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SOME RESULTS ON SCALABLE K-FRAMES

Sithara Ramesan and K. T. Ravindran

Abstract. We investigate the scalability of K-frames and derive a characterization for
scalable K-frames. We investigate whether or not a particular K-frame is scalable, as well
as the existence and uniqueness of scalings. Using the concept of trace of an operator, we
analyse the possible scalings, if a given K-frame is scalable. In Cn, we look at the scalability
of K-frames independently.

1. Introduction

Frames in Hilbert spaces were introduced by R. J. Duffin and A. C. Schaffer while
working on nonharmonic Fourier series. Later Daubechies, Grossmann and Meyer
gave a strong place to frames in harmonic analysis. Frame theory have wide range of
applications in signal processing, sampling theory, coding and communications etc.
Both orthonormal bases and frames in separable Hilbert spaces can be used to express
any vector in the Hilbert space. However, the advantage of frames over orthonormal
bases is their redundancy. Some particular types of frames have been suggested in
theory for various applications. One such frame is K-frame. Notion of K-frames were
introduced by L. Gavruta, to study atomic systems with respect to bounded linear
operators. K-frames are more general than frames. The span limit of K-frames is
restricted to R(K). Scalability of frames was introduced in [6].

In this paper we study about the scalability of K-frames. Recent studies on
K-frames show that Parseval K-frames can be used to manage data loss in signal
communication. So the construction of Parseval K-frames is desirable and scaling
is the easiest way for this construction. In this paper we deal with K-frames which
can be scaled to Parseval K-frames and tight K-frames and we term such K-frames
as scalable K-frames and A-scalable K-frames, respectively. We prove some of the
results related to scalable K-frames. Also we give characterization result for scalable
K-frames.
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226 Scalable K-frames

Throughout this paper H is a complex separable Hilbert space, B(H) the space
of all linear bounded operators on H. For K ∈ B(H), we denote by R(K) the range
of K and D(K) domain of K and Tr (K) denotes the trace of K. H n×n denotes the
space of all n × n Hermitian matrices. Let M and N denote the index sets with m
and n elements, respectively.

2. Preliminaries

This section contains some basic definitions and results about frames and K-frames
which are required in the next sections. For a detailed study of frames and K-frames
we refer to [4, 5].

Definition 2.1 ([4]). For a separable Hilbert space H, a sequence {fn}n∈N ⊂ H is
said to be a frame for H if there exist A, B > 0 such that A∥x∥2 ≤

∑
n∈N |⟨x, fn⟩|2 ≤

B∥x∥2, for all x ∈ H. The scalars A and B are called lower and upper frame bounds.
If A = B then we call it an A-tight frame and if A = B = 1 we call it a Parseval
frame.

Definition 2.2 ([5]). Let K ∈ B(H). We say that {fn}n∈N ⊂ H is a K-frame for
H if there exist constants A, B > 0 such that A∥K∗x∥2 ≤

∑
n∈N |⟨x, fn⟩|2 ≤ B∥x∥2,

for all x ∈ H. Again A and B are called lower and upper K-frame bounds.
If the equality

∑
n∈N |⟨x, fn⟩|2 = A∥K∗x∥2 holds then we call it an A-tight K-

frame. If the equality
∑

n∈N |⟨x, fn⟩|2 = ∥K∗x∥2 holds then we call it a Parseval
K-frame.

Let {fn}n∈N be a frame or K-frame. Then we can define two operators as fol-
lows. The mapping TF : H −→ l2(N) defined by TF (f) = {⟨f, fn⟩}n∈N is called
the associated analysis operator. The adjoint operator T ∗

F : l2(N) −→ H defined by
T ∗
F ({cn}n∈N) =

∑
n∈N cnfn is called the synthesis operator. From the properties of

TF , it follows that the frame operator SF : H −→ H defined by SF f = TT ∗ =∑
n∈N⟨f, fn⟩fn, for all f ∈ H is a bounded and positive self-adjoint operator on H.

If {fn}n∈N is a frame, then SF is invertible. But in the case of K-frames, SF is not
invertible on H, in general. However, SF is invertible on R(K).

Theorem 2.3. {fn}n∈N is a Parseval K-frame for H if and only if S = KK∗,
KK∗f =

∑
i∈I⟨f, fi⟩fi, for all f ∈ H.

Theorem 2.4 ([3]). Let K ∈ B(H) and {ei}i∈I be an orthonormal basis for H, then
Tr (K) =

∑
i∈I⟨Kei, ei⟩.

Definition 2.5 ([6]). A frame {fn}n∈N for H is said to be a scalable frame for H
if there exist non-negative scalars {an}n∈N such that {anfn}n∈N is a Parseval frame
for H.

Theorem 2.6 ([2]). Given a set of points {fj}j∈M ⊆ Rn, and y ∈ con{fj}, then there
exists a subset J ⊆ M such that y ∈ con{fj}j∈J and {fj}j∈J is affinely independent.
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Theorem 2.7 ([2]). Given a collection of unit norm vectors {fj}j∈M in C⋉, {fjfj∗}j∈M

is linearly independent if and only if it is affinely independent.

Definition 2.8 ([2]). Given a collection of vectors {fj}j∈M ⊆ Rd we define their
affine span as aff{fj}j∈M = {

∑
j∈M cjfj :

∑
j∈M cj = 1} and we say that {fj}j∈M

is affinely independent if fi ̸∈ aff{fj}j ̸=i for every j. We define their convex hull as
con{fj}j∈M = {

∑
j∈M cjfj : cj ≥ 0;

∑
j∈M cj = 1}.

Definition 2.9 ([6]). Diagonal operator Da in l2(N) corresponding to a sequence
a = {an}n∈N ⊂ K is defined by Da{vn}n∈N = {anvn}n∈N.Da (possibly unbounded) is
a self-adjoint operator.

Definition 2.10 ([1]). A sequence {an}n∈N is said to be semi-normalized if there
exist a, b > 0 such that a ≤ an ≤ b for all n.

Definition 2.11 ([7]). A sequence {an}n∈N is said to be positively confined if 0 <
infn cn ≤ supn cn < +∞.

3. Scalable K-frames

We commence this section with the following definitions.

Definition 3.1. A K-frame {fn}n∈N for H is said to be a scalable K-frame for H if
there exist non-negative scalars {an}n∈N such that {anfn}n∈N is a Parseval K-frame
for H.

Definition 3.2. A K-frame {fn}n∈N for H is said to be a A-scalable K-frame for H
if there exist non-negative scalars {an}n∈N such that {anfn}n∈N is an A-tightK-frame
for H.

If there exist positive scalars {an}n∈N such that {anfn}n∈N is a Parseval K-frame
for H (or A-tight K-frame), then we say {fn}n∈N is a strictly scalable K-frame (or
strictly A-scalable K-frame) for H. The following two results help us to identify two
types of scalings.

Theorem 3.3. Let {fn}n∈N be a K-frame for H and {an}n∈N be a semi-normalized
sequence. Then {anfn}n∈N is also a K-frame.

Proof. Suppose {fn}n∈N is a K−frame for H. Therefore there exist A, B > 0
such that A∥K∗f∥2 ≤

∑
n∈N |⟨f, fn⟩|2 ≤ B∥f∥2, for all x ∈ H. Since {an}n∈N

is a semi-normalized sequence, there exist a, b > 0 such that
∑

n∈N |⟨f, anfn⟩|2 =∑
n∈N a2n|⟨f, fn⟩|2 ≤ b2B∥f∥2 and

∑
n∈N |⟨f, anfn⟩|2 ≥ a2A∥K∗f∥2, for all f ∈ H,

where A and B are optimal K-frame bounds for{fn}n∈N. Hence {anfn}n∈N is a
K-frame with bounds A′ = Aa2 and B′ = Bb2 □

Theorem 3.4. Let {fn}n∈N be a K-frame for H and {an}n∈N be a positively confined
sequence. Then {anfn}n∈N is also a K-frame for H.
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Proof. For all f ∈ H we have∑
n∈N

|⟨f, anfn⟩|2 =
∑
n∈N

a2n|⟨f, fn⟩|2,

( inf
n∈N

an)
2
∑
n∈N

|⟨f, fn⟩|2 ≤
∑
n∈N

a2n|⟨f, fn⟩|2 ≤ (sup
n∈N

an)
2
∑
n∈N

|⟨f, fn⟩|2,

A( inf
n∈N

an)
2∥K∗f∥2 ≤

∑
n∈N

|⟨f, anfn⟩|2 ≤ B(sup
n∈N

an)
2∥f∥2.

Hence {anfn}n∈N is a K-frame for H . □

Theorem 3.5. Let T ∈ B(H) be an isomorphism. Then a K-frame {fn}n∈N for H
is scalable if and only if TK-frame {Tfn}n∈N is scalable.

Proof. Suppose {fn}n∈N is a scalable K-frame. This implies that
∑

n∈N |⟨f, anfn⟩|2 =
∥K∗f∥2, for all f ∈ H. Consider,

∑
n∈N |⟨f, anTfn⟩|2 =

∑
n∈N |⟨T ∗f, anfn⟩|2 =

∥K∗T ∗f∥2 = ∥(TK)∗f∥2, for all f ∈ H. Hence {Tfn}n∈N is a scalable TK-frame.
Conversely, suppose that {Tfn}n∈N is a scalable TK-frame. This implies that∑

n∈N |⟨f, anTfn⟩|2=∥(TK)∗f∥2, for all f ∈ H. It follows that
∑

n∈N |⟨T ∗f, anfn⟩|2
= ∥K∗T ∗f∥2, for all f ∈ H. Thus

∑
n∈N |⟨g, anfn⟩|2 = ∥K∗g∥2, for all g∈R(T ∗)=H.

Hence {fn}n∈N is a scalable K-frame. □

If {fn}n∈N is a scalable K-frame for H, then∑
n∈N

|⟨f, anKfn⟩|2 =
∑
n∈N

|⟨K∗f, anfn⟩|2 = ∥K∗(K∗f)∥2 = ∥(K2)∗f∥2,

for all f ∈ H. This implies that {anKfn}n∈N is a Parseval K2-frame for H. In
general, {anKsfn}n∈N is a Parseval Ks+1-frame for H and hence {Ksfn}n∈N is a
scalable Ks+1-frame for H.

If T ∈ B(H) and {fn}n∈N is a scalable frame for H, then {Tfn}n∈N is a scalable
T -frame for H. But the converse holds only when T is an isomorphism. That is, if
T ∈ B(H) is an isomorphism and {Tfn}n∈N is a scalable T -frame for H, then {fn}n∈N
is a scalable frame for H.

Theorem 3.6. Let {fn}n∈N be a scalable K-frame. Then {fn}n∈N is a scalable

(KK∗)
1
2 -frame.

Proof. Suppose {fn}n∈N is a scalableK-frame forH. This implies,
∑

n∈N |⟨f, anfn⟩|2 =
∥K∗f∥2, for all f ∈ H. Let S be the frame operator of {cnfn}n∈N. So we get

⟨S 1
2S

1
2
∗
f, f⟩ = ⟨KK∗f, f⟩ and ∥S 1

2
∗
f∥2 = ∥K∗f∥2 for all f ∈ H. Thus we ob-

tain
∑

n∈N |⟨f, anfn⟩|2 = ∥S 1
2
∗
f∥2, for all f ∈ H. Thus {anfn}n∈N is a Parseval

S
1
2 -frame and hence is a Parseval (KK∗)

1
2 -frame. That is {fn}n∈N is a scalable

(KK∗)
1
2 -frame. □

Theorem 3.7. Let {fn}n∈N and {gn}n∈N be scalable K-frames for H with scalings
a = {an}n∈N and b = {bn}n∈N, respectively. Suppose the frame operators TaF and
TbF of the scaled frames satisfy T ∗

aFTbG = 0. Then {anfn+bngn}n∈N is a 2c2-scalable
K-frame. In particular, {anfn + bngn}n∈N is a scalable K-frame.
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Proof. For all f ∈ H we have,
∑

n∈N |⟨f, anfn⟩|2 = ∥K∗f∥2 and
∑

n∈N |⟨f, bngn⟩|2 =
∥K∗f∥2. Also, since T ∗

aFTbG = 0, we get,
∑

n∈N anbn⟨f, gn⟩fn = 0.

Take cn = c for all n where c > 0. Then {cn}n∈N is a non-negative sequence and∑
n∈N

|⟨f, cn(anfn + bnfn)⟩|2 =∑
n∈N

|⟨f, cnanfn⟩|2 +
∑
n∈N

|⟨f, cnbnfn|2 +
∑
n∈N

2Re⟨f, cnanfn⟩⟨f, cnbngn⟩ = 2c2∥K∗f∥2.

Therefore, {anfn + bngn}n∈N is a 2c2-scalable K-frame.

Taking c = 1√
2
, {anfn + bngn}n∈N is a scalable K-frame. □

We prove some results which lead us to a characterization theorem for scalable
K-frames.

Theorem 3.8. Let {fn}n∈N be a K-frame for H with analysis operator TF and let
a = {an}n∈N be a sequence of non-negative scalars. If G = {anfn}n∈N is a K-frame
for H then R(TF ) ⊂ D(Da) and Da|R(TF ) is bounded.

Proof. Suppose {anfn}n∈N is a K-frame for H and TG is the coresponding analysis
operator. Then, for any f ∈ H, TGf = {⟨f, anfn⟩}n∈N = {an⟨f, fn⟩}n∈N = DaTF f .
Thus TG = DaTF and R(TF ) ⊂ D(Da).

Now let v ∈ R(TF ) so that v = TF f for some f ∈ H.

Consider, ∥Dav∥ = ∥DaTF f∥ = ∥TGf∥ ≤ A1∥f∥2 ≤ A1∥T−1
F v∥ ≤ A2∥TF ∥−1∥∥v∥.

Thus, Da|R(TF ) is bounded. □

Theorem 3.9. Let {fn}n∈N be a K-frame for H with analysis operator TF and let
a = {an}n∈N be a sequence of non-negative scalars. Then the following conditions are
equivalent.

(i) G = {anfn}n∈N is a K-frame for H.

(ii) There exists a diagonal operator Da in l2(N) such that R(TF ) ⊂ D(Da) and
Da|R(TF ) is bounded and R(K) ⊆ R(DaT

∗
F ).

In particular, the frame operator of G = {anfn}n∈N is given by SG = T ∗
FD

2TF .

Proof. Suppose G = {anfn}n∈N is a K-frame for H. Then R(TF ) ⊂ D(Da) and
Da|R(TF ) is bounded by Theorem 3.8. Since {anfn}n∈N is a K-frame, we have

A∥K∗f∥2 ≤
∑
n∈N

|⟨f, anfn⟩|2 =
∑
n∈N

|an⟨f, fn⟩|2 = ∥an{⟨f, fn⟩}n∈N∥2 = ∥DaTF f∥2.

Using Douglas Majorization Theorem, we get, R(K) ⊆ R((DaTF )
∗).

To prove the converse, let v ∈ R(TF ). Then v = TF f for some f ∈ H. Since
Da|R(TF ) is bounded, we have, ∥Dav∥ ≤ α∥v∥, for some α > 0 and for all v ∈
R(TF ). Thus ∥DaTF f∥2 ≤ α∥TF f∥2 ≤ α∥TF ∥2∥f∥2 and we get

∑
n∈N |⟨f, anfn⟩|2 ≤

B∥f∥2, where B = α∥TF ∥2. Also since R(K) ⊆ R(DaT
∗
F ), we get A∥K∗f∥2 ≤∑

n∈N⟨f, anfn⟩|2. Hence, {anfn}n∈N is a K-frame for H. Moreover, SG = T ∗
GTG =

(DaTF )
∗(DaTF ) = T ∗

FD
2
cTF . □
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Theorem 3.10. Let {fn}n∈N be a K-frame for H with analysis operator TF and let
a = {an}n∈N be a sequence of non-negative scalars. Also assume that infn∈N ∥fn∥ > 0.
Then the following conditions are equivalent.
(i) G = {anfn}n∈N is a K-frame for H.

(ii) Da is bounded and R(K) ⊆ R(DaT
∗
F ).

Proof. Suppose that {anfn}n∈N is a K-frame. Then there exist A, B > 0 such that
A∥K∗f∥2 ≤

∑
n∈N |⟨f, fn⟩|2 ≤ B∥f∥2, for all f ∈ H. From the right inequality we

get Da is bounded and from the left inequality we get R(K) ⊆ R(DaT
∗
F ).

Conversely, suppose Da is bounded and R(K) ⊆ R(DaT
∗
F ). Then using Theo-

rem 3.9 we get {anfn}n∈N is a K-frame for H. □

Theorem 3.11. Let {fn}n∈N be a K-frame for H. If {fn}n∈N is a scalable K-frame
for H, then there exists a non-negative diagonal operator D in l2(N) such that KK∗ =
T ∗
FD

2TF .

Proof. Suppose {fn}n∈N is a scalable K-frame for H. This implies that there exists
a = {an}n∈N where an ≥ 0 such that {anfn}n∈N is a Parseval K-frame. Then by
Theorem 3.9 frame operator of {anfn}n∈N is SG = T ∗

FD
2
aTF . But frame operator of

Parseval K-frame is KK∗. Thus we obtain T ∗
FD

2TF = KK∗ where D = Da. □

Remark 3.12. Using Theorem 3.9 it is clear that, if there exists a semi-normalized
diagonal operator Da in l2(N) such that KK∗ = T ∗

FD
2TF , then {fn}n∈N is a scalable

K-frame for H.

Theorem 3.13. Let {fn}n∈N be a K-frame for H such that infn∈N ∥fn∥ > 0. Then
the following conditions are equivalent.
(i) {fn}n∈N is a scalable K-frame.

(ii) There exists a non-negative bounded diagonal operator D in l2(N) such that
KK∗ = T ∗

FD
2TF .

Proof. (i) =⇒ (ii) holds from Theorem 3.10 and Theorem 3.11.
Conversely, suppose that there exists a non-negative bounded diagonal operator D

in l2(J) such that KK∗ = T ∗
FD

2TF . Then for all f ∈ H, ⟨T ∗
FD

2TF f, f⟩ = ⟨KK∗f, f⟩.
This implies ∥DTF f∥2 = ∥K∗f∥2 and we get

∑
n∈N |an⟨f, fn⟩|2 = ∥K∗f∥2. Thus

{fn}n∈N is a scalable K-frame for H. □

4. Scaling sequences-finite K-frames

In Section 3, we have discussed the scalability of K-frames. That is, the existence of
scaling sequence or scalings, so that the scaled frame is a Parseval K-frame. We now
examine the various scaling sequences for a finite K-frame.

The following example from [9] gives a scalable K-frame with more than one
scaling sequence.
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Example 4.1. Let H = C3 and {e1, e2, e3} be the standard orthonormal basis
for H. Let K ∈ B(C3), defined by Ke1 = e1, Ke2 = e1, Ke3 = e2. Then F =
{fj}j∈J = {Ke1, Ke2, Ke3} = {e1, e1, e2} is a K-frame for H. Here infj ∥fj∥ > 0.
Let D : C3 −→ C3 be the diagonal operator defined by D({vj}) = {ajvj}j∈J where
aj ≥ 0. We have,

TF
∗D2TF (f) =

∑
j∈J

aj
2⟨f,Kej⟩Kej = (a1

2 + a2
2)⟨f, e1⟩e1 + a3

2⟨f, e2⟩e2, and

KK∗(f) = K(K∗f) =K(
∑
j∈J

⟨f,Kei⟩ei) =
∑
j∈J

⟨f,Kei⟩Kei = 2⟨f, e1⟩e1 + ⟨f, e2⟩e2.

Then using Theorem 3.13, F = {fj}j∈J is a scalableK-frame if and only if a1
2+a2

2 =
2 and a3

2 = 1 if and only if (a1, a2, a3) = (1, 1, 1) or (a1, a2, a3) = (
√
2, 0, 1) or

(a1, a2, a3) = (0,
√
2, 1).

The K-frame given above is strictly scalable if and only if (a1, a2, a3) = (1, 1, 1).

Lemma 4.2. Let {fi}i∈M be a Parseval K-frame for H. Then, Tr (KK∗) =
∑

i∈M ∥fi∥2.

Proof. Let {ej}j∈N be an orthonormal basis for H. Then,

Tr (KK∗) =
∑
j∈N

⟨KK∗ej , ej⟩ =
∑
j∈N

〈 ∑
i∈M

⟨ej , fi⟩fi, ej
〉

=
∑
i∈M

∑
j∈N

⟨ej , fi⟩⟨fi, ej⟩ =
∑
i∈M

〈
fi,

∑
j∈N

⟨fi, ej⟩ej
〉

=
∑
i∈M

∥fi∥2.

Lemma 4.3. Let {fi}i∈M be a K-frame for H. Then, Tr (KK∗) =
∑

i∈M ⟨Kgi, fi⟩,
where {gi} is a K-dual of {fi}.

Proof. Let {gi} be a K-dual of {fi}. We have

Tr (KK∗) =
∑
j∈N

⟨KK∗ej , ej⟩ =
∑
j∈N

〈
K(

∑
i∈M

⟨ejfi⟩gi), ej
〉

=
∑
j∈N

∑
i∈M

⟨ej , fi⟩⟨Kgi, ej⟩ =
∑
i∈M

〈
Kgi,

∑
j∈N

⟨fi, ej⟩ej
〉

=
∑
i∈M

⟨Kgi, fi⟩.

Theorem 4.4. Let {fi}i∈M be a scalable K-frame with scaling sequence {ci}i∈M . Let
s =

∑
i∈M ci

2. Then the following statements hold.
(i) If ∥fi∥ = p for all i, then the other possible scalings are non-negative sequences
{di}i∈M such that

∑
i∈M di

2 = s.

(ii) If vectors of {fi}i∈M are of non-uniform norm then {ci}i∈M is the unique scaling
of {fi}i∈M .

Proof. (i) Since {fi}i∈M is a scalableK-frame with scaling {ci}i∈M , we have {cifi}i∈M

is a Parseval K-frame. Then by Lemma 4.2,

Tr (KK∗) =
∑
i∈M

∥cifi∥2 = p2
∑

|ci|2 = p2
∑
i∈M

c2i .
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This implies that any other scaling {di}i∈M such that {cidi}i∈M is a Parseval K-
frame, should satisfy the condition

∑
i∈M di

2 = s.
(ii) We have, Tr (KK∗) =

∑
i∈M ci

2∥fi∥2. If {di}i∈M is any other scaling so
that {difi}i∈M is a Parseval K-frame, then we get Tr (KK∗) =

∑
i∈M ci

2∥fi∥2 =∑
i∈M di

2∥fi∥2. This implies that ci
2 = di

2 and hence ci = di for all i. Therefore,
{ci}i∈M is the unique scaling of {fi}i∈M . □

Remark 4.5. From part (ii) of Theorem 4.4, it is clear that, if {fi}i∈M is a non-
uniform norm K-frame, then it can have at most one scaling.

Theorem 4.6. Let {fj}j∈J be a scalable K-frame for H. Let F denote the collec-
tion of all scaling sequences of {fj}j∈J . Let F∗ = {d = {dj}j∈J ∈ F : T ∗

d Tc(f) =
T ∗
c Td(f) = KK∗(f) for each c = {cj}j∈J ∈ F}. Thus F∗ is a convex set.

Proof. Let λ, µ ≥ 0 and λ+ µ = 1 and {aj}j∈J , {bj}j∈J ∈ Fa. Consider,∑
|⟨f, (λaj + µbj)fj)⟩|2 =

∑
|⟨f, λajfj⟩+ ⟨f, µbjfj⟩|2

=
∑

|⟨f, λajfj⟩|2 +
∑

|⟨f, µbjfj⟩|2 + 2
∑

Re⟨f, λajfj⟩⟨f, µbjfj⟩

=λ2∥K∗f∥2 + µ2∥K∗f∥2 + 2λµRe⟨f,
∑

⟨f, bjfj⟩ajfj⟩

=λ2∥K∗f∥2 + µ2∥K∗f∥2 + 2λµRe⟨f,KK∗f⟩ = λ2∥K∗f∥2 + µ2∥K∗f∥2 + 2λµ∥K∗f∥2

=(a+ b)2∥K∗f∥2∥ = ∥K∗f∥2.
Thus Fc is a convex set. □

5. Scalability and K-frames in Cn

In this section we deal with K-frames in Cn. We rely on H n×n to analyse the
scalability of K-frames in Cn. We will follow the same setting as in [2]. H n×n is an
n2-dimensional inner product space over R with inner product ⟨P,Q⟩H = Tr (PQ)
and the induced norm ∥P∥2F = ⟨P, P ⟩H ; ∥P∥2F is the Frobenius norm. We start
with a mapping A : Cn → H n×n given by Af = ff∗ where ff∗ is the outer product
of f with its conjugate. Let {fj}j∈M be a K-frame for Cn. Under this setting the
K-frame operator for {fj}j∈M is given by S =

∑
j∈M fjfj

∗.

Theorem 5.1. A K-frame {fj}j∈M in Cn is a scalable K-frame if and only if there
exist non-negative scalars {aj}j∈M such that

∑
j∈M ajfjfj

∗ = KK∗.

Proof. Since {fj}j∈M in Cn is a scalable K-frame, {bjfj}j∈M is a Parseval K-frame
for some collection of non-negative scalars {bj}j∈M , so that

KK∗ =
∑
j∈M

bjfj(bjfj)
∗ =

∑
j∈M

bj
2fjfj

∗ =
∑
j∈M

ajfjfj
∗,

where aj = bj
2.

To prove the converse, suppose {fj}j∈M in Cn is aK-frame such that
∑

j∈M ajfjfj
∗

= KK∗. From Theorem 3.4, it follows that {√ajfj}j∈M is also a K-frame for Cn.
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Therefore,K-frame operator is given by S =
∑

j∈M

√
ajfj(

√
ajfj)

∗ =
∑

j∈M ajfjfj
∗ =

KK∗. Thus, {√ajfj}j∈M is a ParsevalK-frame and hence {fj}j∈M in Cn is a scalable
K-frame. □

Theorem 5.2. Let {fj}j∈M be a K-frame in Cn such that ∥fj∥ = 1 for all j. The
following statements hold.

(i) {fj}j∈M is a scalable K-frame if and only if
KK∗

∥K∗∥2
∈ con{fjfj∗}j∈M .

(ii) If αKK∗ ∈ con{fjfj∗}j∈M , then α =
1

∥K∗∥2
.

(iii) If
∑

j∈M ajfjfj
∗ =

KK∗

∥K∗∥2
then

∑
j∈M aj = 1.

Proof. (i) Suppose that {fj}j∈M is scalable K-frame in Cn. This implies that there
exist {aj}j∈M where aj ≥ 0 for all j such that {ajfj}j∈M is a Parseval K-frame and
its K-frame operator is KK∗ =

∑
j∈M aj

2fjfj
∗. Consider,

∥K∗∥2=⟨K∗,K∗⟩=⟨KK∗, I⟩=⟨
∑
j∈M

aj
2fjfj

∗, In⟩=
∑
j∈M

aj
2⟨fj , fj⟩=

∑
j∈M

aj
2.

Thus,

∑
j∈M aj

2

∥K∗∥2
= 1.

Since aj ≥ 0, for every j ∈ M we get,
∑

j∈M

aj
2

∥K∗∥2
fjfj

∗ ∈ con{fjfj∗}j∈M and thus

KK∗

∥K∗∥2
∈ con{fjfj∗}j∈M .

Conversely, suppose that
KK∗

∥K∗∥2
∈ con{fjfj∗}j∈M . This implies,

KK∗

∥K∗∥2
=∑

j∈M ajfjfj
∗, where

∑
j∈M aj = 1, aj ≥ 0 and we get

KK∗ =
∑
j∈M

(
√
aj∥K∗∥)2fjfj∗ =

∑
j∈M

(
√
aj∥K∗∥fj)(

√
aj∥K∗∥fj)∗.

Therefore, {√aj∥K∗∥fj}j∈M is a K-frame with KK∗ as frame operator and hence
{√aj∥K∗∥fj}j∈M is Parseval. This implies {fj}j∈M is a scalable K-frame.

(ii) Now suppose αKK∗ ∈ con{fjfj∗}j∈M , then αKK∗ =
∑

j∈M ajfjfj
∗ and∑

j∈M aj = 1; aj ≥ 0. Then we have

α∥K∗∥2=⟨αK∗,K∗⟩=⟨αKK∗, In⟩=⟨
∑
j∈M

ajfjfj
∗, In⟩=

∑
j∈M

aj = 1, and α =
1

∥K∗∥2
.

(iii) Suppose
∑

j∈M ajfjfj
∗ =

KK∗

∥K∗∥2
. Then,

∥K∗∥2 = ⟨K∗,K∗⟩ = ⟨KK∗, In⟩ = ⟨∥K∗∥2
∑
j∈M

ajfjfj
∗, Id⟩

= ∥K∗∥2
∑
j∈M

aj⟨fjfj∗, Id⟩ = ∥K∗∥2
∑
j∈M

aj .
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This implies
∑

j∈M aj = 1. □

Theorem 5.3. Let {fj}j∈M be a scalable K-frame in Cn with ∥fj∥ = 1 for all j.
Then M has a subset N such that {fj}j∈N is scalable and {fjfj∗}j∈N is linearly
independent.

Proof. Using Theorem 5.2, we get,
KK∗

∥K∗∥2
∈ con{fjfj∗}j∈M . From Theorem 2.6

and Theorem 2.7, it follows that there exists a subset J ⊆ M such that
KK∗

∥K∗∥2
∈

con{fjfj∗}j∈J . and {fjfj∗}j∈J is linearly independent. □

Acknowledgement. The first author acknowledges the financial support of Uni-
versity Grants Commission.

References

[1] P. Balazs, J. P. Antoine, A. Grybos, Wighted and Controlled Frames, Int. J. Wavelets Mul-
tiresolut. Inf. Process, 8(1) (2010), 109–132.

[2] J. Cahill, X. Chen, A note on scalable frames, arXiv preprint arXiv:1301.7292. (2013).

[3] P. Casazza, G. Kutyniok, (Eds.) Finite Frames: Theory and Applications., Springer Science
& Business Media, 2012.

[4] O. Christensen, An introduction to frames and Riesz bases, Brikhauser, 2003.

[5] L. Gavruta. Frames for operators, Appl. Comput. Harmon. Anal., 32 (2012), 139–144.

[6] G. Kutyniok, K. Okoudjou, F. Philipp, E. Tuley. Scalable Frames, Linear Algebra Appl.,
438(5) (2013), 2225–2238.

[7] D. Li, J. Leng, T. Huang, On sum and stability of g-frames in Hilbert spaces, Linear Multilinear
Algebra, 66(8) (2018), 1578–1592.

[8] S. Ramesan, K. T. Ravindran, Some results on K-frames, Ital. J. Pure Appl. Math., 43 (2020),
583–589.

[9] G. Ramu, P. S. Johnson, Frame operators of K-frames, SeMA Journal, 73(2) (2016), 171–181.

(received 29.09.2021; in revised form 17.06.2022; available online 27.1.2023)

Department of Mathematics, Payyanur College, Payyanur, Kerala , India

E-mail: sithara127@gmail.com

Former Principal, Payyanur College, Payyanur, Kerala, India

E-mail: drktravindran@gmail.com


	Introduction
	Preliminaries
	Scalable K-frames
	Scaling sequences-finite K-frames
	Scalability and K-frames in Cn

