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Abstract. In this paper, we use the notions of lower set LR(A) and the upper set UR(A)
to define the interior operator intAR and the closure operator clAR associated with a set A in an
approximation space (X,R). These operators generate an approximation topological space
different from the generated Nano topological space in (X,R). Ideal approximation spaces
(X,R, ℓ) based on an ideal ℓ joined to the approximation space (X,R) are introduced as well.
The approximation continuity and the ideal approximation continuity are defined. The lower
separation axioms Ti, i = 0, 1, 2 are introduced in the approximation spaces and also in the
ideal approximation spaces. Examples are given to explain the definitions. Connectedness
in approximation spaces and ideal connectedness are introduced and the differences between
them are explained. The interior and the closure operators are deduced using a grill G defined
on (X,R), yielding the same results.

1. Introduction

Rough sets were defined by Pawlak in an approximation space [5] as an extension of set
theory and refer to the uncertainty of intelligent systems characterized by insufficient
and incomplete information. Basically, rough sets are defined as a function of an
equivalence relation R defined on a universal finite set X, which is considered as the
main concept for the lower and upper approximation of a subset A ⊆ X. The pair
(X,R) was called an approximation space based on an equivalence relation on X.
Many kinds of generalizations of Pawlak’s rough set were obtained by replacing the
equivalence relation with an arbitrary binary relation. On the other hand, relations
between rough sets and topological spaces were studied by many authors [6, 7]. It
was proved that the lower and upper approximation operators derived by a reflexive
and transitive relation were exactly the interior and closure operators in a topology.
Many research works were introduced for the ordinary case with rough sets with some
medical applications as in [2, 3].
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236 Approximation spaces via ideals and grills

L. Thivagar et. al. introduced in [8] a nano topological space with respect to a
subset A of X defined by lower and upper approximations of A. Recently, many
researchers have used topological approaches in the study of rough sets and their
applications.

In this paper, we introduce a new generalization of rough sets based on an equiv-
alence relation R over the notion of a coset of an element x in the approximation
space (X,R). The definition of an ideal ℓ on the approximation space led to new
definitions of rough sets in the ideal approximation spaces (X,R, ℓ). We introduce
the interior and closure operators based on the ideal ℓ and the lattice G (the dual con-
cept), but neither generate a topological space and have no relation to the associated
nano topological space. Approximation continuity and ideal approximation continuity
are introduced, and examples are given to show the differences. Ideal open and ideal
closed sets are also given. The lower separation axioms Ti, i = 0, 1, 2 are introduced in
the approximation spaces and also in the ideal approximation spaces. Examples are
given to explain the definitions. The notion of approximation connectedness and ideal
approximation connectedness are defined. The implications are proved by examples.

In the course of the paper, let X be a finite set of objects as a universal set, let
2X denote all subsets of X, and let R be an equivalence relation on X. Then let the
pair (X,R) be an approximation space. The coset [x] of an element x ∈ X is given by
[x](y) = R(x, y), ∀y ∈ X. For a set K ⊆ X, the lower (LR(K)), the upper (UR(K)),
and the boundary region BR(K) are approximation sets defined as follows (see [8]):

LR(K) =
⋃
x∈X

{[x] : [x] ⊆ K},

UR(K) =
⋃
x∈X

{[x] : [x] ∩K ̸= ϕ}, BR(K) = UR(K)− LR(K).

LR(A), UR(A) and BR(A) are then called lower, upper and boundary region approx-
imation sets associated with the set A in 2X and based on the equivalence relation R
in an approximation space (X,R).

Lemma 1.1 ([8]). For any sets A,B ∈ 2X we get that:

(i) LR(A) ⊆ A ⊆ UR(A),

(ii) LR(ϕ) = UR(ϕ) = ϕ and LR(X) = UR(X) = X,

(iii) LR(A ∩B) = LR(A) ∩ LR(B) and UR(A ∪B) = UR(A) ∪ UR(B),

(iv) A ⊆ B implies that LR(A) ⊆ LR(B) and UR(A) ⊆ UR(B),

(v) UR(A ∩B) ⊆ UR(A) ∩ UR(B) and LR(A ∪B) ⊇ LR(A) ∪ LR(B),

(vi) (UR(A))c = LR(A
c) and (LR(A))c = UR(A

c),

(vii) UR(LR(A)) ⊇ LR(LR(A)) = LR(A),

(viii) LR(UR(A)) ⊆ UR(UR(A)) = UR(A).

Definition 1.2. Associated with A ⊆ X in an approximation space (X,R), the
interior operator intAR : 2X → 2X is given as follows:

intAR(B) = LR(A) ∩ LR(B) ∀ B ̸= X and intAR(X) = X.
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Also, the closure operator clAR : 2X → 2X is given as follows:

clAR(B) = (LR(A))c ∪ UR(B) ∀ B ̸= ϕ and clAR(ϕ) = ϕ.

The proof of the following lemma is easy with the help of Lemma 1.1.

Lemma 1.3. (i) intAR(ϕ) = clAR(ϕ) = ϕ, intAR(X) = clAR(X) = X,

(ii) intAR(B) ⊆ B ⊆ clAR(B)∀B ∈ 2X ,

(iii) B ⊆ C =⇒ intAR(B) ⊆ intAR(C), clAR(B) ⊆ clAR(C)∀B,C ∈ 2X ,

(iv) intAR(B∩C) = intAR(B)∩intAR(C), intAR(B∪C) ⊇ intAR(B)∪intAR(C) ∀B,C ∈ 2X ,

(v) clAR(B ∩ C) ⊆ clAR(B) ∩ clAR(C), clAR(B ∪ C) = clAR(B) ∪ clAR(C) ∀B,C ∈ 2X ,

(vi) intAR(int
A
R(B)) = intAR(B) ∀B ∈ 2X ,

(vii) clAR(cl
A
R(B)) = clAR(B) ∀B ∈ 2X .

Hence, these operators generate a topology in the approximation space defined by

TA
R ={B ∈ 2X : B = intAR(B)} or (1)

TA
R ={B ∈ 2X : Bc = clAR(B

c)}.
Note that clAR(UR(B)) = clAR(B), intAR(LR(B)) = intAR(B),∀B ∈ 2X , (2)

and moreover, intAR(B
c) = (clAR(B))c, clAR(B

c) = (intAR(B))c, ∀B ∈ 2X .
A nano topology τA was defined in (X,R) as τA = {ϕ,X,LR(A), UR(A), BR(A)}

(see [8]). There is no relation between the nano topology τA constructed on X and
the approximation topology TA

R generated by the interior operator as in (1). In
Example 2.8, we get a nano open set but not in TA

R , and in Example 2.13 we get a
set in TA

R but not nano open set.

2. Ideal approximation spaces

A non-empty collection ℓ of subsets of a non-empty set X is said to be an ideal [4] on
X if it satisfies the following conditions:
(i) If A ⊆ B and B ∈ ℓ, then A ∈ ℓ for all A,B ∈ 2X .

(ii) If A ∈ ℓ and B ∈ ℓ, then (A ∪B) ∈ ℓ for all A,B ∈ 2X .
In order to exclude the trivial case where the ideal coincides with the set of all subsets
of X, it is generally assumed that X /∈ ℓ. In this case, ℓ is called a proper ideal on X.

The triple (X,R, ℓ) is called an ideal approximation space. Since ℓ is a non-empty
collection, then the coarsest ideal is ℓ = {ϕ}.

Definition 2.1. Let (X,R, ℓ) be an ideal approximation space and A ∈ 2X . Then,
the local set ΦA(B)(R, ℓ) of a set B ∈ 2X with respect to A is defined by:

ΦA(B)(R, ℓ) =
⋂

{G ∈ 2X : (B −G) ∈ ℓ, clAR(G) = G}.
For short, we will write ΦA(B) or ΦA(B)(ℓ) instead of ΦA(B)(R, ℓ).
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Corollary 2.2. Let (X,R, ℓ◦) be an ideal approximation space, A ∈ 2X where ℓ◦ is
the trivial ideal {ϕ} on X. Then, for each B ∈ 2X , we have ΦA(B) = clAR(B).

Proof. Since B ⊆ clAR(B), clAR(cl
A
R(B)) = clAR(B), then ΦA(B) ⊆ ΦA(cl

A
R(B)) = clAR(B)

from the definition of the operator ΦA.
If ℓ◦ = {ϕ}, then ΦA(B) =

⋂
{K ∈ 2X : B − K = ϕ, clAR(K) = K}, that is,

ΦA(B) =
⋂
{K ∈ 2X : B ⊆ K, clAR(K) = K}.

Now, we show that in case of ℓ = {ϕ}, we have ΦA(B) = clAR(K), and thus we
need to prove that ΦA(B) ⊇ clAR(B). If we supposed that clAR(B) ̸⊆ K = ΦA(B),
then B ⊆ K, clAR(K) = K so that clAR(B) ̸⊆ K. But B ⊆ K, clAR(K) = K implies that
clAR(B) ⊆ clAR(K) = K, which is a contradiction. Hence, ΦA(B) = clAR(B). □

For any H ∈ ℓ and ℓ an ideal on X in the approximation space (X,R), we get,
from the definition of the operator ΦA(G) for any G ⊆ X, that ΦA(H) = ϕ.

Let (X,R, ℓ) be an ideal approximation space associated with A ∈ 2X and ℓ an
ideal on X. Then, for each G,H ∈ 2X : Since B ⊆ clAR(B), clAR(cl

A
R(B)) = clAR(B),

then ΦA(B) ⊆ ΦA(cl
A
R(B)) = clAR(B) from the definition of the operator ΦA.

If ℓ◦ = {ϕ}, then ΦA(B) =
⋂
{K ∈ 2X : B − K = ϕ, clAR(K) = K}, that is,

ΦA(B) =
⋂
{K ∈ 2X : B ⊆ K, clAR(K) = K}.

Now, we show that in case of ℓ = {ϕ}, we have ΦA(B) = clAR(K), and thus we need
to prove that ΦA(B) ⊇ clAR(B). If we supposed that clAR(B) ̸⊆ K = ΦA(B), then
B ⊆ K, clAR(K) = K so that clAR(B) ̸⊆ K. But B ⊆ K, clAR(K) = K implies that
clAR(B) ⊆ clAR(K) = K, which is a contradiction. Hence, ΦA(B) = clAR(B).

Proposition 2.3. (i) G ⊆ H implies ΦA(G) ⊆ ΦA(H).

(ii) If ℓ ⊆ ℓ∗ and ℓ∗ is an ideal on X, then ΦA(G)(ℓ) ⊇ ΦA(G)(ℓ∗).

(iii) intAR(ΦA(G)) ⊆ ΦA(G) = clAR(ΦA(G)) ⊆ clAR(G).

(iv) ΦA(G) = ΦA(ΦA(G)).

(v) ΦA(G) ∪ ΦA(H) = ΦA(G ∪H).

(vi) ΦA(G) ∩ ΦA(H) ⊇ ΦA(G ∩H).

Proof. (i) Suppose that ΦA(G) ̸⊆ ΦA(H); then there exists W ∈ 2X with H −W ∈ ℓ
and clAR(W ) = W such that ΦA(G) ̸⊆ W . Since G ⊆ H, then G−W ⊆ H −W and
then G − W ∈ ℓ, clAR(W ) = W . Thus, ΦA(G) ⊆ W , which is a contradiction and
hence ΦA(G) ⊆ ΦA(H).

(ii) Let H ∈ 2X be such that G − H ∈ ℓ∗, clAR(H) = H. Since ℓ ⊆ ℓ∗, then
G −H ∈ ℓ, clAR(H) = H. Hence, from the definition of the operator ΦA(K) for any
K ∈ 2X , we get that ΦA(G)(ℓ) ⊇ ΦA(G)(ℓ∗).

(iii) intAR(ΦA(G)) ⊆ ΦA(G) = clAR(ΦA(G)), directly. Since ΦA(G) ⊆ clAR(G), then
ΦA(G) = clAR(ΦA(G)) ⊆ clAR(G).

(iv) ΦA(ΦA(G)) ⊆ clAR(ΦA(G)) is clear.
Let ΦA(ΦA(G)) = K, that is, ΦA(G) − K ∈ ℓ, clAR(K) = K. Suppose that

ΦA(G) = H ̸⊆ K = ΦA(ΦA(G)). Then, G −H ∈ ℓ, clAR(H) = H, which means that
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H −K ∈ ℓ and G−H ∈ ℓ, and then G−K ⊆ (G−H) ∪ (H −K) ∈ ℓ, clAR(K) = K,
and thus ΦA(G) = H ⊆ K, which is a contradiction. So, ΦA(G) ⊆ ΦA(ΦA(G)).

From (iii), we have ΦA(ΦA(G)) = clAR(ΦA(ΦA(G))) ⊆ clAR(ΦA(G)) = ΦA(G).
Hence, ΦA(ΦA(G)) = clAR(ΦA(ΦA(G))) ⊆ clAR(ΦA(G)) = ΦA(G). Thus, ΦA(G) =
ΦA(ΦA(G)).

(v) From (i), ΦA(G) ⊆ ΦA(G∪H), ΦA(H) ⊆ ΦA(G∪H). Hence, ΦA(G)∪ΦA(H) ⊆
ΦA(G ∪H).

Now, suppose that ΦA(G)∪ΦA(H) ̸⊇ ΦA(G∪H), then there exist B,W ⊆ X such
that G − B ∈ ℓ, H −W ∈ ℓ, clAR(B) = B, clAR(W ) = W with B ∪W ̸⊇ ΦA(G ∪H).
But G ∪H − (B ∪W ) ∈ ℓ, and clAR(B ∪W ) = B ∪W . Hence, ΦA(G ∪H) ⊇ B ∪W ,
which is a contradiction, and thus ΦA(G) ∪ ΦA(H) = ΦA(G ∪H).

(vi) Obvious. □

Definition 2.4. Let (X,R, ℓ) be an ideal approximation space and A ∈ 2X . Then,
for any G ⊆ X, define the operators clAΦ, int

A
Φ : 2X → 2X as follows:

(clAΦ)(G) = clAR(G) ∪ ΦA(UR(A)), (intAΦ)(G) = intAR(G) ∩ (ΦA(UR(A)))c, ∀G ∈ 2X .

clAΦ and intAΦ are operators from 2X into 2X associated with a specific set A and an
ideal ℓ in the approximation space (X,R).

Now, if ℓ = ℓ◦, then from (2), Corollary 2.2 and Lemma 1.3, (clAΦ)(G) = clAR(G ∪
A) ⊇ clAR(G) = ΦA(G) = clAR(ΦA(G)) and (intAΦ)(G) = intAR(G ∩ Ac) ⊆ intAR(G) =
(ΦA(G

c))c = intAR((ΦA(G
c))c)∀G ∈ 2X .

Proposition 2.5. Let (X,R, ℓ) be an ideal approximation space with A ∈ 2X fixed.
(i) (intAΦ)(G) ⊆ intAR(G) ⊆ G ⊆ clAR(G) ⊆ (clAΦ)(G).

(ii) clAΦ(G
c) = ((intAΦ)(G))c and intAΦ(G

c) = ((clAΦ)(G))c.

(iii) intAΦ(G ∪H) ⊇ intAΦ(G) ∪ intAΦ(H), clAΦ(G ∩H) ⊆ clAΦ(G) ∩ clAΦ(H).

(iv) intAΦ(G ∩H) = intAΦ(G) ∩ intAΦ(H), clAΦ(G ∪H) = clAΦ(G) ∪ clAΦ(H).

(v) clAΦ(cl
A
Φ(G)) ⊇ (clAΦ)(G) and intAΦ(int

A
Φ(G)) ⊆ (intAΦ)(G).

(vi) If G ⊆ H, then △(G) ⊆ △(H) for all △ ∈ {clAΦ, intAΦ}.

These ideal approximation operators clAΦ, int
A
Φ do not generate a topology on X.

In order to define separation axioms in the approximation spaces, we found that
for any x /∈ A, G ∈ 2X cannot be found such that x ∈ intAR(G) because intAR(G) =
LR(G) ∩ LR(A) ⊆ A. Thus, in defining the separation axioms, we will rely only on
the elements of A.

Definition 2.6. Let (X,R, ℓ) be an ideal approximation space and A ∈ 2X . Then:

(i) An ideal approximation space (X,R, ℓ) (resp. an approximation space (X,R))
is called an ideal-T0 (resp. T0) if for every x ̸= y ∈ A, there exists G ⊆ X with
x ∈ intAΦ(G) (resp. x ∈ intAR(G)) such that y /∈ G or there exists H ⊆ X with
y ∈ intAΦ(H) (resp. y ∈ intAR(H)) such that x /∈ H.
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(ii) An ideal approximation space (X,R, ℓ) (resp. an approximation space (X,R))
is called an ideal-T1 (resp. T1) if for every x ̸= y ∈ A, there exist G,H ⊆ X with
x ∈ intAΦ(G), y ∈ intAΦ(H) (resp. x ∈ intAR(G), y ∈ intAR(H)) such that y /∈ G and
x /∈ H.

(iii) An ideal approximation space (X,R, ℓ) (resp. an approximation space (X,R))
is called an ideal-T2 (resp. T2) if for every x ̸= y ∈ A, there exist G,H ⊆ X with
x ∈ intAΦ(G), y ∈ intAΦ(H) (resp. x ∈ intAR(G), y ∈ intAR(H)) such that G ∩H = ϕ.

Remark 2.7. It is clear from intAΦ ⊆ intAR that:

ideal-T2

��

// ideal-T1

��

// ideal-T0

��
T2

// T1
// T0

Example 2.8. Let X = {a, b, c}, X|R = {{a}, {b, c}}, A = {a, b}. Then, LR(A) =
{a}, UR(A) = X, (LR(A))c = {b, c}. That is, LR({a}) = LR({a, b}) = LR({a, c}) =
{a}, LR({b, c}) = {b, c} and LR({b}) = LR({c}) = ϕ. Hence, for a ̸= b ∈ A, we see
that (X,R) is T0 but not T1 or T2 approximation space.

Now, the subsets satisfying clAR(K) ≡ UR(K)∪(LR(A))c = K are only ϕ,X, {b, c}.
If we suppose the ideal ℓ is given by ℓ = {ϕ, {b}}, then ΦA(UR(A)) = ΦA(X) = X.
Hence, (intAΦ)(K) = intAR(K) ∩ (ϕA(UR(A)))c = ϕ for any subset K ⊆ X. Thus,
(X,R, ℓ) is not ideal-Ti, for all i = 0, 1, 2.

If we suppose the ideal ℓ is given by ℓ = {ϕ, {a}}, then ΦA(UR(A)) = ΦA(X) =
{b, c}. Hence, (intAΦ)(K) = intAR(K) ∩ (ϕA(UR(A)))c = {a} for any subset K ∈
{{a}, {a, b}, {a, c}}. That means for any a ̸= b ∈ A, we have (intAΦ)(K) = intAR(K) =
{a}, and moreover (X,R, ℓ) is an ideal-T0 but not ideal-T1 or ideal-T2.

Here, the nano topology associated with A is given by τA = {ϕ,X, {a}, {b, c}}, and
thus for any a ̸= b ∈ A, we get disjoint nano open sets, and moreover (X, τA) is a nano
Ti-space; i = 0, 1, 2. Note that {b, c} is a nano open set but intAR({b, c}) = ϕ ̸= {b, c}.

Recall that a mapping f : (X,R) → (Y,R∗) is said to be approximation con-
tinuous (App-cont.) if intAR(f

−1(H)) ⊇ f−1(intBR∗(H)), ∀H ⊆ Y . It is equivalent
to clAR(f

−1(H)) ⊆ f−1(clBR∗(H)), ∀H ⊆ Y . Now with respect to A ⊆ X and
B ⊆ Y , let us call a mapping f : (X,R) → (Y,R∗, ℓ) ideal approximation contin-
uous (ideal App-cont.) provided that intAΦ(f

−1(H)) ⊇ f−1(intBR∗(H)), ∀H ⊆ Y .
It is easily shown that it is equivalent to clAΦ(f

−1(H)) ⊆ f−1(clBR∗(H)), ∀H ⊆ Y .
Also, let us call f : (X,R) → (Y,R∗) approximation open (App-open) provided that
intBR∗(f(G)) ⊇ f(intAR(G)), ∀G ⊆ X,

f : (X,R, ℓ) → (Y,R∗) is ideal approximation open (ideal App-open) provided
that intBΦ (f(G)) ⊇ f(intAR(G)), ∀G ⊆ X.

Clearly, every ideal approximation continuous (resp. ideal approximation open)
mapping is approximation continuous (resp. approximation open) as well (from Propo-
sition 2.5 (i)) but the converse is not true.
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Theorem 2.9. Let (X,R, ℓ), (Y,R∗, ℓ∗) be two ideal approximation spaces associated
with A ⊆ X, B ⊆ Y , respectively and f : (X,R, ℓ) → (Y,R∗, ℓ∗) be an injective ideal
approximation continuous mapping with f(A) = B. Then, X is an ideal Ti-space if
Y is an ideal Ti-space, i = 0, 1, 2.

Proof. Since x ̸= y in A implies that f(x) ̸= f(y) in B, and if Y is an ideal T2-space,
then there exist C = f(G), D = f(K) ∈ 2Y for some G,K ⊆ X with f(x) ∈ intBΦ (C),
f(y) ∈ intBΦ (D) such that C ∩D = ϕ, that is, x ∈ f−1(intBΦ (C)), y ∈ f−1(intBΦ (D)),
and then x ∈ f−1(intBR∗(f(G))), y ∈ f−1(intBR∗(f(K))). Since f is ideal App-cont.,
then x ∈ intAΦ(f

−1(f(G))), y ∈ intAΦ(f
−1(f(K))).

That is, there exist G,K ∈ 2X with x ∈ intAΦ(G), y ∈ intAΦ(K) and G ∩ K =
f−1(C ∩D) = ϕ. Hence, (X,R, ℓ) is an ideal T2-space. Other cases are similar. □

Theorem 2.10. Let (X,R, ℓ), (Y,R∗, ℓ∗) be two ideal approximation spaces associated
with A ⊆ X, B ⊆ Y , respectively and f : (X,R, ℓ) → (Y,R∗, ℓ∗) be a surjective ideal
approximation open mapping with f−1(B) = A. Then, Y is an ideal Ti-space if X is
an ideal Ti-space, i = 0, 1, 2.

Proof. Since p ̸= q in B implies that there are x ∈ f−1(p) and y ∈ f−1(q), f(x) =
p, f(y) = q with x ̸= y in A, and if X is an ideal T2-space, then there exist G =
f−1(C),K = f−1(D) ∈ 2X for some C,D ⊆ Y with x ∈ intAΦ(G), y ∈ intAΦ(K)
such that G ∩ K = ϕ, that is, p ∈ f(intAΦ(G)), q ∈ f(intAΦ(K)), and then p ∈
f(intAR(f

−1(C))), q ∈ f(intAR(f
−1(D))). Since f is ideal App-open, then p ∈ intBΦ (C),

q ∈ intBΦ (D).
That is, there exist C = f(G), D = f(K) with p ∈ intBΦ (C), q ∈ intBΦ (D) and

f−1(C ∩D) = ϕ, f is surjective and thus C ∩D = ϕ. Hence, (Y,R∗, ℓ∗) is an ideal
T2-space. The other cases are similar. □

Definition 2.11. Let (X,R) be an approximation space and A ⊆ X. Then:

(i) Two sets B,C ∈ 2X are called ideal approximation separated (resp. approximation
separated) if clAΦ(B) ∩ C = B ∩ clAΦ(C) = ϕ (resp. clAR(B) ∩ C = B ∩ clAR(C) = ϕ).

(ii) A set G ∈ 2X is called ideal approximation disconnected (resp. approximation
disconnected) set if there exist ideal approximation separated (resp. approximation
separated) sets B,C ∈ 2X such that B ∪ C = G. A set G is called ideal approxima-
tion connected (ideal App-conn.) (resp. approximation connected (App-conn.)) if it
is not ideal approximation disconnected (ideal App-disconn.) (resp. approximation
disconnected (App-disconn.)).

(iii) (X,R, ℓ) is called an ideal approximation disconnected space if there exist ideal
approximation separated sets B,C ∈ 2X , such that B ∪C = X. An ideal approxima-
tion space(X,R, ℓ) is called ideal approximation connected if it is not ideal approxi-
mation disconnected.

(iv) (X,R) is called an approximation disconnected space if there exist approximation
separated sets B,C ∈ 2X such that B ∪ C = X. An approximation space(X,R) is
called approximation connected if it is not approximation disconnected.
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Remark 2.12. Any two ideal approximation separated sets B,C in 2X are approx-
imation separated as well (from that clAR(W ) ⊆ clAΦ(W )∀W ∈ 2X). That is, ideal
approximation disconnectedness implies approximation disconnectedness and thus,
approximation connectedness implies ideal approximation connectedness.

The following is an example proving that not every approximation disconnected
set is an ideal approximation disconnected set.

Example 2.13. LetX = {a, b, c, d, e}, X|R = {{a, b}, {c}, {d, e}} and A = {a, b, d, e}.
Then, LR(A) = UR(A) = {a, b, d, e} and (LR(A))c = {c}.

Let B = {a}, C = {e}, then UR(B) = {a, b}, UR(C) = {d, e}, and then clAR(B) =
UR(B) ∪ (LR(A))c = {a, b, c} and clAR(C) = UR(C) ∪ (LR(A))c = {c, d, e}. Hence,
clAR(B) ∩ C = clAR(C) ∩ B = ϕ, and thus B,C are two approximation separated sets
in X. That is, the subset K = {a, e} is approximation disconnected.

Define an ideal ℓ on X as follows: ℓ = {ϕ, {a}, {c}, {a, c}}. Then, ΦA(UR(A)) =⋂
{H ⊆ X : UR(A) − H ∈ ℓ, clAR(H) = H}, and there are only these subsets {c},

{a, b, c}, {c, d, e}, ϕ, X satisfying clAR(H) = H for any set H equal to some of these
subsets. But from the definition of the ideal, we get that only H = X satisfies the
condition UR(A)−X ∈ ℓ, and thus ΦA(UR(A)) = X. Hence, clAΦ(B) = clAΦ(C) = X,
clAΦ(B) ∩ C ̸= ϕ. Also, clAΦ(C) ∩ B ̸= ϕ. Thus, the subset K = {a, e} is not ideal
separated with the sets B,C, and is not ideal separated at all because we have found
that clAΦ(B) = clAΦ(C) = X.

The nano topology τA is given by τA = {ϕ,X,A}, and hence the nano closed sets
are only {c}, ϕ, X, which means it is impossible to find two separated sets in (X, τA),
which means that (X, τA) is not nano disconnected space.

Note that a set K = {a, b} satisfying K = intAR(K) but K is not nano open set.

Proposition 2.14. Let (X,R, ℓ) be an ideal approximation space associated with A ⊆
X and let B ∈ 2X . Then, the following are equivalent.
(i) B is ideal approximation connected set.

(ii) If C,D are ideal approximation separated sets with B ⊆ (C ∪D), then B∩C = ϕ
or B ∩D = ϕ.

(iii) If C,D are ideal approximation separated sets with B ⊆ (C ∪ D), then B ⊆ C
or B ⊆ D.

Remark 2.15. If ℓ and ℓ∗ are independent ideals on X and Y respectively, then the
mapping f : (X,R, ℓ) → (Y,R∗, ℓ∗) is still not ideal approximation continuous in
general, even if we take f to be a bijective map with respect to A ⊆ X and f(A) ∈ 2Y

and the relations R on X and R∗ on Y where R∗ = R◦(f−1×f−1) = (f×f)(R). This
special case itself could be as an example of an approximation continuous mapping
but which is not ideal approximation continuous in general.

Theorem 2.16. Let (X,R, ℓ), (Y,R∗, ℓ∗) associated with A ⊆ X and B ∈ 2Y , re-
spectively be ideal approximation spaces and f : (X,R, ℓ) → (Y,R∗, ℓ∗) is an ideal
approximation continuous mapping. Then, f(G) ∈ 2Y is an ideal approximation con-
nected set if G is an ideal approximation connected set in X.
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Proof. Let C,D ∈ 2Y be ideal approximation separated sets with f(G) = C ∪ D.
That is, clBΦ (C) ∩ D = clBΦ (D) ∩ C = ϕ, and thus clBR∗(C) ∩ D = clBR∗(D) ∩ C =
ϕ. Then, G ⊆ (f−1(C) ∪ f−1(D)), and from f is ideal approximation continuous,
we get clAΦ(f

−1(C)) ∩ f−1(D) ⊆ f−1(clBR∗(C)) ∩ f−1(D) = f−1(clBR∗(C) ∩ D) =
f−1(ϕ) = ϕ, and similarly, we have clAΦ(f

−1(D))∩f−1(C) ⊆ f−1(clBR∗(D))∩f−1(C) =
f−1(clBR∗(D) ∩ C) = f−1(ϕ) = ϕ.

Hence, f−1(C) and f−1(D) are ideal approximation separated sets in X so that
G ⊆ (f−1(C)∪ f−1(D)). But from Proposition 2.14 (iii), we get that G ⊆ f−1(C) or
G ⊆ f−1(D), which means that f(G) ⊆ C or f(G) ⊆ D. Thus, since G is an ideal
approximation connected set in X, and again from Proposition 2.14 (iii), we get that
f(G) is ideal approximation connected in Y . □

The implications in the following diagram are satisfied whenever f is ideal approx-
imation continuous (ideal App-cont.).

G is App-conn.

�� **

// G is ideal App-conn.

tt ��
f(G) is App-conn. //

f(G) is ideal App-conn.

Just the implications in the following diagram are satisfied whenever f is approx-
imation continuous (App-cont.).

G is App-conn.

�� **

// G is ideal App-conn.

f(G) is App-conn. // f(G) is ideal App-conn.

3. Grill approximation spaces

The idea of Grills on a topological space was firstly introduced by Choquet [1]. The
concept of grills has proved to be a powerful supporting and useful mathematical
tool like nets and filters for a deeper insight into further studying of some topological
notions such as proximity spaces, closure spaces and compactness.

A collection G of 2X is called a grill [1] on X if G satisfies the following conditions:
(i) A ∈ G and A ⊆ B implies that B ∈ G,

(ii) A,B ⊆ X and A ∪B ∈ G implies that A ∈ G or B ∈ G.

Remark 3.1. Let X be a non-empty set and G ⊆ 2X . Then, G is a grill on X iff
ℓ(G) = {B ∈ 2X : B /∈ G} is an ideal on X.
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Conversely, let X be a non-empty set and ℓ ⊆ 2X . Then, ℓ is an ideal on X iff
G(ℓ) = {Bc ∈ 2X : B ∈ ℓ} is a grill on X.

Definition 3.2. Let (X,R) be an approximation space associated with A ∈ 2X and
G a grill on X. Define a mapping ΨA : 2X → 2X as follows ΨA(B) =

⋂
{G ∈ 2X :

B−G /∈ G, clAR(G) = G} for all B ∈ 2X . Then, the mapping ΨA is called the operator
associated with the grill G in the approximation space (X,R) with respect to A ∈ 2X .

If G = 2X − {ϕ} we have that ΨA(G) = clAR(G). The triple (X,R,G) is called a
grill approximation space.

For a grill approximation space (X,R,G) associated with A ∈ 2X , define the
mapping clAΨ : 2X → 2X as follows clAΨ(G) = clAR(G) ∪ΨA(UR(A)), ∀G ∈ 2X .

Also, the mapping intAΨ : 2X → 2X is defined by intAΨ(G) = intAR(G)∩(ΨA(UR(A)))c,
∀G ∈ 2X . Now, if G = 2X − {ϕ}, then

(clAΨ)(G) = clAR(G ∪A) ⊇ clAR(G) = ΨA(G) = clAR(ΨA(G)), and

(intAΨ)(G) = intAR(G ∩Ac) ⊆ intAR(G) = (ΨA(G
c))c = intAR((ΨA(G

c))c) ∀G ∈ 2X .

Definition 3.3. Let (X,R,G) be a grill approximation space associated with A ∈ 2X .
Then,
(i) B ⊆ X is said to be Ψ-open if B ⊆ intAR(ΨA(B)). The complement of a Ψ-open
set is said to be Ψ-closed.

(ii) B ⊆ X is said to be preopen if B ⊆ intAR(cl
A
R(B)). The complement of a preopen

set is said to be preclosed.

(iii) B ⊆ X is said to be G-preopen if B ⊆ intAR(cl
A
Ψ(B)). The complement of a

G-preopen set is said to be G-preclosed.

Lemma 3.4. Let (X,R,G) be a grill approximation space associated with A ∈ 2X .
Then
(i) B ⊆ X is Ψ-closed if B ⊇ ΨA(int

A
R(B)).

(ii) B ⊆ X is preclosed if B ⊇ clAR(int
A
R(B)).

(iii) B ⊆ X is G-preclosed if B ⊇ clAR(int
A
Ψ(B)).

Proof. (i) Suppose that B is Ψ-closed, then we have

Bc ⊆ intAR(ΨA(B
c)) ⊆ intAR(cl

A
R(B

c)) = (clAR(int
A
R(B)))c ⊆ (ΨA(int

A
R(B)))c.

Therefore, ΨA(int
A
R(B)) ⊆ B. □

Clearly, Ψ-open (Ψ-closed) ⇒ preopen (preclosed) ⇒ G-preopen (G-preclosed).

Example 3.5. Let X = {a, b, c, d, e}, X|R = {{a, b}, {c, d}, {e}} and A = {a, b, c}.
Then, LR(A) = {a, b}, UR(A) = {a, b, c, d} and (LR(A))c = {c, d, e}.

Define a grill G on X as follows: G = 2X − {ϕ, {a}, {c}, {a, c}}. Only the subsets
{c, d, e}, ϕ,X satisfy clAR(H) = H, and then ΨA(UR(A)) = X.

For B = {c, d}, then UR(B) = {c, d}, clAR(B) = {c, d, e} and then clAΨ(B) =
clAR(B) ∪ΨA(UR(A)) = X. Hence, B ⊆ intAR(cl

A
Ψ(B)) = intAR(X) = X, and thus B is

a G-preopen set. But B ̸⊆ intAR(cl
A
R(B)) = ϕ, and then B is not a preopen set.
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Example 3.6. Let X = {a, b, c}, X|R = {{a}, {b, c}} and define a grill G as follows
G = {{c}, {a, c}, {b, c}, X}, A = {a, b, d, e}. Then, LR(A) = {a}, UR(A) = {a, c} and
(LR(A))c = {b, c}.

For B = {a, c}, we have UR(B) = X, and then clAR(B) = X and so ΨA(UR(A)) =
ΨA(X) = {b, c}. That is, clAΨ(B) = clAR(B)∪ΨA(UR(A)) = X, andB ⊆ intAR(cl

A
Ψ(B)) =

X, which means that B is a G-preopen set, and moreover B is preopen. But ΨA(B) =
{b, c} and thus B ̸⊆ intAR(ΨA(B)) = LR(ΨA(B)) ∩ LR(A) = {b, c} ∩ {a} = ϕ. Hence,
B is not a Ψ-open set.

Corollary 3.7. Let (X,R) be an approximation space associated with A ∈ 2X .
Then, B ⊆ X is Ψ-open (resp. preopen or G-preopen iff B is Φ-open (resp. preopen
or ℓ-preopen) in (X,R, ℓ) where ℓ = 2X − G.

B is Φ-open if B ⊆ intAR(ΦA(B)) and the complement of Φ-open is Φ-closed. B is
ℓ-preopen if B ⊆ intAR(cl

A
Φ(B)) and the complement of G-preopen is ℓ-preclosed.

Definition 3.8. Let (X,R,G) be a grill approximation space associated with A ∈ 2X .
Then,
(i) A grill approximation space (X,R,G) is said to be grill-T0 if for every x ̸= y ∈ A,
there exists G ⊆ X with x ∈ intAΨ(G) such that y /∈ G or there exists H ⊆ X with
y ∈ intAΨ(H) such that x /∈ H.

(ii) A grill approximation space (X,R,G) is said to be grill-T1 if for every x ̸= y ∈ A,
there exist G,H ⊆ X with x ∈ intAΨ(G), y ∈ intAΦ(H) such that y /∈ G and x /∈ H.

(iii) A grill approximation space (X,R,G) is said to be grill-T2 if for every x ̸= y ∈ A,
there exist G,H ⊆ X with x ∈ intAΨ(G), y ∈ intAΨ(H) such that G ∩H = ϕ.

Definition 3.9. Let (X,R,G) be a grill approximation space associated with A ∈ 2X .
Then,
(i) Two sets B,C ∈ 2X are said to be grill approximation separated if clAΨ(B) ∩ C =
B ∩ clAΨ(C) = ϕ.

(ii) A set G ∈ 2X is said to be grill approximation disconnected if there exist grill
approximation separated sets B,C ∈ 2X such that B ∪ C = G. A set G is said to
be grill approximation connected (grill App-conn.) if it is not grill approximation
disconnected (grill App-disconn.).

(iii) (X,R,G) is called a grill approximation disconnected space if there exist grill
approximation separated sets B,C ∈ 2X , such that B∪C = X. A grill approximation
space(X,R,G) is called grill approximation connected if it is not grill approximation
disconnected.

Remark 3.10. Any two grill approximation separated sets B,C ⊆ X are separated
approximation sets as well (from that clAR(G) ⊆ clAΨ(G), ∀G ∈ 2X). That is, grill
approximation disconnectedness implies approximation disconnectedness, and thus
approximation connectedness implies grill approximation connectedness.

Corollary 3.11. (X,R,G) with respect to A ∈ 2X is a grill-Ti approximation space
(i = 0, 1, 2) and grill approximation connected iff (X,R, ℓ) with respect to A ∈ 2X is
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ideal-Ti approximation space (i = 0, 1, 2) and ideal approximation connected, respec-
tively. Take ℓ = 2X − G, G = 2X − ℓ.
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