MATEMATICKI VESNIK
MATEMATNYKN BECHUK
75, 3 (2023), 189-203
September 2023

research paper
OPUTHHAJIHU HAYIHU DA

DOI: 10.57016/MV-xgfv9794

THREE SOLUTIONS FOR IMPULSIVE FRACTIONAL
DIFFERENTIAL EQUATIONS WITH DIRICHLET BOUNDARY
CONDITION
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Abstract. In this paper, we discuss the existence of at least three weak solutions for
the following impulsive nonlinear fractional boundary value problem

DT (6D7 u(t)) +a(t)u(t) = Af(t,u(t), t#t;, ae te€l0,T],
(D% Y (D)) (1) = ( t;), j=1,...n
uw(0) = u(T) =

where a € (3,1], a € C([0,7]) and f: [0,7] x R — R is an L'-Carathéodory function. Our
technical approach is based on variational methods. An example is provided to illustrate the
applicability of our results.

1. Introduction

In this paper, we consider the following impulsive nonlinear fractional boundary value
problem

eDF (§Dfu(t) + a(tyu(t) = Mf(t,ult), t#1t;, ae te0,T],
(D‘* L(EDf)) () = Lulty), j=1,...n, (1)
u(O)zu(T)zO

where o € (3, 1], a € C([0, T]) such that there are ag, a; > 0 such that 0 < ag < a(t) <
ai, A >0, f:]0,T] x R = R is an L'-Carathéodory function, 0 = tq < t; < --- <
tn < tags = T . AGDS GDFu(t))(t;) = (D GDFu(t) (1) — (DF (GDFu(t)) (t])
and I; : R — R for j = 1,...,n are Lipschitz continuous functions with the Lipschitz
constants L; > 0, i.e |I;(x2) —I;(x1)| < Lj|xe —x1| for every z1,x2 € R and I;(0) = 0.
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190 Impulsive fractional differential equations

In [17], Risken introduced an advection-dispersion equation to describe the Brow-
nian motion of particles

oC(,t) [ 0 92

where C(z,t) is a concentration field of space variable z at time ¢, D > 0 is the
diffusion coefficient and v > 0 is the drift coefficient. Many laboratory data [3,4] and
numerical experiments [7] indicate that solutes moving through a highly heterogeneous
aquifer violate the basic assumptions of the local second order theories because of the
large deviations due to the stochastic process of Brownian motion.

Fractional differential equations (FDEs) have recently proved to be valuable tools
in the modeling of many phenomena in various fields of science and engineering.
Impulsive differential equations are used to describe various models of real-world pro-
cesses that are subject to a sudden change. Due to the great development in the
theory of fractional calculus and impulsive differential equations as well as having
wide applications in several fields. Recently, the study of fractional differential equa-
tions with impulses has been studied by many authors using the variational methods,
fixed-point theorems and critical point theory, see, for instance, [2,8,11,12,20] and
the references therein for detailed discussions. For example, Anguraj and Latha Ma-
heswari in [2] by using the fixed point theorem, established the existence of solutions
for fractional impulsive neutral functional integrodifferential equations with nonlocal
initial conditions and infinite delay. In [12] based on variational methods, the exis-
tence of infinitely many solutions for the perturbed impulsive fractional differential
system, was studied.

Inspired by the above results, in Theorem 3.1 we obtain the existence of at least
three weak solutions for the problem (1), in which one parameter is involved. In
particular, we require that there is a growth of the antiderivative of f which is greater
than quadratic in a suitable interval (see, for instance, condition (A4) of Theorem 3.3),
and which is less than quadratic in a following suitable interval (see, for instance,
condition (A4) of Theorem 3.3). We present Example 3.4 in which the hypotheses of
Theorem 3.3 are fulfilled. As a special case of Theorem 3.3, we obtain Theorem 3.6 in
the case f does not depend upon ¢. Theorems 3.7 and 3.8, under suitable conditions on
f at zero and at infinity, ensure four distinct non-trivial solutions to the problem (1).

2. Preliminaries

Let X be a nonempty set and ®,¥ : X — R be two functions. For all r, r1, ro >
infx ®, ro > ry, 73 > 0, we define

(SUPy -1 (—oo,r) ¥(u) — ¥(u)

o(r) = ue@_llr%f_oo’r) O 7
B(ri,re) = inf sup V(v) - U(u)

u€q>*1(7oo,rl)v€<p—1[rl’r2) @(’U) — (I)(’U,) ’
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SUPyed—1(—o0,rg+73) \Il(u)
A(ra,r3) 1= * ,

a(ri,r2,r3) :==max{p(r1), p(r2),v(r2,r3)}.
THEOREM 2.1 ([5, Theorem 3.3]). Let X be a reflexive real Banach space, ® : X —
R be a convex, coercive and continuously Gateaur differentiable functional whose
Gateaur derivative admits a continuous inverse on X*, ¥ : X — R be a contin-
wously Gateauz differentiable functional whose Gateaux derivative is compact, such
that
(a1) infx & = ®(0) = ¥(0) = 0;

(az) for every uy,us € X such that ¥(uy) >0 and ¥(uz) > 0, one has

inf W 1-— > 0.
sel[I(lJ,T] (su1 + ( S)ug) >

Assume that there are three positive constants 1,712,173 with r1 < ro, such that

(az) @(r1) < B(ri,r2);  (as) @(r2) < B(ri,rz);  (as) y(ra,rs3) < B(ri,r2).
Then, for each \ € (ﬁ 1 L ) the functional ® — AV admits three distinct

(r1,72)? a(ry,ra,r3)
critical points ui,ug,uz such that u; € ®1(—00,r1), uy € ®"ry,ry) and uz €
&~ (—oco,ry +13).

We refer the interested reader to the papers [1,9,10,16] in which Theorem 2.1
has been successfully employed to obtain the existence of at least three solutions for
boundary value problems.

In this section, we will introduce several basic definitions, notations, lemmas, and
propositions used all over this paper.

DEFINITION 2.2 ([15]). For a function f defined on [a, b] and a > 0, the left and right
Riemann-Liouville fractional integrals of order « for the function f are defined by

aD;afu):ﬁ / (t— ) f(s)ds, t€ [ab],

1 b
Dy 1) = oy [ =07 () ds, tefant)
DO = e ), b
while the right-hand sides are point-wise defined on [a, b], where I'(«) is the gamma
function.

DEFINITION 2.3 ([15]). Let a,b € R and AC([a, b]) be the space of absolutely continu-
ous functions on [a,b]. For 0 < o < 1, f € AC([a, b]) left and right Riemann-Liouville
and Caputo fractional derivatives are defined by:

DES0) = D0 = g gy [ =97 ) s
Lo
Dy f(t) =—3 Aty Dy~ f(t) = I‘(l—a)/t (s =t)""f(s)ds,

SDES() = D30 = D2 ) = ey [ (=97 () ds
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and

c o — cnao e a—1 ¢/ _ 1 /b o\t

tDb f(t) - Dbff(t) a tDb f (t) - F(l 70[) ] (S t) f (S) dS
where T'(«) is the gamma function. Note that when a = 1, D} f(t) = f'(t) and
EDyf(t) = —1f'(t).

PROPOSITION 2.4 ([15,19]). We have the following property of fractional integration

b b
[ b swlewa= [ 10790 5>

provided that f € LP([a,b],RY), g € L4([a,b],RY) and p > 1, ¢ > 1, %Jr
orp#Lq#1, S+ =1+7.

To create suitable function spaces and apply critical point theory to explore the
existence of solutions for the problem (1), we require the following essential notations
and findings which will be used in establishing our main results.

Let 0 < a<1,1<p<ocand Ej?(0,T) be the Banach space, which is closure
of C&°([0,T]) with respect to the norm ||u|\%8,p(O’T) = e DEu@NTs 0.1y + UL o0.1)-

1
5§1+7

It is an established fact that EG”(0,7T) is a reflexive and separable Banach space
(see [14, Proposition 3.1]). In short Eg‘% = E®, and by ||.|| and ||.||s the norms in
L2(0,7) and C([0, T)):

T
[|u||2 /O lu(t)|? dt, u € L%(0,7),

Ulloo = max |u(t)|, u € C([0,T]).
I te[07T]| @)l ({ )
E® is a Hilbert space with inner product

T
(u,0) = / (EDu(t) §DRu(t) + u(tyo(t)) dt

T
and the norm lul2 = / (eDgu(®)]? + |u(t)?) dt.
0

Pay attention that if a € C([0,7T]) and there are two positive constants a; and as, so
that 0 < a1 < a(t) < ag, an equivalent norm in E® is

T
Jul?,, = / (6D u(®)? dt + a(d]u(t)?) dt.

PROPOSITION 2.5 ([14]). Let 0 < a < 1. For u € E%, we have

TCE
<——— 6 D5y 2
Il <73 I50Ful @)
In addition, for % <a<l,
Ta_% (&3 «
[ulloe € —————7Il6DFul|-
T(a)(2a—1)2
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By (2), we can take E® with the norm

T 2
o= ([ bputa)” = liopul, e
0

By Proposition 2.5, when o > % for every u € E¢, we have

[[u

T 3
full <k [ 5D at) " = Kl < Flulao 3)
T(x—%
h A —
where T(a)v2a -1
Now, by setting L := ) | L;, we put
1 1
Cy = 5(1 — LTk?), Cy:= 5(1 + LTk?). (4)

We suppose that the Lipschitz constant L > 0 of the function h satisfies the condition
LTk? < 1.
Here we give the definition of weak and classical solutions for the problem (1).

DEFINITION 2.6. A function u € E* is said to be a weak solution of the problem (1),
if for every v € E*, we have

T n T
/0[(SD?U(t))(SD?v(t))+a(t)U(t)v(t)]dt+zfj(u(tj))v(tj)—A/0 f(t,u(t)) v(t) dt=0.

DEFINITION 2.7. A function

i1

u € {u e AC([0,T7]) : / (|6D5u(t)* + [u(t)?) dt < oo, j =0,. n}
tj

is called to be a classical solution of problem (1) if

DT (GDfu(t)) + a(t)u(t) = Af(t,u(t), ae t€[0,T\{ts,....tu},

the limits ,D$~" (§Dfw) (t]) and (DG~ (§Df'u) (t;) exist, A (;DF " (5D w)) (t5) =

I;(u(t;)) and uw(0) = u(T") = 0.

LEMMA 2.8 ([6, Lemma 2.1]). The function uw € E* is a weak solution of (1) if and

only if u is a classical solution of (1).

Corresponding to the functions f, h and I;, 7 = 1...,n, we introduce the functions
F:[0,T]xR—Rand J; : [0,T] xR — R, j =1,...,n, respectively, as follows:

3
F(t,¢) ::/O ft,x)dx forall £ eR

and Jj(a:):/ Ii(&)d¢, j=1,...,n foreveryzcR.
0

In the rest of this paper we consider the following condition on impulsive terms:
(H) I; >0forall j=1,...,n.
We also need the following proposition for establishing our main results.
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PROPOSITION 2.9. Let S : E¢ — (E*)* be the operator defined by

T
S(u)(v) :/O (D7 u(®) D v(1) + a(t)u(t)v(t)] dt
for every u,v € E*. Then, S admits a continuous inverse on (E*)*.

Proof. 1t is obvious that

T
S(u)(u) =/0 (16D u®)* + a®)u(®)]?) dt = [[ul 4-

It follows that S is coercive. Owing to our assumptions on the data, one has
T
<S(u)—5(v)’u—v>=/0 (6D (u(t)—v(®) P +a(®)[u(t)—o(t)[?) dt>[lu—v]]3 ,>0

for every u,v € E®, which means that S is strictly monotone. Moreover, since E¢
is reflexive, for u, — w strongly in E* as n — +o00, one has S(u,) — S(u) weakly
in (E*)* as n — oo. Hence, S is demicontinuous, so by [21, Theorem 26.A(d)], the
inverse operator S™! of S exists and it is continuous. Indeed, let e, be a sequence
in (E*)* such that e, — e strongly in (E*)* as n — oo. Let uy,u € E® such that
S~1(en) = up and S™1(e) = u. Taking into account that S is coercive, one has that
the sequence u,, is bounded in the reflexive space E®. For a suitable subsequence, we
have w, — @ weakly in E¢ as n — oo, which implies that (S(u,) — S(u),u, — @) =
(en —e€,up — @) = 0. Note that if u,, — @ weakly in E* as n — 400 and S(u,) — S(@)
strongly in (E%)* as n — 400, one has w,, — @ strongly in E® as n — +o00, and since
S is continuous, we have u, — @ weakly in E* as n — +o00 and S(u,) — S(4) = S(u)
strongly in (E®)* as n — 4o00. Hence, taking into account that S is an injection, we
have u = 4.

3. Main results

Now, we present our main result.

THEOREM 3.1. Assume that there exist positive constants v1, Y2, ¥3 and o with v1 <
(A(a) + L) ko and max {07 \/(A(a) + 2 g—flm} < 7y2 < 3 such that
(Al) f(t,l’) > 0 fO?” each (t,l’) € [07 %) U (%17"] X [_73a73];

(A2) max { Jo Sllpls\igl F(tg)dt

fOT SUp ¢ <4, F(t,€) dt fOT SUP|¢|<qyg F(£,€) dt }
2

73 ’ 73 ’ 33
3T
o 7 F(t,0)dt— [ sup ¢ <y, F(£,€)dt
1 4
(A(e)+251) Cak? o?

Then, for every

o

3T )
J F(t.o)dt - Jo supje<y, F(t,€)dt
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. { gl s = })
2 T > T > T
g Jo suPigi<n, F(EE) A fy supiei<q, F(EE AL fy suppei<y, F(EE)dE

the problem (1) possesses at least three non-negative classical solutions u1, usz, and ug
such that max;cpo,ry [u1(t)| < 1, maxseo, 1) [ua(t)| < v2 and max,cpo 1) [us(t)] < vs.

Proof. Our aim is to apply Theorem 2.1 to our problem. Let X be the Sobolev space
E*. We consider the auxiliary problem

(DS (EDFu(t)) + a(t)u(t) = Af(t,u(t)), t#t;, ae. tel0,T]
A (D7 (GDw)) () = Ii(u(ty), j=1,...n, (5)
u(0) =u(T)=0
where f:[0,7] x R = R is an L!-Carathéodory function, defined as follows

R f(t70)7 lfg < =73,
f(t7§): f(t7£)7 if 7V3S§S’Y3a
f@tys), &> ns.

If any solution of the problem (1) satisfies the condition —y3 < u(t) < 3 for every
t € [0,T], then, any classical solution of the problem (5) clearly turns to be also
a classical solution of (1). Therefore, for our goal, it is enough to show that our
conclusion holds for (1). Fix A as in the conclusion. In order to apply Theorem 2.1
to our problem, let ®, ¥ be, for every u € X, defined by

®(u) —*IIUII +ZJ (6)

and W(u) = /O Pt u(t)) dt (7)

and put I (u) = ®(u) —A¥(u) for every u € X. Note that the classical solutions of (1)
are exactly the critical points of I. The functionals ® and V¥ satisfy the regularity
assumptions of Theorem 2.1. Indeed, similar arguments as in [18] show that ® is
Gateaux differentiable and sequentially weakly lower semicontinuous and its Gateaux
derivative is given by

@'(u)(v) :/0 [(GEDFu(®) D7 o(8) + a(®)u(t)v(t)] dt + le(u(t )v(t;)

for every v € X, while Proposition 2.9 gives that &’ admits a continuous inverse on
X*. Now from the facts —L;|¢| < I;(€) < Lj;|¢| for every £ € R, j =1,...,n, and
taking (3) and (4) into account, for every v € X we have

Crllullf o < @(u) < Co|ull? (8)

and thus the functional ® : X — R is coercive. On the other hand, it is well known
that ¥ is a differentiable functional whose differential at the point u € X is

T
- / £t u()o(t) dt
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for any v € X as well as it is sequentially weakly upper semicontinuous. Fur-

thermore ¥/ : X — X* is a compact operator. Put r; = %’y%, ro = %722 and
ry =% (73 —43). Now we define w, by
4oy, ifte0,1),
_ : T 3T
’U}o-(t)— g, 1ft€ [Z,T],
(T —t), ifte (2, T).
Clearly, w, € X. Obviously, one has
o ifte (0,9,
w,(t) =40, ifte (T, %),
74%7 lftG(%,T),
and
1 T
D5 (0] = ey | [ =9 w0 as
47‘721::7 if t €[0,1),
1 40 (D)2 i T 3T
Tl_a) )T Ta ift ez, )
Frald) =@ - ), ifte (3R, T,
so that
2T T 2T
(40 + Z2) 0 < furli = Al)o? + [ a0 ar < (a(e) + ) o2
0
and particularly, considering (8), it follows
2Ta0 9 2Ta1 2
Ala) + Cio° < P(w,) < | A(a) + 3 Cyo”. (9)
On the other hand, we observe
3T
T
U (w,) 2/ F(t,o)dt. (10)
T

4
From the conditions 73 > 72, 11 < 1/ (A(a) + H%)k;o and \/(A(a) + QT%) %’ka <
Y2, we get r3 > 0 and r; < ®(w) < ra.
O (—o0,m) = {u€ X;P(u) <r} C{ue X;lu <m} (11)

and by the same argument as above, ®~1(—o0,r3) C {u € X;ul < ’yz}. Hence, we
have

T T
sup U(u) = sup / F(t,u(t))dt < / sup F(t,¢)dt.
)0 0

wEP—1(—o0,r1) ueP—1(—o0,ry |€]<y1



G. A. Afrouzi, S. Moradi 197

In a similar way, we have

T T
sup U(u) = sup / F(t,u(t))dt S/ sup F(t,&)dt
ued—1(—o0,r2) ued—1(—o0,r2) 0 [€<y2
and sup  P(u) < sup / F(t,u(t))dt </ sup F(t,&)dt
O(u)<ratry u€P~1(—o0,ra+73) 0 [&l<ys
Therefore, since 0 € q)_l(—oo,rl) and ®(0) = ¥(0) = 0, one has
su ooy ¥ —U(u SUD,ed—1(—oor) (U
o(r1) = inf (SupP,ca (—o0,r1) ()) <)S Pucd—1(—o0,r) (u)
ueP—1(—o00,r1) r — <I>(u) (a1
1
_Supuefbfl(—oo,rl) fo F(xvu( ) fo bup|§|<fyl (t,f) dt
1 k2 71 ’
sup U (u)
i eor
QD(T’Q) Sué@ (—o0,r2)
r2
1
~ SUPyuedp—1(—oc0,rz) fo F('rvu('r) fo bup|§|<'yz (taf) de
T2 k2 72
and
sup U(u)
7(T27T3) Su€<I> (—o0,r2+73)
T3
1
 SUDyeq 1 (—oo,rp 1) Jo F(x,u(z))d fo sup|£|<72 F(t,¢)dt
r3 T B

For each u € ®~1(—o0,r;) one has

i T
f%‘* F(t,0)dt — [ supjg<,, F(t,6)dt
(A(e) + 251 Coo?

Due to (As) we get a(ry,ra,73) < B(r1,72). Now, we show that the functional Iy
satisfies the assumption (ag) of Theorem 2.1. Let uy and ug be two local minima for
In. Then u; and ug are critical points for Iy, and so, they are classical solutions for
the problem (1). We want to prove that they are non-negative. Let ug be a (non-
trivial) classical solution of the problem (1). Arguing by a contradiction, assume
that the set A = {¢t € [0,T] : up(t) < 0} is non-empty and of positive measure. Put
o(t) = min{0, ug(t)} for all ¢ € [0,T]. Clearly, v € X and one has

T
/O (6D uo(t)) (6 Dy o(t))+a(t)uo(t)v(t)] di+
n T
> 1 uo(t)o(ty) —A/O F(tuo(1))5() dt = 0.

Since we could assume that f is non-negative for fixed A > 0 and by choosing v(t) =

B(ri,r2) 2
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ug(t) one has

0 < 2C[[uol|ge w4y < / [(GDFuo(t)? + a(tyug(t)] dt + Y I;(uo(t;))uo(t;)
A A

.\ /A £ (tu0(8)uo #) dt < 0,

that is, [lugl[ge»4y = 0 which is an absurd. Hence, our claim is proved. Then,
we observe ui(t) > 0 and wa(t) > 0 for every t € [0,7]. Thus, it follows that
Af(t, sur + (1 —s)ug) >0 for all s € [0,77], and consequently, U(su; + (1 — s)uz) >0,
for every s € [0,T]. Hence, Theorem 2.1 implies that for every

e (g e TG
3T )
Ji* F(t,0) dt — [ supje<, F(t,€)dt

L { 7 3 v — 3 })

—5 Min § —x y T )T

g Jo suPigj<yy F(8,6) At fy supje<n, F(8,6) At fy suppe<qy F(2,€)dt
and p € [0,0y,4), the functional I has three critical points u;, ¢ = 1,2,3, in X such
that ®(u1) < ry, ®(ug) < 72 and ®(uz) < ro + 73, that is, maxyejo 7y [ui(t)] < 71,
maxyeo,7] [u2(t)| < v2 and maxy¢jo 7 |uz(t)| < v3. Then, taking into account the fact
that the weak solutions of the problem (1) are exactly critical points of the functional
I, we have the desired conclusion. O

REMARK 3.2. We observe that, in Theorem 3.1, no asymptotic conditions on f and g
are needed and only algebraic conditions on f are imposed to guarantee the existence
of the classical solutions.

Now, we deduce the following straightforward consequence of Theorem 3.1.
THEOREM 3.3. Assume that there exist positive constants ~v1, y4 and o with v1 <
(A(a) + L) ko and max {07 \/(A(a) + a1 g—fk’a} < a4 such that
(As) f(z,t) >0 for each (z,t) € [0, L) U (EL, T] x [—y4, 1al;

(A4) max { fOT Suplﬁ\é‘vzl F(t,&)dt 2fOT Suplﬁ\éz‘m F(t,&)dt}

71 ! Vi

3T
2 F(t,o)dt

]

< 1 !
(A(@)+251) Cok?+Cy o?
Then, for every

e (((A(a)—i—QT;“)Cg—&-%)oz’

3T
[+ F(t,o)dt

4

lmin{ 7 Vi })
2 T P (T ’
k Jo supjgj<q, F(t,€)dt 2 [ supj¢ <, F(t,€)dt

the problem (1) possesses at least three non-negative classical solutions uy, ug and ug
such that maxeo 7y |u1 ()| <v1, maxiepo 1) |U2(t)\<%74 and max;eo, 1) [us(t)|<va.
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Proof. Choose y2 = %74 and 73 = 4. So, from (A4) one has

T T T
Jo supjgj<, F(t,€) dt :2fo SUP|¢|< 1y, F(t,6)dt _ 2 [, supjej<, F(t,€)dt

3 7 gl
37T
Cl f%4 F’(t7 O')dt
< 2Ta, 2 2 (12)
(A(Oé) + T) CQk + Cl g
and
fOT SUP|¢| <y, F'(L,€)dE 2 fOT SUp <, F(t,€)dt
v = gl
37T
Cl f14 F(t,O’)dt
< 2T aq 2 . 2 : (13)
(A(a) + T) C2k + Cl o
Moreover, taking into account that 7, < o, by using (A4) we have
T T
c, f%“ F(t,o)dt — [ supjg<,, F(t,§)dt
(A(e) + 251) Cak? o?
37T
N o f? F(t,o)dt B Cy fOT SUp|¢|<, F(t,6) dt
(A(a) + 2:!;11) Cok2 o2 (A(a) + 27:0:11) Cok2 ,y%
3T 3T
. e, f%4 F(t,o)dt - C, f%4 F(t,o)dt
(A(Oé) + ZT%) Cok? o? (A(Oé) + ZT%) Cyk? 4+ C; o?
37T
Cl f14 F(t,O’)dt

4
(A(Oé) + 727;:11) Cok? + C o?
Hence, from (Ay4), (12) and (13), it is easy to see that the assumption (As) of Theo-
rem 3.1 is satisfied, and the conclusion follows. O

We now present the following example to illustrate Theorem 3.3.

EXAMPLE 3.4. We consider the problem

Df (5D u(t)) +u(t)

Af(u), t# %, a.e. t € [0,1],

a (107 (3080)) () = i snui L)), (14)
u(0) = u(l) =0,

where

— 352) lffg 17
f<§)_{g+sin2(€—1)7 if € > 1.
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By the expression of f, we have

£3, ift <1,
F(§) = .
3In(¢) + 46— sin2(— 1)+ 4, if &> 1
; : ; _ _ 1312 _ V2 _1 _ 3
By simple calculations, we obtain A(«a) = TBre(Ly k= ROR Cp =z and Cy = 3.

Taking v; = #, 74 = 10* and n = 1, then all conditions in Theorem 3.3 are

2
satisfied. Therefore, it follows that for each \ € (51925&) +14 L é%) , 1251"2(%)), the
4
problem (14) possesses at least three non-negative classical solutions wuj, us and ug
such that max;e(o 1) |u1(t)] < 76, maxyep ) [uz(t)| < %104 and maxyco,1) |us(t)| <

104,

We want to point out a simple consequence of Theorem 3.3, in which the function
f has separated variables.

THEOREM 3.5. Let fi € L*([0,T]) and fo € C(R) be two functions. Put F(t) =
fg f2(&)dE for allt € R and assume that there exist positive constants v1, v4 and o
with v < y/(A(a) + 2T“0)ka and max {0’ \/(A(a) + &3‘“) %ka} < 4 such that
(As) f1(t) >0 for each t € [0,T) and fa(x) > 0 for each x € [—4,V4);

SUPj¢ <y F(€)  25upiei <y F(E) Cy F(o)
(Ag) max i ’ i < (A()+35L)Cok2+2C, 02

Then, for every

A€<2((A(<%)+2T‘“)C+ 7)o’ Clmm{ i i })

TF(o) Rt SUP|g|<y, F(€) 25uplg( <y FI(E)

the problem
D (D u(t)) + a(t)u(t) = Af1(t) f2(w), t#t;, ae t€[0,T],
(D“ LEDMw) (1) = Liu(ty), j=1,...n
u(O) =u(T)=0
possesses at least three non-negative classical solutions wi, us and us such that
max;efo,7] [u1(t)] <1, maxeepo,r [uz(t)| < 574 and maxeeqo,ry lus(t)] < .

Proof. Set f(t,x) = fi(t)fa(z) for each (t,z) € [0,T] x R. Since F(t,z) = f1(t)F(x)
from (Aj) and (Ag) we obtain (Asz) and (Ay4), respectively. U
Here, we present a simple consequence of Theorem 3.3 in the case when f does

not depend upon t.

THEOREM 3.6. Assume that there exist positive constants 1, y4 and o with v1 <
(A(a) + zTao)ka and max{ \/(A(oz) + ZT%) %kc} < 74 such that
(A7) f(x) >0 for each x € [—74,7V4l;

F(vi) 2F(v) c Flo)
(Ag) max{ ¥ 32 }< ( (« )+2T“11)C‘2k2+2cl p-al
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Then, for every

Ae(2((A<a>+2T‘“>O+ )o?amm{ n A })

TF(o) e TF(n) 2F(ya)

the problem
DT (D u(t)) + a(t)u(t)
A (D7 (GDRw)) (1))
u(0) =u(T) =0
possesses at least three mon-negative classical solutions wi, us and us such that
maxyefo,r] |ur (t)] < 71, maxgeqo,r) [u2(t)] < J5va and maxyefory |us(t)] < s

Af(u(t), t#t;, ae tel0,T],
Li(u(ty), j=1,...n

The following result is a consequence of Theorem 3.3.

THEOREM 3.7. Let f : [0,T] xR — R be a continuous function such that x f(t,z) > 0
for all (t,z) € (R\{0}). Assume that

[0,T7] x
(Ag) lim, o (‘z" ) = lim|y| 5400 % =0.

Then, for every A > X where

. T 2 _ 2
A= ((A(a) + 2 al) Cy + G > max ¢ inf —= 7 , inf ( 7) ,
3 2 >0 fT ,o)dt t7<0f F(t,o)dt

the problem (1) possesses at least four distinct non-trivial solutions.

Proof. Set
flt,x), if (t,x 0,7] x [0, +0),
f(tx){()()[}[)
otherwise
and folt,2) { J(t,=a), if (t) €0, 7] x [0, +ox),
0, otherwise,
and define Fy (t,z) := [ f1(t,&)d¢ for every (t,z) € [0,T]xR. Fix A > A*, and let o >

o 2Ta1
A(a)+ )Cz+ 3)o? . From lim, g % = lim|p| oo hitz) _ 0,

||

0 such that A > ((

3T
o Fi(t,o)dt

4
there is y; > 0 such that

T
2T su Fi(t, &) dt
M <min{o7\/<A(a)+ 3ao>k0} and Jo p\E\S'hz 1(t,€) < %

71

and there is 4 > 0 such that

T
Fi(t,€)dt
nax {07 \/(A(a) + 2Ta1) @k } < 74 and Jo suPi<y, F1(EE) < Cy

3 )¢ 2 Nk
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Then (A4) in Theorem 3.3 is satisfied,

ve (A + 5) G 4 ) o®

f} Fi(t,o)dt
4

C 2 2
Sl 7 V4

T ’ T
k2 fO SUPIEIS'n Fl(t,f)dt 2f0 Sup|§|§’74 Fl(t,g)dt

Hence, the problem (P/(ﬁ) admits two positive solutions ui, us, which are positive
fa(tm)

el

solutions of the problem (1). Next, arguing in the same way, from lim, ¢

lim - 400 f2|(;’|x) = 0, we ensure the existence of two positive solutions us, uy for the

problem (P)]\%). Clearly, —us3, —u4 are negative solutions of the problem (1) and the
conclusion is achieved.

REMARK 3.8. We explicitly observe that in Theorem 3.7 no symmetric condition on
f is assumed. However, whenever f is an odd continuous non-zero function such that
f(t,z) > 0 for all (¢,x) € [0,T] x [0,+00), (Ag) can be replaced by

(A10) lim, o+ M = limy 400 w =0,

ensuring the ex1stence of at least four distinct non-trivial solutions the problem (1)
for every A > \* where

((Ala )+2T‘“)C + )0’

_U>O
/ F(t,o)d
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