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COUPON COLLECTOR PROBLEM WITH PENALTY COUPON

Bojana Todić

Abstract. In this paper we consider a generalization of the coupon collector problem
where we assume that the set of available coupons consists of standard coupons and an addi-
tional penalty coupon, which does not belong to the collection and interferes with collecting
standard coupons. Applying Markov chain approach the following problem is solved: how
many coupons (on average) one has to purchase in order to complete a collection without
interference or to collect n more penalty coupons than standard coupons. Also, we obtain ad-
ditional results related to the distribution of the waiting time until the collection is sampled
without interference or until n more penalty coupons than standard coupons is sampled.

1. Introduction

The classical coupon collector problem (CCCP) belongs to the family of urn problems,
together with the birthday problem and the occupancy problem. Formally, the coupon
collector problem (CCP) can be defined as follows: Consider a person (collector) who
collects different types of coupons from the finite set Nn = {1, 2, . . . n}, where each
coupon can be drawn with a certain probability. The CCP consists of determining
the distribution or expected value of the number of coupons that must be drawn with
replacement until the collector obtains a complete collection of coupons.

The CCP has been treated in several papers since the 1960s. The waiting time to
complete a collection with unequal probabilities was first determined in [10] and the
waiting time to complete two collections of coupons in the same case was calculated
in [8]. In the 1990s, several authors made further contributions to this classical
combinatorial problem (see, e.g. [2, 5]).

There are several generalizations of CCP, and some of them are based on the idea
of introducing one or more additional coupons (apart from the original collection) with
a specific purpose. One of these generalizations is the CCP with a null coupon, i.e., a
coupon that never belongs to the collection. A group of authors first determined the
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16 Coupon collector problem with penalty coupon

distribution and the expectation of the waiting time until a given portion of coupons is
collected (see [1,2]). In [7], we consider a variant of the CCP that introduces a bonus,
where once a collector receives one of the bonus coupons, he immediately collects
another coupon. In [11], coupons are assumed to have more than one purpose, and
it is shown how the expected number of coupons to be drawn can be determined by
enumerating transversals of hypergraphs where coupons can be drawn either with or
without replacement.

In this work, we consider the following generalization of CCP: suppose that, in
addition to elements from the set Nn, the set contains a penalty coupon that is not
part of the collection and interferes with the collection of standard coupons. Thus, we
have an expanded set of available coupons N⋄

n = {1, 2, . . . , n, ⋄}, where ⋄ denotes the
penalty coupon. Suppose that sampling with replacement occurs, that a particular
coupon is drawn with probability p⋄ < 1, and that each coupon k ∈ Nn is drawn
with probability p = 1−p⋄

n . We call this version of the problem the coupon-collector
problem with penalty coupon and refer to it as CCPPC in the remainder of this paper.

Let Wn be the waiting time until n elements of Nn are sampled without inter-
ference, or until m ≤ n elements of Nn (called standard coupons) are sampled, and
m+n penalty coupons are sampled. Thus, the random variable Wn can be defined as

Wn = min{t ≥ 0 : |Yt − Zt| = n}, (1)

where Yt is the number of different types of standard coupons obtained after drawing
t coupons, and Zt is the number of penalty coupons obtained after drawing t coupons.

The structure of this paper is as follows. In Section 2 we explain how CCPPC fits
into the Markov chain approach. Exact formulas for the expectation and variance of
the waiting time Wn are obtained in Section 3. In Section 4 we use the Markov chain
approach to obtain additional results related to the waiting time Wn. The relation-
ship between this variant of CCP and the random walk (gambler’s ruin problem) is
explained in Section 5. A numerical example is given in Section 6, and the conclusion
is found in Section 7.

2. Markov chain approach

The Markov chain approach has already been successfully applied to the CCP (see [4])
and to several variants of this problem.

Consider the two-dimensional discrete-time Markov chain {Xt, t ∈ N} defined as
Xt = (Yt, Zt), where Yt is the number of different types of standard coupons obtained
after drawing t coupons, and Zt is the number of penalty coupons obtained after
drawing t coupons. In this case, the state space is

S = {T0, T1, . . . , T2n−1, A},
where T0 = {(0, 0), . . . , (n− 1, 0)}, |T0| = n

Ti = {(0, i), . . . , (n, i)}, |Ti| = n+ 1 i ∈ {1, 2, . . . n− 1}
Ti = {(i− n+ 1, i), . . . , (n, i)}, |Ti| = 2n− i i ∈ {n, n+ 1, . . . 2n− 1}
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are sets of transient states and

A = {(n, 0), (0, n), (1, n+ 1) . . . (n, 2n)}

is the set of absorbing states. Therefore, |S| = 3n2+3n−2
2 + n + 2. Now we introduce

some notations. In the rest of the paper, we denote by I the identity matrix and by
0 the matrix with all entries equal to 0.

The transition probability matrix for one step of the considered Markov chain is

P =

(
Q∗

3n2+3n−2
2 × 3n2+3n−2

2

R 3n2+3n−2
2 ×(n+2)

0
(n+2)× 3n2+3n−2

2

In+2

)
,

where the matrix Q∗ describes transitions between transient states and has the fol-
lowing form:

Q∗ =



T0 T1 T2 . . . Tn−1 Tn Tn+1 . . . T2n−1

T0 A
(0)
n−1 p⋄In 0 . . . 0 0 0 . . . 0

T1 0 A
(0)
n p⋄In+1 . . . 0 0 0 . . . 0

T2 0 0 A
(0)
n . . . 0 0 0 . . . 0

...
...

...
...

...
...

...
...

Tn−1 0 0 0 . . . A
(0)
n p⋄In 0 . . . 0

Tn 0 0 0 . . . 0 A
(1)
n Bn . . . 0

Tn+1 0 0 0 . . . 0 0 A
(2)
n . . . 0

...
...

...
...

...
...

...
...

T2n−1 0 0 0 . . . 0 0 0 . . . A
(n)
n



.

Matrix A
(l)
k , k ∈ {0, 1, . . . , n}, l ∈ {0, 1, . . . k} describes transitions between sets of

states Ti, i ∈ {1, 2, . . . , 2n− 1} and has the form:

A
(l)
k =



lp 1−p⋄−pl 0 . . . 0 0
0 (l+1)p 1−p⋄−(l+1)p . . . 0 0
0 0 (l+2)p . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . (k−1)p 1−p⋄−(k−1)p
0 0 0 . . . 0 kp


(k+1−l)×(k+1−l)

.

Matrix Bk, k ∈ {2, . . . , n} describes transitions from sets of states Ti to sets of
states Ti+1, i ∈ {n, n+ 1, . . . 2n− 1} and has the form:

Bk =

(
01×(k−1)

p⋄I(k−1)

)
k×(k−1)

.

Matrix R is related to transitions from transient to absorbing states, and has the
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form:

R =


R0

0(n2−n−2)×(n+2)

R1

...
Rn+1


3n2+3n−2

2 ×(n+2)

, (2)

where R0 =

(
0(n−1)×1 0(n−1)×(n+1)

p 01×(n+1)

)
,

Rk =

(
01×k p⋄ 01×(n+1−k)

0(n+1−k)×k 0(n+1−k)×1 0(n+1−k)×(n+1−k)

)
, 1 ≤ k ≤ n+ 1.

3. Properties of the waiting time Wn

In this section we obtain expressions for the distribution function and the first and
second moments of the waiting time Wn and analyze their properties.

Theorem 3.1. For 0 < p⋄ < 1, the following relations hold for the waiting time Wn:

P{Wn > t}=
n−1∑
k=0

(−1)n−k−1

(
n

k

)(
k(1−p⋄)

n

)t

+

n−1∑
i=0

(
t

n+i

)
pn+i
⋄ (1−p⋄)

t−n−i

−
n−1∑
i=0

i∑
k=0

(−1)i−k

(
n−k−1

n−i−1

)(
n

k

)(
k

n

)t−i−n(
t

n+i

)
pn+i
⋄ (1−p⋄)

t−n−i,

(3)

E(Wn)=
1

p⋄

(
n+1−

Γ(n+1)Γ
(
1
α+1

)
Γ
(
n+ 1

α+1
) −

n∑
k=1

(
n

k

)
(kα)

k−1

(1+kα)
2n

)
, (4)

E(W 2
n)=

1

p⋄

Γ(n+1)Γ
(
1
α+1

)
Γ
(
n+ 1

α+1
) − 2

p2⋄

Γ(n+1)Γ
(
1
α+1

)
Γ
(
n+ 1

α+1
) n∑

k=1

1

αk+1

+
2

p2⋄

(
3

2
n2+

1

2
n−1

2
np⋄+1−1

2
p⋄

)
+

(
2(2n+1)− 2

p2⋄α
− 1

p⋄

) n∑
k=1

(
n

k

)
(kα)k−1

(1+kα)2n+1

+
2

p2⋄

n∑
k=1

(
n

k

)
(kα)k−2

(1+kα)2n+1
−
(

1

p⋄
+
2

α

) n∑
k=1

(
n

k

)
(kα)k

(1+kα)2n+1
, (5)

where α = 1−p⋄
np⋄

and Γ(·) denotes the gamma function.

Proof. The statement (3) follows from the representation (1) and the following relations:

P{Wn > t}=P{|Yt−Zt| < n}
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=P{|Yt−Zt| < n|Zt=0}P{Zt=0}+
n−1∑
i=0

P{|Yt−Zt| < n|Zt=n+i}P{Zt=n+i}

=P{Yt < n|Zt=0}P{Zt=0}+
n−1∑
i=0

P{Yt ≥ +1|Zt=n+i}P{Zt=n+i}

=

n−1∑
k=0

(−1)n−k−1

(
n

k

)(
k(1−p⋄)

n

)t

+

n−1∑
i=0

(
1−

i∑
k=0

(−1)i−k

(
n−k−1

n−i−1

)(
n

k

)(
k

n

)t−i−n
)(

t

n+i

)
pn+i
⋄ (1−p⋄)

t−n−i.

The last line follows from [2, Theorem 1]. Using notation introduced in [2], we have
that P{Yt < u|Zt=v}=P{Tu,n(p) > t−v}, where p=

(
1
n , . . . ,

1
n

)
.

The first moment of Wn is:

E(Wn)=
∑
t≥0

P{Wn > t}

=

n−1∑
k=0

(−1)n−k−1

(
n

k

)∑
t≥0

(
k(1−p⋄)

n

)t

+

n−1∑
i=0

∑
t≥0

(
t

n+i

)
pn+i
⋄ (1−p⋄)

t−n−i

−
n−1∑
i=0

i∑
k=0

(−1)i−k

(
n−k−1

n−i−1

)(
n

k

)
pn+i
⋄

∑
t≥0

(
t

n+i

)(
k

n
(1−p⋄)

)t−i−n

.

Using the fact

+∞∑
t=i

(
t

i

)
at−i =

1

(1−a)i+1
, |a| < 1,

and by simple transformations of the sums and using the relation

n∑
k=0

(−1)k
(
n

k

)
1

αk+1
=

Γ(n+1)Γ
(
1
α+1

)
Γ
(
n+ 1

α+1
) , (6)

which is easily proved using mathematical induction, we obtain the required state-
ment. The second moment of Wn is:

E(W 2
n)=

∑
t≥0

P{Wn > t}+2
∑
t≥0

tP{Wn > t}.

Using (4), (6) and the relations:

+∞∑
t=i

t

(
t

i

)
at−i=

i

(1−a)i+1
+

a(i+1)

(1−a)i+2
, |a| < 1,

n∑
k=0

(−1)k−1

(
n

k

)
k(f(x))k=nf(x)(1−f(x))n−1,

we obtain the required statement. □
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Remark 3.2. An expression for the variance of the waiting time Wn follows directly
from (4) and (5).

Corollary 3.3. For 0 < p⋄ < 1, we have

E(Wn) ≤
1

p⋄

(
n+ 1−

Γ(n+ 1)Γ
(
1
α + 1

)
Γ
(
n+ 1

α + 1
) − n

(1 + α)2n

)
.

Proof. The sum in (4) satisfy the following inequalities:
n∑

k=1

(
n

k

)
(kα)

k−1

(1 + kα)
2n ≥

n∑
k=1

(
n

k

)
(kα)

k−1

(1 + α)
2nk

≥
n∑

k=1

(
n

k

)
αk−1

(1 + α)
2nk

=
1

α

(
1 +

α

(1 + α)2n

)n

− 1

α
≥ 1

α

(
1 + n

α

(1 + α)2n

)
− 1

α
,

which yields the required statement. □

4. Fundamental matrix and its applications

In this section, the fundamental matrix F = (I−Q)−1 is determined using the Markov
chain approach and matrix calculus (see [6]). The fundamental matrix provides an-
other way to obtain the expectation and variance of the waiting time Wn, as well as
some more precise results regarding the type of coupons sampled. First, we give a
few useful lemmas.

Lemma 4.1. For an upper-triangular block matrix M =

(
A B
0 C

)
, the following

equality holds:

M−1 =

(
A−1 −A−1BC−1

0 C−1

)
. (7)

Lemma 4.2. Element in the m-th row and j-th column of the matrix (Ik−l+1−A
(l)
k )−s,

k ∈ {0, 1, . . . , n}, l ∈ {0, 1, . . . , k}, s ∈ N, is(
(Ik−l+1−A

(l)
k )−s

)
m,j

=

k−l∑
i=0

(−1)j−1+i

(
n−l−m+1

i−m+1

)(
n−l−i

j−1−i

)
1

(1−(l+i)p)s
. (8)

Proof. First, notice that the matrix (Ik−l+1 − A
(l)
k )−1 is upper-triangular, there-

fore, eigenvalues are equal to diagonal elements λi = 1
1−(l+i)p , i ∈ {0, 1, . . . , k − l}.

Straightforward calculation of the corresponding eigenvectors leads to representation:

(Ik−l+1 −A
(l)
k )−s = M

(l)
k J

(s)
k−l(M

(l)
k )−1, (9)

where J
(s)
k−l =


λs
0 0 0 . . . 0
0 λs

1 0 . . . 0
...

...
...

. . .
...

0 . . . 0 . . . λs
k−l

 ,
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and elements in the m-th row and j-th column of matrices M
(l)
k and (M

(l)
k )−1 are

given by: (
M

(l)
k

)
m,j

=

{(
n−l−(m−1)

j−1,

)
m ≤ j;

0, m > j,

and
(
(M

(l)
k )−1

)
m,j

=

{
(−1)m+j

(
n−l−(m−1)

j−1

)
, m ≤ j;

0, m > j,

respectively. Multiplying matrices in (9) leads to the expression (8). □

Before we give an expression for fundamental matrix, notice that matrix Q∗
n is

upper-triangular block matrix and has the form:

Q∗
n =

(
A

(0)
n−1 B∗

0 Cn

)
3n2+3n−2

2 × 3n2+3n−2
2

, (10)

where

B∗ =
(
p⋄In 0

)
n× 3n2+n−2

2

, Cn =

(
α
(n−1)
n β∗

0 D
(n)
n

)
3n2+n−2

2 × 3n2+n−2
2

,

α(k)
n =


A

(0)
n p⋄In+1 0 . . . 0 0

0 A
(0)
n p⋄In+1 . . . 0 0

...
...

...
...

...

0 0 0 . . . A
(0)
n p⋄In+1

0 0 0 . . . 0 A
(0)
n


k(n+1)×k(n+1)

, (11)

β∗ =

(
0 0

p⋄In 0

)
(n2−1)×n(n+1)

2

,

D(k)
n =


A

(1)
n Bn 0 . . . 0 0

0 A
(2)
n Bn−1 . . . 0 0

...
...

...
...

...

0 0 0 . . . A
(k−1)
n Bn−k+2

0 0 0 . . . 0 A
(k)
n


k(2n−k+1)

2 × k(2n−k+1)
2

. (12)

Lemma 4.3. For upper-triangular block matrix α
(k)
n defined in (11) the following

equality holds for k ≥ 1:

(I− α(k)
n )−1 =


V

(1)
n V

(2)
n . . . V

(k)
n

0 V
(1)
n . . . V

(k−1)
n

...
...

...

0 0 . . . V
(1)
n


k(n+1)×k(n+1)

, (13)

where V
(l)
n = pl−1

⋄

(
(In+1 −A

(0)
n )−1

)l
.
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Proof. We use mathematical induction on k to prove the lemma.

For k = 1, (I− α
(1)
n )−1 = (I−A

(0)
n )−1 = V

(1)
n .

Assuming that (4.2) holds for all dimensions less than k, we prove that it holds
for k using Lemma 4.1. Note that

(I− α(k)
n )−1 =

(
V

(1)
n X

0 (I− α
(k−1)
n )−1

)
,

where X = V
(1)
n Yn(I− α

(k−1)
n )−1, Yn = (p⋄In+1 0)(n+1)×(k−1)(n+1) . Let

U =
(
p⋄V

(1)
n 0

)
(n+1)×(k−1)(n+1)

.

Then, we have X = U(I − α
(k−1)
n )−1 =

(
V

(2)
n V

(3)
n . . . V

(k)
n

)
, which completes

the proof. □

Lemma 4.4. For upper-triangular block matrix D
(k)
n defined in (12) the following

equality holds for k ≥ 1:

(I−D(k)
n )−1 =


U

(1,0)
n U

(1,1)
n . . . U

(1,k−1)
n

0 U
(2,0)
n . . . U

(2,k−2)
n

...
...

...

0 0 . . . U
(k,0)
n


k(2n−k+1)

2 × k(2n−k+1)
2

, (14)

where

U(i,m)
n = pm⋄ (I−A(i)

n )−1

(
01×(n−i)

In−i

)
(I−A(i+1)

n )−1

(
01×(n−i−1)

In−i−1

)
. . . (I−A(m+i)

n )−1,

for i = 1, 2, . . . k and m = 0, 1, . . . , k − i.

Proof. Again, we use mathematical induction on k to prove the lemma.

For k = 1 equality (14) holds: (I − D
(1)
n )−1 = U

(1,0)
n . Assuming that (14) holds

for all dimensions less than k, we prove that it holds for k using Lemma 4.1. We have
that:

(I−D(k)
n )−1 =

(
(I−D

(k−1)
n )−1 Y

0 U
(k,0)
n

)
,

where

Y = (I−D(k−1)
n )−1ZnU

(k,0)
n , Zn =

(
0

Bn−k+2

)
(2n−k+1)k

2 ×(n−k+1)

.

Let T =

(
0

p⋄U
(k,0)
n

)
(2n−k+1)k

2 ×(n−k+1)

.

Then, we have: Y = (I−D(k−1)
n )−1T =


U

(1,k−1)
n

U
(2,k−2)
n

...

U
(k−1,1)
n

 ,
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which completes the proof. □

Theorem 4.5. Fundamental matrix F = F∗
n = (I − Q∗

n)
−1 can be partitioned as

follows:

F∗
n=



V
(1)
n−1 K

(1)
n K

(2)
n . . . K

(n−1)
n L

(1)
n L

(2)
n . . . L

(n)
n

0 V
(1)
n V

(2)
n . . . V

(n−1)
n M

(1,1)
n M

(1,2)
n . . . M

(1,n)
n

0 0 V
(1)
n . . . V

(n−2)
n M

(2,1)
n M

(2,2)
n . . . M

(2,n)
n

...
...

...
...

...
...

...

0 0 0 . . . V
(1)
n M

(n−1,1)
n M

(n−1,2)
n . . . M

(n−1,n)
n

0 0 0 . . . 0 U
(1,0)
n U

(1,1)
n . . . U

(1,n−1)
n

0 0 0 . . . 0 0 U
(2,0)
n . . . U

(2,n−2)
n

...
...

...
...

...
...

...

0 0 0 . . . 0 0 0 . . . U
(n,0)
n


, (15)

where K
(l)
n =

[
p⋄U

(0,0)
n 0n×1

]
V

(l)
n , L

(l)
n =

[
p2⋄U

(0,0)
n 0n×1

]
V

(n−2)
n U

(0,l)
n and

M
(i,j)
n = (p⋄V

(n−2)
n )n−1−iU

(0,j)
n .

Proof. The transition probability matrix for one step Q∗
n is upper-triangular block

matrix and has representation given in (10), so using (7) we obtain that fundamental
matrix has representation:

(I−Q∗
n)

−1 =

(
(I−A

(0)
n−1)

−1 (I−A
(0)
n−1)

−1B∗(I−Cn)
−1

0 (I−Cn)
−1

)
3n2+3n−2

2 × 3n2+3n−2
2

, (16)

where

(I−Cn)
−1 =

(
(I−α

(n−1)
n )−1 (I−A∗

n)
−1β∗(I−D

(n)
n )−1

0 (I−D
(n)
n )−1

)
3n2+n−2

2 × 3n2+n−2
2

. (17)

Note that the expressions for matrices (I− α
(n−1)
n )−1 and (I−D

(n)
n )−1 are given

in (13) and (14), respectively. Expressions for matrices (I −A
(0)
n−1)

−1B∗(I −Cn)
−1

and (I − A∗
n)

−1β∗(I − D
(n)
n )−1 are trivially confirmed by multiplying the matrices.

So, fundamental matrix has the form given by (16) which completes the proof of the
theorem. □

Now, we can provide another way to compute the expectation and the variance of
the waiting time Wn.

We introduce some more notation. Let A(sq) denote the matrix whose elements
are squared elements of matrix A, S1(A) denote the sum of entries of the first row of
the matrix A, and 1 denote matrix with all entries equal to 1.

From [6, Theorem 3.3.5], it follows that the expectation of the waiting time Wn is
equal to

E(Wn) = S1(E), (18)
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and the variance of the waiting time Wn is equal to

V ar(Wn) = S1(V), (19)

where E = F∗
n1 3n2+3n−2

2 ×1
, V = (2F∗

n − I)E−E(sq),

and matrix F∗
n is defined in (15).

Combining Theorem 4.5 with the representation (2), one can obtain several results
related to the type of coupons collected. One result of this type is formulated in the
next theorem.

Theorem 4.6. Probability that all coupons from the set Nn are sampled before a
penalty coupon is equal to

p(n,0) = (1− p⋄)

n−1∑
j=0

(−1)n−1−j

(
n

j

)
n− j

n− j(1− p⋄)
.

Proof. The first row of the matrix FR consists of probabilities that the chain starting
in the transient state (0, 0) ends up in an absorbing state (see in [6, Theorem 3.3.7]).
Also, notice that the probability that exactly n coupons and 0 penalty coupon are
sampled, if the full collection is sampled, is the element of the first row and first column
of the matrix FR. Using the representation of the fundamental matrix F obtained in
Theorem 4.5, and the form of the matrix R in (2), we obtain the result. □

Example 4.7. Let p⋄ = pj = 1/(n + 1), j ∈ Nn. Probability that all coupons from
the set Nn are sampled before a penalty coupon is equal to

p(n,0) =
1

n+ 1

n−1∑
j=0

(−1)n−1−j(n− j)

(
n

j

)
1

1− j
n+1

=
1

n+ 1

n−1∑
j=0

(−1)n−1−j(n− j)

(
n+ 1

j

)
=

1

n+ 1
.

The last equality follows from the identity (see [2]):
c−1∑
i=0

(−1)c−1−i

(
n− i− 1

n− c

)(
n

i

)
= 1.

5. Connection to random walk

Introducing a penalty coupon into the traditional CCP setting, leads to an interest-
ing connection with random walk (or, alternatively, with gambler’s ruin problem).
The CCPPC can be considered as a special case of 1-dimensional random walk with
absorbing barriers at −n and n. More precisely, a particle starts at the origin of
the straight line, and, in consecutive time intervals makes a unit step in positive or
negative direction, or remains in the same position, with specific probabilities. The
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walk is confined to the set S = {−(n − 1),−(n − 2), . . . , 0, . . . , n − 2, n − 1} and we
assume that when the particle exits this set, it gets absorbed.

In the case of the CCP, the corresponding probabilities are p
(i)
k,k−1 = p⋄, p

(i)
k,k =

(1− p⋄)
i
n and p

(i)
k,k+1 = (1−p⋄)

(
1− i

n

)
, where i steps in positive direction are already

made.
We can notice that this walk is not symmetric, the probability of the step in

negative direction is constant, and the probabilities of moving forward or remaining
in the same point linearly depend on the number of steps in positive direction already
made. It is also clear that at most n positive steps can be made.

The CCCP is obtained for p⋄ = 0 and also fits into this setting. The corresponding

probabilities are q
(i)
k,k = i

n and q
(i)
k,k+1 =

(
1− i

n

)
, where i steps in positive direction

are already made. Notice that in this case the only absorbing barrier is at n.
If p⋄ = 1

2 , and we slightly modify the problem considered, defining the waiting
time W ∗

n as follows: W ∗
n = min{t ≥ 0 : |Y ∗

n −Zt| = n}, where Y ∗
n is the total number

of standard coupons (of any type) obtained after having drawn t coupons and Zt is
the number of penalty coupons drawn, we obtain the symmetric random walk with
absorbing barriers. This problem can be equivalently described as a variant of the
gambler’s ruin problem.

6. Numerical example

In this section, we present numerical results for the CCPPC considered in this paper.
We assume that the set of available coupons is N⋆,◦

3 = {1, 2, 3, ⋄}.
If a penalty coupon is drawn with probability p⋄ = 1/4, then any coupon k ∈ N3 is

drawn with probability p = pk = 1/4. In that case, the transition probability matrix
for one step is

P =



0 3
4 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
4

1
2 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 1
4 0 0 0 0

0 0 0 0 3
4 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
4

1
2 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
2

1
4 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 3
4 0 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 3
4 0 0 0 0 0 0 0 0 0 1

4 0 0 0

0 0 0 0 0 0 0 0 1
4

1
2 0 1

4 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
2

1
4 0 1

4 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 3
4 0 0 1

4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
4

1
2 0 0 0 0 0 0 1

4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
4

1
4 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 3
4 0 1

4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
4 0 0 0 0 1

4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
4

1
4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
4 0 0 0 0 1

4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



.
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Next, we consider different combinations of sampling probabilities p⋄ and, by
direct matrix manipulation, provide the expectation and variance of the waiting time
W3 using formulas (18) and (19). The results are presented in Table 1. Statistical
Software R was used for all calculations.

p⋄=
2
3

p⋄=
1
2

p⋄=
1
4

p⋄=
1
8

p⋄=
1
10

p⋄=
1
20

p⋄=
1
50

p⋄=
1

100

E(W3) 4.59 7.26 14.94 27.96 34.21 64.79 155.19 305.35
V ar(W3) 9.93 22.59 116.22 510.61 763.57 2222.07 7025.53 15219.95

Table 1: Expectation and variance of the waiting time W3

Next, we show how the expectation and the variance of the waiting time Wn

depend on the probability p⋄ for different values of n.

Figure 1: Expectation and variance of the waiting time Wn in terms of p⋄ for different values
of n

Note that the behavior of the expectation and variance is consistent with the
theoretical results in Section 3. The expectation and variance of the waiting time Wn

decrease as the probability p⋄ increases. Also, the expectation and variance of the
waiting time Wn increase when n increases, as we expected.

For comparison, we show the corresponding results for the CCCP and the sym-
metric random walk with absorbing barriers at −n and n.

Using the formula for the expectation and variance of the waiting time Wn for the
CCCP (see, e.g., [4, 12]), we obtain that E(W3) = 5.5 and V ar(W3) = 6.75.

Using the formula for the expectation and variance for the waiting time W ∗
n (see,

e.g., [3, 9]), we get that E(W ∗
n) = 15 and V ar(W ∗

n) = 48.
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7. Conclusion

The introduction of additional coupons with specific purposes leads to new general-
izations and modifications of the CCP, and one of them is presented in this paper.
We assume that the additional coupon interferes with the collection of the standard
coupons, and that the experiment (coupon collecting ) is terminated when either the
complete collection (without interference) is sampled or the interference reaches a
certain value. The problem can also be formulated as a special case of 1-dimensional
random walk with absorbing barriers, with the additional condition that the probabil-
ity of steps in the positive direction depends linearly on the number of steps already
taken.

We are interested in the numerical characteristics of the waiting time until the
collection is over. Using the Markov chain approach, we provide two ways to compute
the expectation and variance of this waiting time: by reference to the CCCP and by
determining the exact form of the fundamental matrix. We provide a numerical
comparison of the expectation and variance of the corresponding waiting times for
several variants of the CCP.

The problem considered in this paper leads to several possibilities for future re-
search. One obvious task would be to obtain accurate estimates for the expectation
and variance of the waiting time Wn, taking into account the relationship between p⋄
and n, since n → ∞ (i.e., if np⋄ → 0, np⋄ = O(1), or np⋄ → ∞).

Future work can also be devoted to further generalizing the problem in two ways:
either by replacing the penalty coupon with another collection that would interfere
with the collection of the main one, or by considering a new variant of the random
walk such that the probability of steps in each direction depends on the number of
steps in a more general way.

Acknowledgement. This work was supported by Ministry of Science, Techno-
logical Development and Innovation of the Republic of Serbia: Grant No. 451− 03−
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