with a pseudo-Riemannian metric g
such that

9(pX,0Y) = g(X,Y) —en(X)n(Y), (4)
where € = £1, and therefore g(&, &) = ¢ (the Reeb vector field cannot be light-like),
then (M, p,n,&,g) is called almost contact pseudo-Riemannian manifold or almost
contact pseudo-metric manifold. The signature of associated metric g is either (2m +
1,2n — m) or (2m,2n — 2m — 1), according to whether the Reeb vector field & is
space-like or time-like. From the relation (4), it can be seen that n(X) = €g(§, X),
9(pX,Y) = —g(X,¢Y). An almost contact pseudo-Riemannian manifold is called
a contact pseudo-Riemannian manifold if dn = ®, where ®(X,Y) = g(X,¢Y) is a
fundamental 2-form.

We define a self-adjoint (1, 1)-tensor field h and ¢ by
1
hX = §(£§<p)X, and (X = R(X, &), (5)

where R(X,Y) = [Vx,Vy| — Vix,y] is the curvature tensor. The sign convention
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of R is opposite to the one used in [3,11]. The operators in (5) satisfy the following
equalities
hE=0=10,, ho=—ph, tr(h)=tr(ph)=0. (6)
We now accumulate some formulas which are valid for a contact pseudo-Riemannian
manifold [2,12];
Vx{=—epX — phX, (7)
(Veh)X = o X — h*pX + pR(&, XS, (8)
tr (V) =2n¢, divé =divn =0,
where tr is the trace operator and div is the divergence operator.

If Reeb vector field £ of contact pseudo-Riemannian manifold M is Killing (equiv-
alently h = 0), then M is called K -contact pseudo-Riemannian manifold. A Sasakian
pseudo-Riemannian manifold is a contact pseudo-Riemannian manifold whose almost
contact structure (p,&,n) is normal, i.e., the almost complex structure J on M x R
defined by J (X,f%) = (X - ff,n(X)%), is integrable, where f is a real-valued
function and ¢ is the coordinate on R. Moreover, a contact pseudo-Riemannian man-
ifold M is Sasakian if and only if (Vx¢)Y = g(X,Y)¢ —en(Y)X. Any Sasakian
pseudo-Riemannian manifold is always K-contact and the converse also holds when
n = 1, i.e., for 3-dimensional spaces. It is worthwhile to mention that, on a Sasakian
pseudo-Riemannian manifold we obtain

R(X,Y)§ = n(X)Y —n(Y)X. (9)
In contact Riemannian case, the above equation shows that the manifold is Sasakian,

but this is not valid in the case of contact pseudo-Riemannian [11]. However, the
following lemma holds.

LeEMmMA 2.1 ([11]). A K-contact pseudo-Riemannian manifold M is Sasakian if and
only if the curvature tensor R satisfies (9).

3. Generalized V-Ric vector field on contact pseudo-Riemannian
manifolds

In this section we study generalized V-Ric vector field on contact pseudo-Riemannian
manifolds. First, we prove the following result.

THEOREM 3.1. Let M be a pseudo-Riemannian manifold. If M admits a V -Ric vector
field, then V' is an infinitesimal harmonic transformation.

Proof. To prove this result, we follow the technique of Ghosh [7]. From (2), it can be
easily obtained that
(£vg)(X,)Y)=g(VxV)Y) + g(X,VyV) = 2vRic (X,Y). (10)
Differentiating the above equation covariantly along Z and using (7), we get
(Vz£€£vg)(X,Y) =2v(VzRic)(X,Y). (11)
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According to Yano’s book [20], the following commutation formula holds
("EVVZg - VZ»EVQ - V[V,Z]g)(Xa Y) = —g((£VV)(Z, X)a Y) - g((va)(Z, Y)a X)
The parallelism of the pseudo-Riemannian metric transforms the above equation to
(VzLyvg)(X,Y) = g((£vV)(Z,X),Y) + g(£vV)(Z,Y), X). By virtue of (11), it
follows from aforesaid equation that

(£vV)(Z,X),Y) +g((£vV)(Z.Y), X) = 2(VzRic)(X,Y).  (12)
Cyclic rotation of X,Y and Z in (12) and simple calculation yield

g((£vV)(X,Y),Z) = v{(VxRic)(Y,Z) + (VyRic)(Z,X) — (VzRic)(X,Y)}.

Setting X =Y = FE; (where {E;}?_, is a local pseudo-orthonormal basis) in the last
equation and summing over ¢, we find

n
> a(£vV)(E, By =0, (13)
i=1
where ¢; = g(E;, E;) and we have employed divQ = 3Dr. According to Duggal and
Sharma [4], (£yvV)(X,Y) = VxVyV — Vy, vV + R(V,X)Y. From the previous
equation, it follows that

> e LvV)ELE) =Y (Ve VeV — Ve, 5V)+ > eR(V,E)E.  (14)
i=1 i=1 i=1
From the equations (13) and (14), we easily obtain 0 = QV — AV, where AV =
> €i(Vvy, BV — VE VEV) is the so-called rough Laplacian of V. In this seting, it
is rightful to reveal that a vector field V' is an infinitesimal harmonic transformation
if and only if QV = AV (see [3]). U
A pseudo-Riemannian manifold (M, g) is said to admit a Yamabe soliton if there
exist a vector field V' and a constant A such that

(£vg)(X,Y) =2(r — N)g(X,Y). (15)
The Yamabe soliton was introduced in [8] as the selfsimilar solution of the Yamabe

flow. A Yamabe soliton is said to be shrinking, steady or expanding according to
A <0, A=0o0r A >0, respectively.

THEOREM 3.2. If a contact pseudo-Riemannian manifold M admits a Yamabe soliton
with soliton vector field V' being V -Ric vector field, then it is Einstein.

Proof. Assume that the soliton vector field V' is V-Ric vector field, i.e., VxV = vQX.
Therefore, it can be easily obtained from (10) and (15) that Ric = Z=2g. U

In what follows we consider some special contact pseudo-Riemannian manifolds
admitting generalized V-Ric vector field.

LEMMA 3.3. If a K-contact pseudo-Riemannian manifold M admits a generalized
V -Ric vector field, then the following relation holds

V —2nDv = 0. (16)
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Proof. It was obtained in [11, Theorem 3.1] that in a K-contact pseudo-Riemannian
manifold, the Reeb vector field £ is an eigenvector of the Ricci operator, i.e., Q€ =
2neg. Take covariant derivative of this equation along X and make use of (7) to get

(VxQ)§ =eQpX — 2npX (17)
We know that ¢ is Killing on K-contact pseudo-Riemannian manifold, so £¢Ric = 0.
It follows that 0 = (£:Q)X = ££(QX) —Q(£:X) = (VeQ)X —Vox&+Q(VxE). By
virtue of (7), we obtain from the previous equation that (V:Q)X = e(QpX — pQX).
We have assumed that V is a generalized V-Ric vector field. Covariant derivative

of (2) implies that VyVxV =Y (1)QX + v(VyQ)X. It directly follows that

RX, V)V =X1)QY - Y(1)QX +v{(VxQ)Y — (VyQ)X}. (18)
Since ¢ Killing vector field, then by (7) we have
R(X,8)Y =eVxpY —epVxY =e(Vxp)Y. (19)

Replacing Y in (18) by & and utilizating (17) and (19), we obtain
—e9((Vxp)Y, V)
— WX ()n(Y) — E0)Ric (X, V) + v{eg(@QX, V) — 2ng(oX,Y)},  (20)
where we have employed Q¢ = 2nef. Replacing X by ¢X and Y by ¢Y in (20),
adding the resulting equation with (20) and then call up the well-known formula
(see [2, Lemma 4.3]) (Vx@)Y + (Voxp)pY =29(X,Y)E —n(Y){eX +en(X)E}, we
obtain
—e{29(X,Y)g(&, V) —n(Y)(eg(X, V) +en(X)g(&,V))}
— X ()n(Y) — E)Ric (X, V) — £0)Ric (X, oY)
+v{eg(pQX + QpX.,Y) + 4ng(X, pY)}.
Anti-symmetrizing the preceding equation, we achieve
Y Wg(X, V) + en(V)n(0)} — n(X){g(Y, V) + en(Vyn(¥)}
=2n{X(¥)n(Y) =Y ()n(X)} + v{2e9(pQX + QpX,Y) — 8ng(¢X,Y)}  (21)
Now, replacing Y in (21) by ¢ and using (4) provides
V — (V)€ — 2n(Dv — £()E) = 0. (22)
Taking the derivative of (22) along X and utilizating (2), h = 0, (7), we obtain
vQX + g(V, pX)§ — 2nen(X)€ + en(V)pX — 2n(VxDv — eX(§(v))€ + £(v)pX) =0,
where we have used Q¢ = 2ne€. Applying the Poincare lemma (i.e., d*> = 0), remem-
bering that ¢(VxDv,Y) is symmetric, we get
0=cg(V,oX)n(Y) —eg(V,pY)n(X) + 2en(V)g(¢X,Y)
T 2n(X(E@)N(Y) — Y (E0)n(X) + 26)g(X, ).
Replacing X by ¢X and Y by Y in the aforesaid equation, we see that (2n&(v) —

en(V))dn(X,Y) = 0. Since dn is non-vanishing everywhere on M, the last equation
shows that n(V') = 2nef(v), which, when inserted in (22), implies (16). U

THEOREM 3.4. If an n-Finstein K-contact pseudo-Riemannian manifold M of di-
mension > 3 admits a generalized V -Ric vector field, then either M is Finstein and
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2ne(2n—1)
4n—1 -

Proof. On n-Einstein K-contact pseudo-Riemannian manifold M of dimension > 3,
we have the expression of Ricci operator as

OX — (% _ s) X te (2n F1- %) n(X)E, (23)

where r is the constant scalar curvature (see [12]). In view of constancy of r, con-
tracting X in (18) and using the formula div@ = %Dr we obtain QV = QDv —rDv.
As a result of (23), it follows that
r re r re
(% —g) V+8(2n+1— %) n(V)e = (% —5—r) Dv+ <2n+1— %)g(u)g.
In view of (16), the afore mentioned equation reduces to
re

(7"(4”1) —@n- 1)g> Dv=(n-1)(2n+1- 2 ) €Wt (24)

V' is concircular (also conformal), or the scalar curvature is r =

2n 2n
Differentiating (24) covariantly along X, making use of (7) provides

(7"(47;71—1) ~(2n— 1)5) VyDv = (2n—1) (2n +1- %) (X (W)€ = £()epX).

Since g(VxDv,Y) = g(Vy Dy, X), it follows from above equation that

re
(20+1- 2) A X(E@nY) - YEWNX) = 26 ()gleX. )} =0. (25)
In view of (25), we have either r = 2ne(2n+1) or r # 2ne(2n+1). First, we consider
r = 2ne(2n + 1) and in this case the manifold is Einstein, i.e., QX = 2neX. This,
inserted in (2), shows that V is concircular (also conformal). In the later case, we
have from (25) that X (£(v))n(Y) =Y (£(v))n(X) —2£(v)g(pX,Y) = 0. Taking X and
Y orthogonal to £ in the foregoing equation yields {(v) = 0, as dn # 0 on M. This
together with (24) entails that either r = % or v is constant. If we assume

that v is constant, then from the relation (16) we get a contradiction as V' is zero. So
2ne(2n—1) O

that the only choice is r = ===

4. Generalized V-Ric vector field on (k, u)-contact pseudo-Riemannian
manifolds

In [6], Ghaffarzadeh and Faghfouri introduced the notion of contact pseudo-Riemannian
(K, pr)-manifold. According to them a contact pseudo-Riemannian (k, p)-manifold is
a contact pseudo-Riemannian manifold whose curvature tensor R satisfies

R(X,Y )¢ = ex{n(Y)X —n(X)Y} +ep{n(Y)hX —n(X)rY}, (26)
for some real numbers &, p. For contact pseudo-Riemannian (x, u)-manifold we have
the following relations (see [6]):

h? = (e — 1)p?, (27)
Q& = 2nké. (28)
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LEMMA 4.1. [6] In any contact pseudo-Riemannian (k, p)-manifold M of dimension
2n + 1, the Ricci operator Q of M can be expressed as

QX =e2n—1)—nuw)X + 2(n—-1)+phX
21— n)e + 205 + npe)(X)E, (29)
where ek < 1. Further, the scalar curvature of M is 2n(2(n — 1)e — nue + k).

We are now prepared for the following outcome.

THEOREM 4.2. If contact pseudo-Riemannian (k, u)-manifold M with ek < 1 admits
a generalized V -Ric vector field, then one of the following cases holds.
(i) V is a parallel vector field.

(i) The curvature tensor satisfies R(X,Y )¢ = 0.

(iti) A smooth function v satisfies v = 3= (1 — 52—) £(&(v)).

2nk T 2nk

Proof. Differentiation of (28) along X and utilization of (7) yields
(VxQ)€ = Qe + ph) X — 2nk(ep + ph) X. (30)
Taking the scalar product of (18) with £ and employing (28), (30) provides
9R(X,Y)V, &) = 2ner{X(v)n(Y) = Y ()n(X)} + {g(Q(ep + ph) X, Y)

— 9(Qep + ph)Y, X) — dnerg(p X, Y)}. (31)
Replacing Y in (31) by ¢ and utilizating (3), (26) and (28) implies
ek(n(V)§ = V) —euhV = 2nk(eDv — £(v)E). (32)

In view of constancy of r, contracting X in (18) and calling up the formula divQ =
1Dr gives that QV = QDv — rDv. This together with (29) shows that

e2(n—1) —nuw)V+ 2(n—1) + w)hV + (2(1 — n)e + 2nk + npe)n(V)§
=(€2n—1)—np)—r)Drv+ (2(n — 1)+ p)hDv +(2(1 — n)e + 2nk + npe)é(v)E.
Taking the scalar product of the aforementioned equation with £ and taking the first
term of (6) gives

n(V) = (1- 3 ) €). (33)
Inserting (33) in (32), it follows that
((Qn + 1)k — %) E(W)€ —erV —ephV — 2nexDv = 0. (34)

Replacing X by ¢ X and Y by Y in the foregoing equation and using R(¢ X, Y )¢ =0
(follows from (26)) and (3), we obtain v{e(Qyv+ vQ)X —pQhX —hQpX —dnepX} =
0. By virtue of (27) and (29), it can be obtained from the above equation that
v{ek(p — 2) — p(n + 1)} = 0. Thus, from the above relation, we have that either v = 0
or ek(p —2) — p(n+ 1) = 0. If we consider v = 0, then from (2) we conclude that V
parallel vector field. Next, we consider

ek(pp—2) —pu(n+1)=0. (35)
Differentiating (34) along X and taking (2), (7) provides

= ((2n+ 1k — ) {XE@DNY) — §0)(Eg(X, V) + glh X, Y))}



V. Venkatesha, H. Aruna Kumara, D. M. Naik 173

—ervg(QX,Y) —epg(Vxh)Y, V) — epg(hQX,Y) — 2nerg(Vx Dv,Y) = 0.
Putting X =Y = £ in the foregoing equation and utilizating (6), (8), (28) implies

K (s (1 - ﬁ) &) — 2nm/) =0. (36)

If we suppose that k = 0, it follows from (35) that u = 0. Hence R(X,Y )& = 0 for any

vector X, Y on M. Suppose k # 0; then from (36) one can conclude that a smooth
€

function v satisfy v = 5= (1 — 52-) £(£(v)). U

2nk 2nkK
In the Riemannian setting, if a contact manifold M satisfies R(X,Y )¢ = 0 then
it is locally flat in dimension 3 and in higher dimensions it is locally isometric to the
trivial bundle E"*! x S™(4) (see [1]). Thus, we have the following corollary.

COROLLARY 4.3. If a contact Riemannian (k,pu)-manifold M with k < 1 admits a
generalized V -Ric vector field, then one of the following cases holds.
(i) V is a Killing vector field.

(ii) M is locally flat in dimension 3 and in higher dimensions it is locally isometric
to the trivial bundle E™ T x S™(4).

(iii) A smooth function v satisfies v = 57— (1 — 52) £(&(v)).
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