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TIME QUATERNION COUPLED FRACTIONAL FOURIER
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Abstract. In this paper, we extend the coupled fractional Fourier transform of complex
valued functions to that of the quaternion valued functions on R* and call it the quaternion
coupled fractional Fourier transform (QCFrFT). We obtain the sharp Hausdorff-Young in-
equality for QCFrFT and obtain the associated Rényi uncertainty principle. We also define
the short time quaternion coupled fractional Fourier transform (STQCFrFT) and explore its
important properties followed by the Lieb’s and entropy uncertainty principles.

1. Introduction

Based on the knowledge that the Hermite functions are the eigenfunctions of the
Fourier transform (FT) with eigenvalues €%, Namias [27] introduced in 1980 the
fractional Fourier transform (FrFT) with angle 6 as an integral transform whose
eigenfunctions are the Hermite functions but with eigenvalues e*?, and which is
reduced to FT when § = 7. This was later refined by McBride and Kerr [22,23]. The
extension of FrFT to higher dimensions can be seen in [30], where the kernel of the
transform has been obtained by taking the tensor product of n copies of the kernel of
the one-dimensional transform. Following the ideas of Namias and the fact that the
Hermite functions of two complex variables are eigenfunctions of the two-dimensional
FT, Zayed introduced in [33,34] a new definition of the two-dimensional FrFT F?1:02,
which is not a tensor product of two copies of the one-dimensional transform and is
given as follows

(]_—el,ozf)(y) _ Cz(u) f(w)e—i{&(u)(\:c|2+\y|2)—m~My}d(L-’ (1)
R2

2020 Mathematics Subject Classification: 11R52, 42B10, 42A05
Keywords and phrases: Quaternion coupled fractional Fourier transform; short time quater-
nion coupled fractional Fourier transform; Lieb’s uncertainty principle.

84



B. Gupta, A. K. Verma, R. P. Agarwal 85

where 61,60, € R and are such that 0; + 6 ¢ 27Z and p = 91;92, V= 01;02, a(p) =

. . iy 7 je—in b(p,v)  c(p,v)
Ccos [ b — C‘OS 1% — S-ln 1% d — 1€ _ # M — ) = ) X Fll _
5 buv) = 0, d(u,v) = Spes d(p) = s (—5(/1, 2 bl r

thermore, the transform depends on the angles ; and 65, which are coupled, so that
the transform parameters are y = w and v = w. Kamalakkannan et al. [19]
proved the Parseval identity, the inversion theorem and that the class {F%1:%2 : 0,0, €
R, 01 + 0 ¢ 27Z} is a family of unitary operators on L?(R?) which has the additive
property F01:02 (FO1.02 f) = FOt01,0210; f for 6, 40y, 0, 4604, 01402 +0, + 604 ¢ 207
Kamalakkannan et al. [17] extended the FrFT to the n-dimensional FrFT, which is
more general than that in [30], and introduced a corresponding convolution structure
followed by the convolution theorem. Recently, Shah et al. [28] obtained the Heisen-
berg uncertainty principle (UP), followed by the local and logarithmic UPs. They
also established some concentration-based UP including Amrein-Berthier-Benedicks,
Donoho-Stark’s UPs, etc.

Although CFrFT generalizes FrF'T to two dimensions, it cannot reproduce the local
information of non-transient signals due to the presence of a global kernel. Therefore,
Kamalakkannan et al. [18] developed a short-time coupled fractional Fourier transform
(STCErFT) and obtained the associated Parseval and inversion formulas, followed by
some associated UPs.

The quaternion Fourier transform (QFT) introduced by Ell [11] is useful in an-
alyzing H-valued, i.e. quaternion-valued functions. Due to the non-commutativity
of the quaternion product, the QFT can be categorized into different types, namely
left-sided, right-sided and two-sided [4, 5, 11]. For the right-sided QFT, Cheng et
al. [9] discussed the Plancherel theorem and also obtained its relation to the other
two QFTs. Lian [24], proved Pitt’s inequality, logarithmic UP (see also [8]), entropy
UP for the two-sided QFT with optimal constants. Also in [25], the author gave
the sharp Hausdorff-Young (H-Y) inequality together with the Hirschman’s entropy
UP for two-sided QFT using the standard differential approach. Recently, the QFT
has been generalized to the quaternion FrFT (QFrFT) and also to the quaternion
quadratic phase Fourier transform (QQPFT) [2,14]. If the kernels in the definition
of the two-sided QFT [26] of the function defined on R? are replaced by those of the
kernels of the FrFT [1,27,30], the two-sided QFrFT is obtained. Similarly, the other
variant of the QFrFT can be found in [31].

The generalization of the classical windowed Fourier transform to H-valued func-
tions on R? can be found in [6]. The authors obtained some important properties
using the properties of right-sided QFT [5]. They also obtained the Heisenberg UP
for the quaternion windowed Fourier transform (QWFT) by using the same tech-
nique as Wilczok [32]. In [3], the authors also obtained Pitt’s inequality and Lieb’s
inequality for the right-sided QWFT introduced in [6]. In addition to the orthogo-
nality property for the two-sided QWFT, the authors in [20,21] studied several UPs,
including Beckner’s UP in terms of entropy and Lieb’s UP. Substituting the Fourier
kernel in the left, right or two-sided QWFT with the fractional Fourier kernels, results
in the corresponding QWEFrFT.

As already mentioned, some important properties as well as the UPs of the CFrFT
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and the STCFrFT for the complex-valued function have been investigated. It is
natural to extend these transforms to quaternionic setting. As far as we know, these
transforms have not yet been introduced for H-valued functions. This paper deals with
the two-sided QCFrFT. We derive the sharp H-Y inequality for QCFrEFT, followed by
the Renyi entropy UP for QCFrFT. We also introduce the STQCFrFT and obtain its
inner product relation and reconstruction formula in addition to its basic properties
such as linearity, translation, etc. The Lieb’s and entropy UPs for the proposed
STQCEFrFT is obtained with the aid of QCFrFT’s sharp H-Y inequality.

The paper is organised as follows: In Section 2, we recall some basics of quaternion
algebra. In Section 3, we define the two sided QCFrFT and establish its various
important properties. In Section 4, we define the two sided STQCFrFT and study its
properties together with the Lieb’s and entropy UPs, followed by an example of the
STQCFrFT. Finally, in Section 5, we conclude this paper.

2. Preliminaries

Let H = {s = so +is1 + js2 + ks3 : So, 81, 82,83 € R} be the quaternion algebra,
where i, j and k are the imaginary units satisfying the Hamilton’s multiplication rules
i?=432=k=-1,4ij=—ji=k, jk=—kj =1, ki = —ik = j. For a quaternion
5§ =80 + 951 + js2 + kss, we define the following terms

e Sc(s) = so, called the scalar part of s which satisfies the cyclic multiplicative
symmetry [15], i.e., Sc(grs) = Sc(sqr) = Sc(rsq), ¥V q,r,s € H.

e the quaternion conjugate s = so—1is1 —jss —ksz, which satisfies7s = §7, r + s =
FT+3 s§=s, Vr,seH.

1

e the modulus |s| = 1/s5 = (Z‘;’:O s%)i, which satisfies |rs| = |r||s|, V r,s € H.

A H-valued function g defined on R™ is of the form g(t) = go(t) + ig1(¢t) + jg2(t) +
kgs(t), t € R™, where go, g1, g2 and g3 are real valued. The L%-norm, 1 < ¢ < oo, of

g is defined by
1
q
9l ) = ( / |g<t>|th) @)

and the collection of all measurable H-valued functions having finite L%-norm is a
Banach space denoted by L(R™). L (R™) is the set of all essentially bounded
measurable H-valued functions with norm

||g||LﬁO(Rn) = ess SUPgepn|9(t)]- (3)
Moreover, the H-valued inner product

(1) = [ st d, @
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with symmetric real scalar part (g, h) = Sc ( Jgn 9(®)R(t) dt ) makes L% (R™) a Hilbert

space, with the norm given in (2) expressed as

||9||L@(1Rn) = \/@ m </ |2 dt) : . (5)

3. Quaternion Coupled Fractional Fourier transform (QCFrFT)

In this section, we define two-sided QCFrFT and look at some of its key characteristics.

DEFINITION 3.1. Let a = (01,62), 8 = (0},0}) € R? such that 0, + 607, 02+ 0% ¢ 27Z.
The QCFrFT of f € L? (R4), x = (z1,x2) € R? x R?, is defined by

( ﬂf / ’Ce 9' wl»wl)f( )ng,%(w%‘-%)dw’ (6)
w = (w,ws) € R? x R?
where  Kh, g (@1,01) = () HE G- arien} @
and ’Ce 04 (w2, wa) = d(y2)e” Hata) (ol +eal") —ea MWQ} (8)
with y1 =292 5= a(yy) =51 b(y, 61)= oL, ey, 6) =22t d(n) =gy
(71,01) 5( 01) 0240 020, ~ cosyz i 5
M= ~ d = 2 o= 2 ’72 b 5 cos &
1 <—e<vhal> b)) 02T T AT DO )=
< i i b(v2,02) (72, 02)
6 :s}n d2 je 2 M — ’ ~ ’ .
c(727 2) E— ( ) Smsinqg 142 (—6(72,62) b(Wz,(Sz)

The corresponding inversion formula is given by

_ /]R Ky @ ) (FE2 1) (@)K, g (2, 02) oo (9)

REMARK 3.2. For a = 3, the kernels ICéh(,l (z1,w;) and ng’ez (x2,ws) are the tensor
products of two one-dimensional FrFT kernels. Thus, the QCFrFT reduces to the two
sided QFrFT of the function f € L (R*). Moreover, if a = 3 = (5, %), the QCFrFT
reduces to the two sided QFT of the function f € LZ(R?).

3.1 QCFrFT in terms of QFT

We now obtain an important relation between QCFrFT and QFT.
( ’ﬁf / ’Cel 9' :c1,w1)f( )K‘gz,aé (w27w2) dx

- _~ 1 1 . - ._
= dpp)emiztomie { [ ettt flg) it do Ly )0l
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ie ‘71

where d~0(71) - sin~yp 0(’}/2) - % and
f(m) _ efi&(“h)kﬂl\2f(m)e*ja(72)|m2‘2. (10)

Thus,
(}—ﬁ"ﬁf)(w) = J()(’71)(3%@(71)'“)1‘2 (fo> (—Miwy, —M2w2)do(72)€_ja(72)‘w2|27 (11)
1

where (]:Hf) (w) = /R4 %eﬂ'ml.wlf(m)%

is the quaternion Fourier transform of the function f € R%.

e ITewr (12)

EXAMPLE 3.3 (of QCFrFT). With the assumption that «, 3 € R? satisfy the con-
ditions in Definition 3.1, we see that the QCFrFT fﬁ"ﬁ of the function f(x) =
eidm)|@* o= Aleal® o= Blwa| gja(v)leal” - A B > 0 is given as

o 1 - - s 1 1Mienl® | Mywr?
(‘F]H[ ﬂf) (w) = mdo('}/l)e*m(“ﬂﬂwﬂze 4( A B )

where M; and M, are the matrices given in Definition 3.1. This can be proved using
the relation (11) and the fact that

~ 1 . 1 .
o [ e )
T JR2 2T R2

1 w2 1 _lwal? 1 *%(#+%)
— - 4A 4B = —
<2WA”€ ) <2WB“€ ) 4AB¢ ’

where f is given by (10).

do () e T302)lwal*,

We now obtain the following important inequality, called the H-Y inequality, based
on the relation (11) among QCFrFT and the QFT.

ﬂmmmM&4UYELﬁRﬂmwlgp§1%+%:1JMn

(61 + 6 0, + 0
Sin n
2 2

21
q

||fﬁtﬂlﬁf”L§1(R4) <

%
where A, = (p) .
q

Proof. Using relation (11), we get

21
)] Al (13)

3=

Q|

1782 gy = o) ldaCra)l ([ [(Fef) (-bion, - )

|do(71)lldo(72)]
= T
(I det(=My)[| det(=Mz)[)
Applying the sharp Hausdorff-Young inequality [25] for the QFT, yields
|CZ0(71)HJ0(’72)|A§ 3
T2z ey
(I det(—M,)|[ det(—M2)[)

| Fef Nl g (ra)-

172 fll g mey <
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2
(0 + 0 a1 -
s (244 W A ugee,

By virtue of (10) we obtain (13). This finishes the proof. O

2_q
q

N (92+0’2
2

REMARK 3.5. e For a = 3, equation (13) reduces to the sharp Hausdorfl-Young
inequality for the QFrFT of the function f € LZ(R?).

e For a = B = (5, %), equation (13) reduces to the sharp Hausdorff-Young in-
equality for the QFT of the function f € LZ(R*).
In what follows, we obtain the Parseval’s formula associated with the QCFrFT.

THEOREM 3.6. If f,g € L%(R*), then

(FaP 1, FPg) = (L.9)- (14)
In particular,

10 ey = I8 £ (15)

Proof. Applying Parseval’s formula for the QFT, we get
(f,9) = (Fuf, Fug)

—Se |det(—M1)Hdet(—M2)|/ (]—"Hf) (= Mywi, — Maws) (Fug) (—lel,—MM)dw}.

Using relation (11), we have

- |det(—M1)Hdet(—M2)\ eiﬁ(71)\w1\2 o Te*i&(m)\wllz

(f,9) = = /Sc — (Fg ) () Fg"9) (w)———| dw
|do(72)[? ri | do(m) (725) (@) (72%) do(m)

- WMl e [(7229) ) (7770) ] s = 57571

Again, using equation (10), it can be shown that <f, J) = (f, g). Hence (14) follows.
With f = ¢ in (14), we have (15). O

3.2 Reényi entropy uncertainty principle

The Renyi entropy UPs for the proposed QCFrFT is obtained in this subsection. Sim-
ilar findings for the complex FrFT can be seen in [13]. These UPs for the QPFT and
two sided quaternion QPFT have recently been discovered in [7,14,29], respectively.
We recall the following.

DEFINITION 3.7 ([10,13]). If P is a probability density function on R™, then the Rényi
entropy of P is defined by

H,(P) = T log (/n[P(a:)]sd:c) , §>0,8# 1. (16)

If s — 1, then (16) results in the Shannon entropy given by

E(P)=- /n P(x)log|P(x)] dx. (17)
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In what follows, we obtain the Renyi entropy UP for QCFrFT.

THEOREM 3.8. If f € L{(R*), 5 < g <1 and 5= + 5= = 2, then

Hey (1f1%) + Hy, (\(fgfﬂf) <w>(2) >
fog(260) + 21og (s (25 ‘ ’Sm (23%) D .

2
log(2
0g(2) + Bo—1

04071

Proof. By inequality (13), we have

([ |(z=2) <w>\qdw);

n(‘)g")\ ( If(w)lpdw>- 1)
Rél

. <91+9/1> e
sin [ ———
2

Putting p = 2 and ¢ = 20y, in equation (18), we have

28 365
([l @ a)™
R4
. <91+9/1) 7 L (92+9'> Bo
sin n
2
This implies
12— 5 N2
Sin(glggl)) Bo Sm(eg-gaz)‘ 0

AS
<(/, If(w)|2“°dw) (L= ™ dw)_ﬁlc’. (19)

2(10
Since 070 + ﬁ = 2, we have

<

(o)

<

@ __Bo
l—ag fo—1
Raising to the power $22- in (19) and using (20), we get

2 2
. 01+0] . 02+0),
in (5[ (452

o

0
8 =y
AQCYO) 0

—lao 2Bo ﬁ
</ (@ |2°‘“dm> </ (F27) )] dw) .
]RAL
This leads to

. (01 +6; . (0246} Say
210g(sm( 5 )Hsm( 5 —1_aolog(A2a0)

—lao log (/R4 | f (z)]?0 d:c) + 1 —130 log (/R4 (fﬂ_oﬂ"ﬁ) (w)‘%o dw> .

(20)
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This implies
2
Hop(11Py 115, (|7221] )
>

. 91+9/1 . 92+9/2
== 51 log(280)+21log < sin ( 5 )‘ ‘sm ( 5 .21

Thus the proof is complete. [

log(2c)+

REMARK 3.9. If ag — 1, then Sy — 1 and thus (21) can be written as

£ + £ (|(7225) @)

sin (91 ; 93) ‘ ‘sin (92 ;r 95) D +2(2 — log4),
e, P e(|(70h) @)
P ()

!
> 2log <e4 sin <91 ;—01)

For QCFrFT, inequality (22) is the Shannon entropy UP.

>210g<

4. Short time quaternion coupled fractional Fourier transform

The two sided short time quaternion coupled fractional Fourier transform (STQCFrEFT)
is defined and its properties are examined in this section.

DEFINITION 4.1. Let o = (61, 602),3 = (04, 05) € R?, such that 61 + 6], 02 +0% ¢ 277Z.
The STQCFrFT of a function f € LZ(R?*) with respect to g € LZ(R*)NLP (R?), called
a quaternion window function (QWF), is defined by

(s877) (€)= [ K@)/ @)ale = 0K, gy (@2 w) do, (23)
(t,w) € R* x RY,
where 1%1,91 (z1,w;) and ng,% (2, ws) are given respectively by (7) and (8).

It is to be noted that if the kernels Kf, o (x1,w1) and K‘;z %(wg,wg) both lie to

the left or to the right of f(x)g(x — t) in the integral in (23), then we have the left or
right sided STQCFrFT. But our study mainly focuses on the two sided STQCFrFT.

REMARK 4.2. For a = 3, the kernels ICZ;,MQ1 (z1,w) and IC§2792(:I:2,w2) are the ten-
sor products of two one-dimensional FrFT. Thus, the STQCFrFT reduces to the
STQFIFT of the function f € L (R?*). Moreover, if a = 8 = (5, §), the STQCFrFT
reduces to the STQFT of the function f € LE(R?).

We mention below a lemma that will be used in proving some basic properties of
the STQCFrFT.
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LEMMA 4.3. Let k=(ky,k2), w=(w1,ws2), z=(x1,x2) € RZxR2. Then ICQL(;1 (z1,w1)
and ICZ)M),2 (z2,ws) satisfy the following
Ky, oy (@1 + by, wy) = e 800kl 2eek) ke dMiwidjol o (@), 0y), (24)
and ’ngﬂg (g + ko, ws) = e—j{&(’Yz)(|k2\+2m2»k2)—k2‘M2w2}]Cg279é (2, ws). (25)
Proof. From the definition of ICéhe,1 , we have
K, o1 (@1 + k1 w1) = d(y )e=Ha) (lmrtka 24w ) —(@1-+k1)-Mrwr }
_ J(%)e—i{a(m)(\zuzﬂkl|2+2m1-k1+\w1|2)—m1~M1w1—k1.M1w1}
_ d(,yl)e—i{d('n)(\a:l|2+\w1\2)—ac1-lel}e—i{&(m)(llﬁ\2+2:c1~w1)—k1-]V11w1},
ie., IC@L(% (1 + k1, w1) = e*i{a(“’l)(lkl‘+2m1'k1)*k1'M1“’1}lC§179,1 (1, w1).
This proves (24). (25) follows similarly. U
The proposed STQCFrFT enjoys the following basic properties.

THEOREM 4.4. Let f1, fo, f € LA(R*) and g1,9,92 € L¥(R*) N LE(R*) be QWFs.
Then
(i) Boundedness: HSH-" fH

<
L (R4) 4n2

1
n (55 [ (255 )] g1l 2 sy 11l 2 ) -
2 3

(ii) Lincarity: Sgy (pfi +af2) = p [S]I?,ffl} +q {SE,’ffz} , pq € {t+iy:t.y R}
(i) Anti-linearity: Sy Tg1+sq2f = [ H qlf} 7+ [ fﬂ‘if] 5, rse{t+jy:t,y e R}
(iv) Translation: (Sﬂf.ﬂ‘f(nf)) (t,w) = e~ el (hl+2@-b)—li-Miws } (Sﬁff) (t—1l,w)
e~ Ha02) (Lol 2w bo) e Maw2} “yhere (1 f) () = f(x — 1), 1= (I1,12) € R? x R2.

(v) Parity: ( e Png) (t,w) = (Sﬁ‘ff) (—t, —w), where (Pf)(x) = f (—z).

Proof. We skip the proof of (i), (ii) and (iii) as they are straightforward.
(iv) From Definition 4.1, we have

(SH‘-DH"}B(Tlf)) (ta w) = / K:éhe’l (:l:l + l17 wl)f(w)g(x - (t - l))lce .05 (w2 + l27 w?) dz.
R4

By Lemma 4.3, we see that

(S22(mf)) (t.e) = mHOOD s 21t}

{/ ’Cel o (1, w1) f(x )g(a: —(t— l))lca o ($2,w2)dm} e—ia(r2)(ll2|+222-12) ~lo- Mawz}
Thus, we have
(s22mh) tw) =

e—iHatm) (2@ 1) ~ly - Miwr} (Sgﬁf) (t — 1, w)e a0 (Lol +22 12) s Maws}
9 ’ ’
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This proves (iv).
(v) Using the definition of STQCFrFT, we have

(s2:8,P1) (t.) / Kp, o (—21,w1) (@) (@ + DK, gy (~@2,02)de. (26)
Now, it can be shown that
’th,e;(—wlawl) = ’Cél,oi (1, —w1) (27)
and ngy%(—:cg, wa) = /ng% (2, —w2). (28)
By virtue of (27), (28) and (26), we have

(S28,PF) (tw) = (S27) (—t,-w).
Thus the proof is complete. 0

THEOREM 4.5. (Inner product relation) If f,h € L%(R*) and g1, g2 are two QWFs,
then Sg glf, 0 ng € LZ(R* x R*) and

(S38 £.52:20) = (£ (7. 7). ). )
Proof. We have

/R/R (SHff)(t,w)‘zdtdw:A4{/H§4

- /4 {/4 |f($)m|2 daz} dt, using Parseval’s Identity
R R

(U mt =) @) o} a

= ||f||%2(R4)||91||%2 (R4)"
Thus, Sg2 f € L3(R* x RY). Similarly, g7 h € LE(R* x RY).

Now,

(sa57.850n) =se / 4 / (FPUO9E=0Y) @) (FEP ()50 =D} (w) dt dw

=se [ { [ r@int =8 ot | a

=sc [ fta) (/ (@~ Ol 1) it ) (@) do

_SC/ f(@) (91, 72) h(z) d.
This implies (Sg7 f, S50 h> — (f §1,5) , ). O
REMARK 4.6. In view of (29), we can conclude that

1. If g1 = g = g2 in (29), then
(SE21ST00) = (£, W93 o)
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2. If f = h in (29), then
(SEL1.SELT) = 91,0201 |2 e
3. If g=g1 = g2 and f = h in (29), then
1S5 FI22 sy = 19122z 1122 - (30)
The STQCFrFT reconstruction formula is given by the subsequent theorem.
THEOREM 4.7. If g is a QWF and f € L%(R*), then

f@) = [ [ Ko@) (S221) tw)k, (s walg(e - t) dt d.
R4 JR4 ! ’ 2

Proof. Using Theorem 4.5, we see that

(f,h) = Sc /R4 /R4 (sg;ff) (t,w){/w K, g (@1, w1)h()g(@ — K, (w27w2)dw} dt dw

_ a,B j B
— /JR4 /R‘l /]R4 Sc{(SHyg f) (t,w)lCé%%(mg,wg)g(w — t)h(av)ICel,gi (wl,w1)} dx dt dw
=Sc /R4 {/R4 » ’Cél,ei (z1,w1) (Sﬁff) (t,w)lcg%%(mg,wg)g(w —t)dt dw} h(z) dz
= < [, o @) (S2£5) (4.0, (@2, walat- ~ £ dtdos, h<->> .

Since h € L%(R?) is arbitrary, it follows that
f(x) = /R4 » Kélﬁ{ (x1,w1) (Sﬁff) (t7w)’(:‘;279;(122,a’2)g(12 —t)dtdw.

This finishes the proof. O

4.1 Uncertainty principle for STQCFrFT

Similar to Heisenberg UP, which governs the localization of a function and its FT,
Wilczok [32] has introduced a new form of UP that compares the localization of both
a function and its windowed FT.

Here we give Lieb’s UP for the STQCEFrFT. In our recent work [14], we obtained an
analogous result for the short-time quaternion QPFT. We first obtain Lieb’s inequality
for the STQCFrFT.

LEMMA 4.8. Let 2 < q < oo, %—i— % =1, f € LE(R*Y) and g be a QWF. Then

Sa’ﬁ ‘ <
H g L4 (REXRY) —

. (91 +9/1)
sin [ ————
2

2 1
q

2 4
s + 0 g1 2\ 2
n < 2 9 2>’ <q) ”g”Lﬁ(Rfl)HfHLi(RzL). (31)
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Proof. Using the definition 4.1, we have

(/Rzl\(sﬁ’ff) “aw)!qdw)t ( | |(Feeuom=ay) @)

Using the Hausdorff-Young inequality, we obtain

([ (s el as)’

! dw); L (32

NS N 1
<Af7 sin(el—;_al) 51n<92+92> (/ ‘f w—t‘ dw)
6, +0,\| Oy + 0\ |1~ »
4l sm( 1+ ) sm< 2+ ) (/ |f(m)|p|§(t—w)|pdm) ,
R4
/| 2-1 2 )
— s1n(91 o ) s1n(92+92) {17 1317 (0}
where g(x) = g(—x) an = 1. This leads to
// SgPy tw)‘ dt dw <
R4 JR4
6, + 6, 0y + 05\ |* 77
gt fsin (7 ) o (252 [ e elar @nt ae

This implies

UL

Sa’ﬁ t w)’thdw}q
0 +9' 05 + 0! %—1 i .
(s s (B3 2)| [ s @) ae

0 +9/ 0 _|_01 %71 ) N
s1n< 1 > (222>‘ I1£1P * ]P]|” « . (33)
L (R%)
Q

We observe that if [ = ,then k> 1 and 1+ 7 = 1 + 1. Since [§|?, |f|P €
LE(R?), by Young’s mequahty [12] we have
s 4
171 % 1gP17 o ) < ALADNF N ez ey 1911 g ey - (34)

H

From (33) and (34) it follows that

{/R4 LK
. 01 + 60 g
S1n B

p 1
q p

< 4

:A

o ‘
)qf tw)‘ dtdw} <

-1

2_1 4 2 2
: )’ (4247 48) Moo Wiz @9

n<92+6‘é
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1
1 2
WhereA,,<”) ,%+%:1. Now we have

T

3
S =
‘ ™
2|

a2 l 2
AZZ,A,Q’A[?:—I-—Q- 17Sincek:al:g
q a q p

|
x
<
ko
)
/~
hSATS)
~——
S

1 a—-p

p U 2 1\ 7
=5 . 5= -<2 , since k' = 2’

:( ) . (36)

So if we insert the equation (36) into (35), we get

{/R /R (s2r) (t,w)‘thdw}‘l’ <

YAV AN RO
S B n B 5 ||fHL§“(R4)||9HL§“(R4)-

This completes the proof. O

Qo

(=)

REMARK 4.9. For a = 3, the inequality (31) reduces to the Lieb’s inequality for the

STQFIFT of the function f € L§(R*). Moreover, if o = 8 = (5, %), inequality (31)
reduces to the Lieb’s inequality for the STQFT of the function f € L% (R?).

4.2 Lieb’s uncertainty principle

DEFINITION 4.10. Let Q C R™ be measurable. A function G € L%(R™) is e-concentrated,
€>0, on Q,if

IxeeGllrz@n) < €llGllrz@n),
where yq takes the value 1 on ) and 0 otherwise.

THEOREM 4.11. Let 0 # f € LE(R?*) and g # 0 be a QWF. If € > 0 and Sﬂf'ﬂ‘vff is
e-concentrated on Q C R* x R*, then

(0 + 0\ ] 05 + 0,
Sin n
2 2

where || denotes the Lebesgue measure of ).

2(1—62)# (g)f g>2 (37

Q] >
2

Proof. Since Sg ’gﬁ f is e-concentrated on 2, we have
2
cSOL’ﬁ ‘ < 62

HXQ i f L2(R4xRY) —

HgH%ﬁ(RﬂHf”QLﬁ(R‘l)'

This results in

2
HXQSE,ff ‘

2 2 2
L2 (R4 xR4) >(1-e )||9||L§(R4)||f||L§“(R4)~ (38)
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Using Holder’s inequality [16] with the exponents 4 and [I—EQ we obtain

L2 (R4 xR4) /W /]1&4 xa(t,w) ‘(SE?,ff) (t,w)’2 dt dw

< {/R /]R (xa(t,w))7= dtdw} {/R /R< sa»ﬁ « w)’2>g dtdw}i

-tof 2.

ey

LI(RAXRA)
Using Lieb’s inequality (31) we get

hoss
<9l+9’1> 2 (92+9§) O
1n n
2 2

From equation (38) and equation (39) we obtain
il

4_9 4_
a=2 | . (01 +07)]" . (B2 + 05\
7 |sin sin
2 2

Since % + % = 1, this results in
2(1-2)_2,
sin 02 () (1- 62)# (g)%z
2 2 ’
8

L2(RAXRY) —

o

2 8
2\ ¢
() 1ol (o0

_l_
>
N~

/
|2 > ( sin (91;—6)
o+ 67\ |?
ie., |2 > ‘sin (1;1)‘
This proves (37). O
REMARK 4.12. If ¢ = 0, from (37), we see that
01+ 67\ |? 02 + 65\ |
a,B > 1 1 2 2
‘supp (SH,g f)’ > |sin <2 > n( 5 >
01+ 00\ | 02+ 05\ |°
. «,B > 1 1 : 2 2
ie., ‘supp (SH’g f)’ > |sin (2 )‘ ’sm ( 3 )

2 2
. . (0,40} . (6246}
i.e, the measure suppSfH"gﬁf > ’sm (71;r 1)’ ’sm (72; 2)’ e,

m, (3)"
lim (=
q—2+ \2

et. (40)

REMARK 4.13. For a = 3, Theorem 4.11 gives Lieb’s UP for the STQFrFT of the
function f € L§(R*). Moreover, if & = 8 = (5, %), Theorem 4.11 gives the Lieb’s
UP for the STQFT of the function f € L%(R?).

4.3 Entropy uncertainty principle
THEOREM 4.14. Let f € LE(R*) and g be a QWF with [fll 2y l9ll L2 ey = 1, then

Es(f,9,a,8) > 2 {2 + log ( sin (01 ; 93) ’ ‘sin <92 ; 9/2) ﬂ ; (41)
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where Es(f, 9, a, B //
R4

Proof. Define
I(f7gaaa/67Q):/ / (SIHI;?
R4 JR4

Using (42) in (30), one gets

S"‘ﬂf (t,w) ‘ log (‘(Sﬁgﬁf) (t7w)‘2> dt dw.

f) (t,w)’q dt dew. (42)

I(f,9,0,8,2) = 1. (43)
From (31) and the hypothesis about f and g, it can also be shown that

/ / 2—q 4
oo (o (5 (5 Q)

For s > 0, define
I(f)gaaa/@a2)_I(f7gaa5672+25)

R =
(5 i
Then
1 (O] (NN T 1!
> —-<1- .
R(s) > - { (‘sm ( 5 sin 5 153 (45)
Let us assume that Eg(f, g, a, B) < 0o, otherwise (41) is obvious.
From the inequality 1+ sloga < a®, s € R and a > 0 we now obtain
1 2s
b o,B
o< |(szn) @l (1= |(sepr) we]”)
2
< - ( ) (t,w ‘ log (‘(Sﬁff) (t,w)‘ ) (46)
2
Since — ‘ (Sﬁff) (t,w) log (‘ (Sﬁ‘ff) (t,w) ) is integrable, we obtain using the

Lebesgue dominated convergence theorem in (46):

2 2s
- a.,B _ o, 3
a )= [ [t 4N (szn) el (1| (s200) o)
= &s(f.9.,8). (47)
Again from (45), we get

. (61+6 0y + 0,
> = 4
51—%1 R(s) > 2 [2 + log ( sin ( 5 sin 3 . (48)
Based on (47) and (48), equation (41) follows. This concludes the proof. U

REMARK 4.15. For a« = 3, Theorem 4.14 gives the entropy UP for the STQFrFT
of the function f € LE(R*). Moreover, if o = 8 = (5, %), Theorem 4.14 gives the
entropy UP for the STQFT of the function f € L2 2 (R%).

EXAMPLE 4.16. Consider the function f(x) = ef(|m1\2+|m2\2)’ x = (z1,x2) € R2xR?,
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with 1 = (21, x2) and 3 = (x3,24). Also consider the function
1, 0<z<i 0<x2< 1 0<3:3< 1 0<x4<1
g(x) =< -1, 7<:1c1<1 §m2<1 §x3<1 <z4<1
0, otherwise.
Using Definition 4.1, the STQCFrFT of f with respect to the window function g
is given by

(s227) (t,w):/RjCéh@/l(:cl,wl)f(:c)g(a: £)K), 4, (@2, w2) dz, (£, w)ER'R,  (49)

where t = (tl,tg), w = (wl,wg) S R2 X Rz with tl = (t17t2), tg = (tg,t4) and
w1 = (wi,ws), wo = (ws,ws). Thus for the chosen function f and the window
function g we get from (49)

(s227)tw)

ty+1 +3
{/ ' 2/ = d(y1)e” i{a(r) (|2 P +Hwr|P) 21 Miws } || dﬂvl}
t] t2
tsts  ptats
x {/ / 202(72)6j{&m)qwz%lwzlz)mz-Mzwz}e—'“2dw2}
t ta
t1+1 t +1
/1 /2 T Ve a0 (21 P +Hwr )~z Myw: } |21 ] dx
t1 % t2+2

t3+1 t4+1 ~ e N 5 N
Ye —i{a(y2)(|z2 | +|ws| )*wz'Mzwz}eflwz\ daxo . (50)
t3+2 t4+2

We first consider the integral

ti+3  pto+i
/ | / 2 J(%)e*i{&(“)(lml‘2+|“’1Iz)f"“'Ml“’l}e_““‘2 dx;
t1 to
~ ti+s g 2, 2 e = 2
_ d(le) / S*Z{a('Yl)(zlerl)*Il(b('Yl151)W1+C(71151)w2)}6*931dxl
t1

t2tg -
X {/ o e_i{&(’Yl)(Ig+w§)_r2(_5(%’51)””}’(“’51)“}2)}6mgdm}- (51)

ta

Consider the integral

ti+s .
/1 2 e—i{&(vl)(xf%uf)le(b(71’51)w1+5(“/1751)w2)}efwfdxl

t1

ti+3 B -
e*iﬁ(’vl)wrf / e—{(1+ia(71))z?—i”31 (b(v1,01)w1+E(n ’61)w2)}d1‘1
t1
(B(v1,81)w1+E(v1,81)wa)?

\/Ee_m('“)“’f_ A +ia(1)) 1
= erf <A(91,9/1,Z) (tl—l—) —31(91,9172',«:1))
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—erf (A(el,01,i)t1—31(0170£,i,w1))‘| ) (52)

where erf(t) %fot et dt, A(61,0,,i) =
(b(v1,61)w1+E(71,61)w2)”

1+ zd(%) and 31(01, 9’172’,0;1) =
0@ . Similarly, we have

tot g f .
/ 273 e—i{ﬁ('yl)(I§+w§)*x2(*5(71a51)w1+b(71’51)“’2)}6*5”3(1‘%2

ta

. o (=&(,8)w1H+b(v1,81)ws)?
\/EE*”(W)‘%* I(1Fia(7))

1
erf | A(01,0,,1 t+>—B 0,9’,',w)
2/1+ ia(71) [r<(1 ”)<2 2 (01,01 1)

—erf (A(elae?[vl)tQ _32(91a917i7w1))] ) (53)

~ T 2
where Bs(01,0,i,w1) = (76(71’21(?4):1‘2(1;(?)1))61)%) . Using equations (52) and (53)
in (51), we get

1 1
PR S ifam) (e e D) -2 Miw } e ?
d(v)e e P11 day
t1 ta

= J(Ql,éi,i,wl) [erf (A(Gl,ell,z) (tl + ;) - Bl(91,0'1,i,w1))
—erf (A(@l, 9'1,i)t1 — Bl(ﬁl,e’l,i,wl))]

1
X {erf (A(Hl,é'/l,i) <t2 + 2) — B2(9179/172',W1)>

—erf (A(elaeivz)t2 - 82(91701ai7w1))] ) (54)

. o (18124 (@E(r1,81)2 ) w112

;o 5 . —q falm)lwr+ I(TFa() .
where J (61,07, w1) = dn) samaem € . Sim-
ilarly, we have

1 1
BT TR S —i{ata) (@ Hewa )~ Mawa } o [aa
d(’}/g)e 2 2 2 2 2920 2 d331
ts tq

) . 1 .
= J(62a9l27.7aw2) {erf (A(HQ,QQ,]) (t?) + 2) - 31(02,912,],0)2)>
—erf (A(02, 05, j)ts — B1(02, 05, j, w2))]

X [erf <A(9279/233) (t4 + ;) - B2(0259/27j’w2))
—erf (A(927 9/27])t4 - B2(923 0127];“"2))} .
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Thus from equations (54) and (55), we have

ti+3 ptots
{/ 2 / ) J(’h)e_i{a(“)(‘wl|2+‘“’1‘2)_w1'M1“1}e_|w1‘2 d:m}
tl tz
R
" {/ / d(yp)e= a0 @al s ) —ma-Maws } ol dwa}
t3 t4

— J(0:,0,,i,w1) [erf (A(el, i) (t1 + ;) - 31(91,0’1,i,w1))
—erf (A(61,07,9)t1 — B1(01,07,4,w1))]

« |ext (A(Hl, 0, i) <t2 + ;) — By (61,6, i,w1)>

—orf (A(01, 6, i)t — Bo(01, 6,4, w1))] J (62, 6, 5, ws)

X -erf (A(92,0§7j) (tg + ;) — Bi(62,05, 4, w))

—exf (A(02.0, j)ts — B (02,0}, j,w2))]

« [ext (A(92,9g,j) <t4 + 2) — By(0y, 6, 4, w2)>

—erf (A(92,9’2,j)t4 —Bg(@g,@é,j,wg))] . (56)
Similarly, it can be shown that
t1+1 t2+1
{ I(y1)e A (i o) —mi-Miws } o~ |? dgcl}
t1+3 t2+2

t3+1 t4+1 ~ N R )
d(v2)e —i{ate) (|2 +lws|*) —za- Maws } , — |22 dxs
tstg Jtats

J(01,01, 4, w1) [erf (A(61,01,9) (t1 + 1) — B1(61, 61,4, w1))
—erf (A(@l,ﬂll,i) (t1 + ;) — Bl(ﬂl,ei,i,w1)>}
x [erf (A(61,07,%) (ta + 1) — Ba(01, 01,4, w1))
—erf (A(Gl,e’l,i) (tz + ;) - Bz(9179’1,i,w1)>} J (02, 03, j, w2)
x [erf (A(02,65,7) (ts + 1) — B1(62, 05, 5, w2))
—erf (A(92,927 /) (ts + 2) — B1(02, 05, 4, w2)>}
X [erf (A(Ba,0%,7) (ta + 1) — Bo(02, 605, j,w2))

—erf (A(62,02,]) <t4 + ;) — By(62, 05, j, wg)ﬂ . (57)



102 Uncertainty principles

Thus from equations (49), (56) and (57) we obtain
(s527)(tw)
= J(01,0,1,w1) [ rf (A 01,0},17) (tl + ;) — 31(91,9/1ai7w1))
—erf (A(01,0,,1)t1 — B1(01,07,1,w1))]
X —erf< (01,0,14) <t2+ > —Bg(@l,ﬁi,i,wl))
~erf (A(61, 0}, 8)ts — Ba(01,0},6,01))] T (02,0, j,ws)
« Jert <A<92,e;,j) <t3 4 ;) - Bl(ez,ag,j,wz)>
~ext (A6, 65, §)ts — B (6,6, j,w2))]
X —erf <A(92,9’2,j) (t4 + ;) - Bz(ez,ﬂé,j,wz))
_ erf (A(6a,0%,5)ts — Ba(0a,05, 5, ws))]
— J(01,0}, 4, w1) [erf (A(61,07,) (t1 + 1) — B1 (61,01, ,w1))

1
—erf (A(Hl,ﬁ’l,z) (tl + 2) — 31(91,91,2',001))}

[erf A(917 913 ) (tQ + 1) 32(91,91, val

1
—erf <A 017015 (tQ + 2) B2 91791727"‘)1 :| J 92,9/2,‘7,(412)

erf A(9 923 )(t3+1) Bl(02792337w2

—erf (A 0a,05,7) (t3 + 2) B1 (02,05, j,ws) )}

x [erf (A(02,0%,7) (ta + 1) — Ba(6s,05, j,w2))

1
—erf (A 92,92, (t4+2) By ( 92792’]7‘—‘)2 }

5. Conclusions

In this paper, we have defined the two sided QCFrFT and obtained the Parseval’s for-
mula and the sharp Hausdorff-Young inequality, based on which we have obtained its
Renyi entropy UP. Incorporating the basic properties such as boundedness, transla-
tion, etc. of the newly proposed STQCFrEFT, we have also obtained the inner product
relation followed by the reconstruction formula. Moreover, using the sharp Hausdorff-
Young inequality for the QCFrFT, we have also obtained the Lieb’s and entropy UPs
for the proposed STQCFrFT.
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