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ON THE GENERALIZED DISTANCE EIGENVALUES OF GRAPHS
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Abstract. For a simple connected graph G, the generalized distance matrix Dα(G) is
defined as Dα(G) = αTr(G) + (1− α)D(G), 0 ≤ α ≤ 1. The largest eigenvalue of Dα(G) is
called the generalized distance spectral radius or Dα-spectral radius of G. In this paper, we
obtain some upper bounds for the generalized distance spectral radius in terms of various
graph parameters associated with the structure of graph G, and characterize the extremal
graphs attaining these bounds. We determine the graphs with minimal generalized distance
spectral radius among the trees with given diameter d and among all unicyclic graphs with
given girth. We also obtain the generalized distance spectrum of the square of the cycle and
the square of the hypercube of dimension n. We show that the square of the hypercube of
dimension n has three distinct generalized distance eigenvalues.

1. Introduction

All graphs considered here are simple, undirected and connected. Let G be a graph
with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). The order of G is the
number n = |V (G)| and its size is the number |E(G)|. The set of vertices adjacent
to v ∈ V (G), denoted by N(v), is the neighborhood of v. The degree of v, denoted
by dG(v) (we simply write dv if it is clear from the context) means the cardinality
of N(v). A graph is called regular if each of its vertices has the same degree. The
distance between two vertices u, v ∈ V (G), denoted by duv, is defined as the length
of the shortest path between u and v in G. The diameter of G is the maximum
distance between any two vertices of G. The distance matrix of G is denoted D(G)
and is defined as D(G) = (duv)u,v∈V (G). For some spectral properties of the distance
matrix of graphs, we refer the reader to the survey [9]. The transmission TrG(v) of
a vertex v is defined as the sum of the distances from v to all other vertices in G, i.e.
TrG(v) =

∑
u∈V (G) duv. A graph G is called k-transmission regular if TrG(v) = k, for

every v ∈ V (G). The transmission (also called Wiener index ) of a graph G, denoted
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by W (G), is the sum of the distances between all unordered pairs of vertices in G.
Obviously, W (G) = 1

2

∑
v∈V (G) TrG(v). For each vertex vi ∈ V (G), the transmission

TrG(vi) is also called transmission degree, denoted Tri for short, and the sequence
{Tr1, T r2, . . . , T rn} is called transmission degree sequence of the graph G. The second
transmission of vi, denoted by Ti is given by Ti =

∑n
j=1 dijTrj , where dij = dvivj .

Let Tr(G) = diag(Tr1, T r2, . . . , T rn) be the diagonal matrix of vertex trans-
missions of G. M. Aouchiche and P. Hansen [10, 11] introduced the Laplacian and
the signless Laplacian for the distance matrix of a connected graph. The matrix
DL(G) = Tr(G)−D(G) is called the distance Laplacian matrix of G, while the ma-
trix DQ(G) = Tr(G) + D(G) is called the distance signless Laplacian matrix of G.
The spectral properties of D(G), DL(G) and DQ(G) have attracted the attention
of researchers, and a large number of papers have been published on their spectral
properties, such as spectral radius, second largest eigenvalue, smallest eigenvalue, etc.
For some recent works, we refer to [2, 7, 10–12] and the references therein.

Cui et al. [15] introduced the generalized distance matrix Dα(G) as a convex
combination of Tr(G) and D(G), defined as Dα(G) = αTr(G) + (1 − α)D(G),
for 0 ≤ α ≤ 1. Since D0(G) = D(G), 2D 1

2
(G) = DQ(G), D1(G) = Tr(G), and

Dα(G) − Dβ(G) = (α − β)DL(G), each result concerning the spectral properties of
the generalized distance matrix has its counterpart for each of these particular graph
matrices, and these counterparts follow directly from a single proof. In fact, this
matrix reduces to merging the distance spectral and the distance signless Laplacian
spectral theories. Since the matrix Dα(G) is real symmetric, all its eigenvalues are
real. Therefore, we can arrange them as ∂1 ≥ ∂2 ≥ · · · ≥ ∂n. The largest eigen-
value ∂1 of the matrix Dα(G) is called the generalized distance spectral radius of G
(from now on we denote ∂1(G) by ∂(G)). Since Dα(G) is non-negative and irreducible
(except for α = 1), by the Perron-Frobenius theorem ∂(G) is the unique eigenvalue,
and there is a unique positive unit eigenvector X corresponding to ∂(G), which is
called the generalized distance Perron vector of G. For some recent results concern-
ing the generalized distance matrix (spectrum) of graphs, we refer the reader to the
papers [1, 3–6,8, 15,17,18,21,23].

A column vector X = (x1, x2, . . . , xn)
T ∈ Rn can be viewed as a function de-

fined on V (G) which maps vertex vi to xi, i.e., X(vi) = xi for i = 1, 2, . . . , n. Then,
XTDα(G)X = α

∑n
i=1 Tr(vi)x

2
i +2(1−α)

∑
1≤i<j≤n d(vi, vj)xixj , and λ is an eigen-

value of Dα(G) corresponding to the eigenvector X if and only if X ̸= 0 and

λxvi = αTr(vi)xi + (1− α)

n∑
j=1

d(vi, vj)xj .

These equations are called the (λ, x)-eigenequations ofG. For a normalized column
vector X ∈ Rn with at least one nonnegative component, by the Rayleigh’s principle,
we have ∂(G) ≥ XTDα(G)X, with equality if and only if X is the generalized distance
Perron vector of G.

The rest of the paper is organized as follows. In Section 2 we mention some
preliminary results that will be useful in the rest of the paper. In Section 3, we
obtain some upper bounds on the generalized distance spectral radius ∂(G) as a
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function of various graph parameters associated with the structure of the graphG, and
characterize the extremal graphs attaining these bounds. In Section 4, we determine
the graphs with minimum generalized distance spectral radius among trees of given
diameter d and among all unicyclic graphs of given girth. In Section 5, we obtain
the generalized distance spectrum of the square of the cycle and the square of the
hypercube of dimension n. We show that the square of the hypercube of dimension
n has three distinct generalized distance eigenvalues.

2. Preliminary results

In this section we give some already known results which will be needed in the sequel.
The following lemma can be found in [15].

Lemma 2.1 ([15]). Let G be a connected graph of order n. Then, ∂(G) ≥ 2W (G)
n , with

equality if and only if G is a transmission regular graph.

Lemma 2.2 ([13]). Let B be a nonnegative irreducible matrix with row sums r1, r2, . . .,
rn. If µ(B) is the largest eigenvalue of B, then min1≤i≤n ri ≤ µ(B) ≤ max1≤i≤n ri,
with each equality if and only if r1 = r2 = · · · = rn.

Lemma 2.3 ([14, Interlacing theorem]). Let A be a symmetric real matrix and B be
a principal submatrix of A of order n and s (s ≤ n), respectively. Then, for the
eigenvalues of A and B, λi+n−s(A) ≤ λi(B) ≤ λi(A), 1 ≤ i ≤ s.

Lemma 2.4 ([14, Courant-Weyl inequality]). Let A1 and A2 be symmetric real matri-
ces of order n. For 1 ≤ i ≤ n, satisfy the eigenvalues of A1 and A2: λn(A2)+λi(A1) ≤
λi(A1 +A2) ≤ λi(A1) + λ1(A2).

Obviously, Dα(G) is a symmetric real matrix, hence by Lemma 2.3 the following
corollary follows immediately.

Corollary 2.5. Let G be a graph of order n. Let M be the principal submatrix of
Dα(G) of order n− 1. Then, ∂1(G) ≥ λ1(M) ≥ ∂2(G) ≥ . . . ≥ λn−1(M) ≥ ∂n(G).

Lemma 2.6 ([15]). Let G be a connected graph of order n and 1
2 ≤ α ≤ 1. If G′ is

a connected graph obtained from G by deleting an edge, then for every 1 ≤ i ≤ n,
∂(G′) ≥ ∂(G).

Lemma 2.7 ([24]). If x1 ≥ x2 ≥ · · · ≥ xm are real numbers such that
∑m

i=1 xi = 0,

then x1 ≤
√

m−1
m

∑m
i=1 x

2
i . The equality holds if and only if x2 = · · · = xm = − x1

m−1 .

The proof of the following lemma is similar to that of [19, Lemma 2] and is therefore
omitted here.

Lemma 2.8 ([19]). A connected graph G has two distinct Dα(G)-eigenvalues if and
only if G is a complete graph.
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3. Bounds on spectral radius of the generalized distance matrix

In this section we obtain upper bounds for the generalized distance spectral radius
of a connected graph G, in terms of various graph parameters associated with the
structure of the graph. We characterize the extremal graphs that reach these bounds.

The following result gives an upper bound for the generalized distance spectral
radius of a graph.

Theorem 3.1. Let G be a graph of order n with maximum transmission degree Trmax.

Then ∂(G) < αTrmax + (1− α)
√
2
∑

1≤i<j≤n d
2
ij +

3
n

∑n
i=1 Tr

2
i .

Proof. Let X = (x1, x2, . . . , xn)
T be a unit eigenvector corresponding to ∂(G) of

the generalized distance matrix Dα(G) of G. Then we have Dα(G)X = ∂X. For
vi ∈ V (G), we have

∂(G)xi = αTrixi + (1− α)

n∑
j=1

dijxj ,

that is (∂(G)− αTri)
2x2

i = (1− α)2

 n∑
j=1

dijxj

2

. (1)

As
∑n

i=1 x
2
i = 1 and

∑n
i=1 xi = 1, then by Cauchy-Schwarz inequality, we have n∑

j=1

dijxj

2

<

 n∑
j=1

xj

(
dij +

Tri
n

)2

≤
n∑

j=1

x2
j

n∑
j=1

(
d2ij +

(
Tri
n

)2

+
2dijTri

n

)
=

n∑
j=1

d2ij +
3Tr2i
n

.

Then

n∑
i=1

 n∑
j=1

dijxj

2

< 2
∑

1≤i<j≤n

d2ij +
3

n

n∑
i=1

Tr2i .

Using (1) with the above result, we have

(∂(G)−αTrmax)
2≤

n∑
i=1

(∂(G)−αTri)
2x2

i<(1− α)2

2
∑

1≤i<j≤n

d2ij+
3

n

n∑
i=1

Tr2i

 .

Thus, the result follows. □

The following observations follow directly from Theorem 3.1.

Corollary 3.2. If G is a connected graph of order n and diameter d, then

∂(G) < αn(n−1)
2 + (1− α)

√
(n− 1) (nd2 + 3n− 3).
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Proof. Since dij ≤ d for i ̸= j and there are n(n−1)
2 pairs of vertices in G, we obtain

from Theorem 3.1

∂(G) <
αn(n− 1)

2
+ (1− α)

√
2
n(n− 1)

2
d2 +

3

n
n(n− 1)2

=
αn(n− 1)

2
+ (1− α)

√
(n− 1) (nd2 + 3n− 3).

Corollary 3.3. Let G be a connected k-transmission graph of order n. Then

∂(G) < αk + (1− α)
√

2
∑

1≤i<j≤n d
2
ij + 3k2.

The following result gives another upper bound for the generalized distance spec-
tral radius ∂(G), in terms of transmission degrees and the parameter α.

Theorem 3.4. Let G be a graph of order n, where n ≥ 2. If Tr1 ≥ . . . ≥ Trn and
Tr1 > Trn−k+1, for a fixed integer k, 1 ≤ k ≤ n− 1, then

∂(G) ≤ αTrn−k+1 + Tr1 + α− 1

2

+

√
(Tr1 − αTrn−k+1 − (1− α)(2k − 1))

2
+ 4(1− α)2(Trn−k+1 − k + 1)

2
, (2)

with equality holding if and only if G is a graph with k (k ≤ n− 2) vertices of degree
n− 1 and the remaining n− k vertices have equal degree less than n− 1.

Proof. Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vn}. Let
V1 = {v1, . . . , vn−k} and V2 = V (G)\V1. ThenDα(G) = M+N may be partitioned as

M = (1− α)

(
D11 D12

D21 D22

)
, N = α

(
Tr11 0
0 Tr22

)
,

where D11 and Tr11 are (n− k)× (n− k) matrices. Let

U =

(
1
xIn−k 0

0 Ik

)
for 0 < x < 1 (to be determined) and B = U−1Dα(G)U = P + N , where Is is the
s× s unit matrix and

P = (1− α)

(
D11 xD12
1
xD21 D22

)
is a nonnegative irreducible matrix that has the same spectrum as Dα(G). Let ri
denote the i-th row sum of B. If i = 1, 2, . . . , n − k, then since dij ≥ 1 for j =
n− k + 1, . . . , n, we have

ri = (1− α)

n−k∑
j=1

dij + x(1− α)

n∑
j=n−k+1

dij + α

n∑
j=1

dij

= (1− α)

n∑
j=1

dij + (1− α)(x− 1)

n∑
j=n−k+1

dij + α

n∑
j=1

dij
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= Tri + (1− α)(x− 1)

n∑
j=n−k+1

dij ≤ Tri + (1− α)(x− 1)k ≤ Tr1 + (1− α)(x− 1)k.

If i = n− k+1, . . . , n− k, then since dii = 0 and dij ≥ 1 for j = n− k+1, . . . , n with
i ̸= j, we have

ri =
1− α

x

n−k∑
j=1

dij + (1− α)

n∑
j=n−k+1

dij + α

n∑
j=1

dij

=
α(x− 1) + 1

x

n∑
j=1

dij + (1− α)

(
1− 1

x

) n∑
j=n−k+1

dij

=

(
α(x− 1) + 1

x

)
Tri + (1− α)

(
1− 1

x

) n∑
j=n−k+1

dij

≤
(
α(x− 1) + 1

x

)
Tri + (1− α)

(
1− 1

x

)
(k − 1)

≤
(
α(x− 1) + 1

x

)
Trn−k+1 + (1− α)

(
1− 1

x

)
(k − 1).

Let

x =
αTrn−k+1 − Tr1 + (1− α)(2k − 1)

2(1− α)k

+

√
(Tr1 − αTrn−k+1 − (1− α)(2k − 1))

2
+ 4(1− α)2(Trn−k+1 − k + 1)

2(1− α)k
.

Then

Tr1 + (1− α)(x− 1)k =

(
α(x− 1) + 1

x

)
Trn−k+1 + (1− α)

(
1− 1

x

)
(k − 1)

=
αTrn−k+1 + Tr1 + α− 1

2

+

√
(Tr1 − αTrn−k+1 − (1− α)(2k − 1))

2
+ 4(1− α)2(Trn−k+1 − k + 1)

2
.

Since Tr1 > Trn−k+1 ≥ Trn ≥ n−1 > k−1, we have 0 < x < 1. Thus by Lemma 2.2,
we have

∂(G) ≤ max
1≤i≤n

ri

≤ αTrn−k+1 + Tr1 + α− 1

2

+

√
(Tr1 − αTrn−k+1 − (1− α)(2k − 1))2 + 4(1− α)2(Trn−k+1 − k + 1)

2
.

Suppose that equality holds in (2). Since ri = Tr1 + (1 − α)(x − 1)k for i =
1, 2, . . . , n − k, we have dij = 1 for i = 1, 2, . . . , n − k and j = n − k + 1, . . . , n,
which implies that every vertex in V1 is adjacent to all vertices in V2. Again, since



A. Alhevaz, M. Baghipur, H. A. Ganie, K. C. Das 35

ri =
(

α(x−1)+1
x

)
Trn−k+1 + (1− α)

(
1− 1

x

)
(k − 1) for i = n− k + 1, . . . , n, we have

dij = 1 for i, j = n−k+1, . . . , n with i ̸= j, which implies that V2 induces a complete
subgraph in G. Thus, the degree of every vertex in V2 is n−1 and hence the diameter
of G is at most 2. Since Tr1 = Tr2 = · · · = Trn−k, every vertex in V1 has the same
degree. Moreover, since Tr1 > Trn−k+1, G cannot be the complete graph, and thus
k ≤ n− 2.

Conversely, if G is a graph stated in the second part of the theorem, then from
the proof above, we have r1 = r2 = · · · = rn and thus equality holds. □

The following result gives an upper bound for ∂(G), in terms of Wiener index
W (G), the order n, the transmission degrees and the parameter α.

Theorem 3.5. Let G be a connected graph of order n. Then

∂(G) ≤ 2αW (G)

n
+

√√√√√n− 1

n

2(1− α)2
∑

1≤i<j≤n

d2ij + α2

n∑
i=1

Tr2i −
4α2W 2(G)

n

, (3)

with equality if and only if G = Kn.

Proof. We have
∑n

i=1

(
∂i(G)− 2αW (G)

n

)
= 0. Applying Lemma 2.7, we get

∂(G)− 2αW (G)

n
≤

√√√√n− 1

n

n∑
i=1

(
∂i(G)− 2αW (G)

n

)2

,

with equalty if and only if

∂2(G)− 2αW (G)

n
= · · · = ∂n(G)− 2αW (G)

n
= −

∂1(G)− 2αW (G)
n

n− 1
. (4)

Thus the inequality follows. We claim that the equality in (3) holds if and only
if G = Kn. Suppose that the equality in (3) holds. From the equality in (4), we
get ∂2(G) = · · · = ∂n(G). Hence the equality in (3) implies that G has only two
distinct generalized distance eigenvalues, then by Lemma 2.8, G = Kn. Conversely,
using the fact that the generalized distance eigenvalues of Kn are ∂1(G) = n− 1 and
∂i(G) = αn− 1, i = 2, . . . , n, one can easily see that the equality in (3) holds. □

4. Extremal graphs for the generalized distance spectral radius for some
families of graphs

In this section, we determine the graphs with minimum generalized distance spectral
radius among trees of given diameter d and among all unicyclic graphs of given girth.

For a graph G, the vertices u, v ∈ V (G) are called multiplicate vertices if NG(u) =
NG(v). Suppose u is adjacent to v and NG−v(u) = NG−u(v); then u, v are called
quasi-multiplicate vertices. In general, a subset S ⊂ V (G) is a multiplicate vertex set,
if NG(u) = NG(v) for all u, v ∈ S. A subset C ⊂ V (G) is a quasi-multiplicate vertex
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set if the vertices of C induce a clique and NG(u)−C = NG(v)−C for all u, v ∈ C. It
is obvious that we add edges to any two vertices of a multiplicate vertex set to obtain
a quasi-multiplicate vertex set.

For two matrices A = [aij ] and B = [bij ] of order n, if aij ≤ bij (1 ≤ i, j ≤ n), we
say A ≤ B and A < B, if aij < bij (1 ≤ i, j ≤ n).

Theorem 4.1. Let v be a pendent vertex of G and d be the diameter of G. Then
∂i+1(G)− αd ≤ ∂i(G− v) ≤ ∂i(G)− α, for i = 1, 2, . . . , n− 1.

Proof. Since v is a vertex with degree one, we get dG−v(x, y) = dG(x, y) for x, y ∈
V (G − v), and 1 ≤ dG(v, z) ≤ d for z ∈ V (G − v). Then TrG(z) > TrG−u(z). Let
M be the principal submatrix of Dα(G) obtained by deleting the row and column
corresponding to v. Then M > Dα(G− v). Let S = M −Dα(G− v). Therefore S =
diag(a1, a2, . . . , an−1) where α ≤ ai ≤ αd, for i = 1, . . . , n− 1, hence α ≤ λi(S) ≤ αd.
Thus, by Lemma 2.4, we get

∂i(G− v) + α ≤ λi(M) ≤ ∂i(G− v) + αd, i = 1, . . . , n− 1. (5)

Then, by Corollary 2.5 and the left inequality of (5), we have ∂i(G− v) +α ≤ ∂i(G),
for i = 1, . . . , n− 1. Similarly, by Corollary 2.5 and the right inequality of (5), we get
∂i+1(G) ≤ ∂i(G− v) + αd, for i = 1, . . . , n− 1. □

Corollary 4.2. Let G be a graph of order n and with diameter d = 2. Suppose vertex
v is adjacent to any other vertex of G. Also G− v is connected with d(G−v) = d(G);
then ∂i+1(G)− α ≤ ∂i(G− v) ≤ ∂i(G)− α, for i = 1, 2, . . . , n− 1.

Proof. Using the given assumptions, we obtain dG−v(x, y) = dG(x, y) for x, y ∈ V (G−
v), hence TrG(z) = TrG−v(z) + 1. Let M be the principal submatrix of Dα(G)
obtained by deleting the row and column corresponding to v and S = M−Dα(G−v) =
αI. By Lemma 2.4, we get ∂i(G− v) + α ≤ λi(M) ≤ ∂i(G− v) + α, i = 1, . . . , n− 1.
Hence, similarly to Theorem 4.1, we get the desired result. □

Corollary 4.3. Let G be a graph of order n and u, v ∈ V (G). If u, v are multiplicate
(or quasimultiplicate) vertices, then ∂i+1(G) − αd ≤ ∂i(G − v) ≤ ∂i(G) − α, for
i = 1, 2, . . . , n− 1.

The following lemma is on the behaviour of generalized distance eigenvalues when
the edge between quasi-multiplicate vertices is removed.

Lemma 4.4. Let G be a graph of order n ≥ 3. Also, let x and y be quasi-multiplicate
vertices of G and e = xy. Then, we have
(i) if α ≥ 1

2 , then ∂i(G) ≤ ∂i(G− e) ≤ ∂i(G) + 1,

(ii) if α < 1
2 , then ∂i(G) + 2α− 1 ≤ ∂i(G− e) ≤ ∂i(G) + 1, for i = 1, 2, . . . , n.

Proof. Since x and y are quasi-multiplicate vertices, apart from the change of d(x, y) =
1 to d(x, y) = 2, the distances of other vertices are fixed. So Dα(G−e) > Dα(G). Let

S = Dα(G−e)−Dα(G). Then S can be partitioned into S=

(
αI + (1− α)(J2 − I) 0

0 0

)
.

Hence the eigenvalues of S are {1, 2α − 1, 0[n−2]}. Thus, the conclusion follows by
Lemma 2.4. □
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The following gives the behaviour of generalized distance eigenvalues when the
edges between the vertices in a quasi-multiplicate set are deleted.

Theorem 4.5. Let U ⊂ V (G) be a quasi-multiplicate set of graph G and 2 ≤ m =
|U | < n = |V (G)|. Suppose Gc is the graph obtained by removing all the edges between
vertices of U . Then we have
(i) if α ≥ 1

m , then ∂i(G) ≤ ∂i(G
c) ≤ ∂i(G) +m− 1,

(ii) if α < 1
m , then ∂i(G) + αm− 1 ≤ ∂i(G

c) ≤ ∂i(G) +m− 1, for i = 1, 2, . . . , n.

Proof. Obviously, U becomes a multiplicate set in Gc. Similar to Lemma 4.4, in
the process of deleting edges, only the distances of vertices in U change from one to

two. Let S = Dα(G
c)−Dα(G). Then S can be partitioned into S =

(
R 0
0 0

)
, where

R = α(m−1)I+(1−α)(Jm−I). Hence the eigenvalues of R are {m−1, αm−1[m−1]}.
Then the eigenvalues of S are {m− 1, αm− 1[m−1], 0[n−m]}. Thus, the result follows
from Lemma 2.4. □

The following result gives the graph with the minimum ∂(G) among all the trees
with given diameter d.

Theorem 4.6. Let Υd be the set of all trees with diameter d ≥ 1, and α > 0. Also,
let Pd+1 denotes the path of order d+ 1. Then for any tree T ∈ Υd, we have ∂(T ) ≥
∂(Pd+1). Equality occurs if and only if T = Pd+1.

Proof. Let T be a tree of order n. Suppose that T ∈ Υd with order n ≥ d + 1.
From Theorem 4.1, we see that ∂(G − u) ≤ ∂(G) − α, where u is a pendent vertex.
Hence, the generalized distance spectral radius ∂(G) strictly decreases for α > 0, when
the pendent vertices are removed from G. Then, the result follows by continuously
deleting the pendent vertices which are not on the diametrical line. □

Recall that the girth of a graph G is the length of the shortest cycle in G. The
following result gives the graph with the minimum ∂(G) among all the unicyclic graphs
with given girth.

Theorem 4.7. Let Γp be the set of all unicyclic graphs of order n with given girth
p ≥ 3. For any unicyclic graph G ∈ Γp, we have

∂(G) ≥

{
p2

4 if p is even
p2−1

4 if p is odd,

with equality if and only if G = Cp.

Proof. Let G be a connected graph of order n. Suppose that G ∈ Γp; then girth of
G is p and so G contains a cycle of length p. Let us partition the vertex set of G
as V (G) = A1 ∪ A2, where the vertex set of the cycle is A1 = {a1, . . . , ap}. Then
the components of subgraph induced by A2 = {ap+1, . . . , an} are isolated vertices
or trees. Assume that G has the minimum generalized distance spectral radius with
order n > p, then A2 ̸= ∅. By Theorem 4.1, we obtain another graph G − ai
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with less generalized distance spectral radius, where ai ∈ A2 is a pendent vertex, a
contradiction. Thus G = Cp has the minimum generalized distance spectral radius.
It is well known that

W (Cn) =

{
n3

8 if n is even
n(n2−1)

8 if n is odd.

The result now follows from Lemma 2.1. □

5. The generalized distance spectrum of some graphs

Recall that the k-th power Gk of a graph G is a graph with the same set of vertices
V (G) and two vertices are adjacent when their distance in G is at most k. In this
section, we obtain the generalized distance spectrum of the square of the cycle and the
square of the hypercube of dimension n. We show that the square of the hypercube
of dimension n has three distinct generalized distance eigenvalues.

The following lemma can be found in [16].

Lemma 5.1 ([16]). Let

A =

(
A0 A1

A1 A0

)
be a 2 × 2 block symmetric matrix. Then the eigenvalues of A are those of A0 + A1

together with those of A0 −A1.

The following gives the generalized distance spectrum of the square of the cycle.

Theorem 5.2. Let {n2

4 , 0, λ3, . . . , λn} or {n2

4 ,−1, λ3, . . . , λn} be the distance spec-
trum of Cn depending on whether n

2 is even or odd. Then generalized distance spec-
trum of C2

n is given by{
n2+2n

8
, α

(
n2+4n

8

)
−n

4
, α

(
n2+2n−4λ3

8

)
+
λ3

2
, . . ., α

(
n2+2n−4λn

8

)
+
λn

2

}
,

where n
2 is even, and{

n2+2n

8
, α

(
(n+2)2

8

)
−n+2

4
, α

(
n2+2n−4λ3

8

)
+
λ3

2
, . . ., α

(
n2+2n−4λn

8

)
+
λn

2

}
,

where n
2 is odd.

Proof. Let {u1, u2, . . . , un} be the vertex set of Cn. Let us partition the vertex set of
Cn as V1 ∪ V2 where V1 is a set of all even index vertices and V2 is a set of all odd
index vertices. Then every pair of vertices within V1 or within V2 are of even distance
from each other. Again any vertex of V1 and any vertex of V2 are of odd distance
from each other. Now, if we index the rows and columns of the generalized distance
matrix by taking the vertices of V1 followed by the vertices of V2 and by considering
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a suitable ordering, we get the generalized distance matrix of Cn in the form

Dα(Cn) =

(
αK + (1− α)S (1− α)U

(1− α)U αK + (1− α)S

)
,

where each entry of the block S is even and any row in S is equal to the sum of the
distances from any vertex in V1 to all other vertices in V1, hence S has constant row
sum r(S). Again, each entry of the block U is even and any row in U is equal to the
sum of the distances from any vertex in V1 to all other vertices in V2, hence U has
constant row sum r(U), which is

r(S) =

{
n2−4

8 if n
2 is odd

n2

8 if n
2 is even

, r(U) =

{
n2+4

8 if n
2 is odd

n2

8 if n
2 is even.

Also K =
(

n2

4

)
I. Therefore the generalized distance matrix of C2

n has the form

Dα(C
2
n) =

1

2

(
αP + (1− α)S (1− α)(U + Jn

2 ×n
2
)

(1− α)(U + Jn
2 ×n

2
) αP + (1− α)S

)
,

where P =
(

n2+2n
4

)
I. Now, using Lemma 5.1, the eigenvalues of Dα(C

2
n) are the

union of the eigenvalues of 1
2 (αP+(1−α)(S+U+J)) and 1

2 (αP+(1−α)(S−U−J)).
Hence, if n

2 is even, then

spec(Dα(C
2
n)) =

{
α

(
n2 + 2n

8

)
+ (1− α)

(
n2

8
+

n

4

)
, α

(
n2 + 2n

8

)
− (1− α)

(n
4

)
,

α

(
n2 + 2n

8

)
+ (1− α)

(
λ3

2

)
, . . . , α

(
n2 + 2n

8

)
+ (1− α)

(
λn

2

)}
,

and if n
2 is odd, then

spec(Dα(C
2
n)) =

{
α

(
n2+2n

8

)
+(1−α)

(
n2

8
+
n

4

)
, α

(
n2+2n

8

)
−(1−α)

(
1

2
+
n

4

)
,

α

(
n2+2n

8

)
+(1−α)

(
λ3

2

)
, . . . , α

(
n2+2n

8

)
+(1−α)

(
λn

2

)}
.

Therefore, we get the desired result. □

The Hamming graph H(n, d) has vertex setXn whereX is a finite set of cardinality
d ≥ 2, and two vertices of H(n, d) are adjacent whenever they differ in precisely one
coordinate. In particular, the n-dimensional hypercube Qn is H(n, 2).

Lemma 5.3 ( [20]). Let H(n, d) be the Hamming graph of diameter n. Then the
distance spectrum of H(n, d) is

{
ndn−1(d− 1)[1], 0[d

n−n(d−1)−1], (−dn−1)[n(d−1)]
}
.

We recall that an n-dimensional hypercube Qn is a graph with vertex set V (Qn) =
{(a1, a2, . . . , an) : ai = 0 or 1} and two vertices of Qn are adjacent if and only if they
differ at exactly one coordinate. For u, v ∈ V (Qn), it is clear that d(u, v) = r if and
only if coordinates of u and v differ in exactly r places.

The following gives the generalized distance spectrum of the square of the hyper-
cube of dimension n.
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Theorem 5.4. Let Qn be the hypercube graph of dimension n. Then the generalized
distance spectrum of Q2

n is{
(
1

2

n∑
i=1

i

(
n

i

)
+ 2n−2)[1],

α

(
1

2

n∑
i=1

i

(
n

i

)
+ 2n−2

)[2n−(n+2)]

, (α

(
1

2

n∑
i=1

i

(
n

i

)
+ 2n−1

)
− 2n−2)[n+1]

 .

Proof. Consider the vertex x = (0, 0, . . . , 0). Let V1 be the set of vertices of Qn which
are of even distance from x and let V2 be the set of vertices of Qn which are of odd
distance from x. All vertices within V1 and those within V2 are of even distance from
each other. Again any vertex of V1 and any vertex of V2 are of odd distance from each
other. Considering a suitable ordering of the vertices of V1 and V2, the generalized
distance matrix of Qn is of the form

Dα(Qn) =

(
αK + (1− α)S (1− α)U

(1− α)U αK + (1− α)S

)
,

where U and S have same properties as in the Theorem 5.2 and K =
(∑n

i=1 i
(
n
i

))
I,

since the sum of the distances from any vertex in V1 to all other vertices in V1 is given
by

k1 =

{∑
i i
(
n
i

)
, i ∈ 2k, k = 1, 2, . . . , n−1

2 if n is odd∑
i i
(
n
i

)
, i ∈ 2k, k = 1, 2, . . . , n

2 if n is even.

Again, the sum of the distances from any vertex in V1 to all vertices in V2 is given by

k2 =

{∑
i i
(
n
i

)
, i ∈ 2k − 1, k = 1, 2, . . . , n+1

2 if n is odd∑
i i
(
n
i

)
, i ∈ 2k − 1, k = 1, 2, . . . , n

2 if n is even.

Hence for each n, the matrix U+S has constant row sum k1+k2 =
∑n

i=1 i
(
n
i

)
and the

matrix U − S has constant row sum k1 − k2 = 0. Therefore, the generalized distance
matrix of Q2

n has the form

Dα(Q
2
n) =

1

2

(
αF + (1− α)S (1− α)(U + J2n−1×2n−1)

(1− α)(U + J2n−1×2n−1) αF + (1− α)S

)
,

where F =
(∑n

i=1 i
(
n
i

)
+ 2n−1

)
I. Now, using Lemma 5.1, the eigenvalues of Dα(Q

2
n)

are the union of the eigenvalues of 1
2 (αF +(1−α)(S+U + J2n−1×2n−1)) and 1

2 (αF +
(1− α)(−S − U − J2n−1×2n−1)), hence we have{

α

(
1

2

n∑
i=1

i

(
n

i

)
+ 2n−2

)
+ (1− α)

(
1

2

n∑
i=1

i

(
n

i

)
+ 2n−2

)
,

α

(
1

2

n∑
i=1

i

(
n

i

)
+ 2n−2

)
+ 0, α

(
1

2

n∑
i=1

i

(
n

i

)
+ 2n−2

)
− (1− α)2n−2

}
.

Then by Lemma 5.3, we get the desired result. □

It is clear from Theorem 5.4 that the graph Q2
n has three distinct generalized
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distance eigenvalues.
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