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EMBEDDINGS TO RECTILINEAR SPACE AND
GROMOV–HAUSDORFF DISTANCES

Alexander Ivanov and Alexey Tuzhilin

Abstract. We show that the problem whether a given finite metric space can be em-
bedded into m-dimensional rectilinear space can be reformulated in terms of the Gromov–
Hausdorff distance between some special finite metric spaces.

1. Introduction

We continue our investigations [25,27,28,39] on connections between the geometry of
the Gromov–Hausdorff distance and Discrete Geometry problems such as calculation
of edges weights of a minimal spanning tree, the Borsuk conjecture, computing the
chromatic number and the clique cover number for a simple graph, etc. In this paper
we give an answer to the question whether a given finite metric space (X, d) can
be embedded in an m-dimensional rectilinear space, using the Gromov–Hausdorff
distance.

Hyperspaces

For subsets A and B of a fixed metric space X, a natural distance function dH was
defined by F. Hausdorff [18] as the infimum of the positive numbers r, so that A is
contained in the r-neighborhood of B and vice versa. It is known that this function,
called Hausdorff distance, is a metric on the family of all closed bounded subsets of
the metric space X, see for example [9]. The Hausdorff distance was generalized by
D. Edwards [13] and independently by M. Gromov [15] to the case of two metric spaces
X and Y . The Gromov–Hausdorff distance between the spaces X and Y is equal to
the infimum of the values dH

(
φ(X), ψ(Y )

)
over all possible isometric embeddings

φ : X → Z and ψ : Y → Z in all possible metric spaces Z. It is known that this
distance function is a metric on the family of isometry classes of non-empty compact
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metric spaces. The corresponding hyperspace is usually denoted by M and called
Gromov–Hausdorff space (see [9]).

The geometry of the Gromov–Hausdorff space is rather tricky and has been in-
tensively studied by many authors, see e.g. an overview in [9]. The technique of
optimal correspondences allows to prove that the space M is geodesic [11, 20, 22]
and to describe some local and all global isometries of M, see [21, 24]. Since finite
metric spaces form an everywhere dense subset of M, the distances to such spaces
and between such spaces play an important role in the study of the geometry of M.
Important classes of such spaces are those whose non-zero distances are the same
(so-called one-distance spaces or simplexes) and the spaces whose non-zero distances
take only two different values (so-called two-distance spaces). The authors, together
with S. Iliadis and D. Grigor’ev, see [14,19], computed the distances from a bounded
metric space to a simplex, and, as a particular case, the distances between any simplex
and any 2-distance space, see [26]. It turns out that the Gromov–Hausdorff distance
from a metric space X to a simplex somehow “feels” a geometry of partitions of the
space X. The latter explains some relations between the Gromov–Hausdorff distance
and Discrete Geometry problems.

Discrete Geometry problems

In 1933 K. Borsuk posed the following question: Into how many parts must one
partition an arbitrary subset of Euclidean space in order to obtain pieces with smaller
diameters? He made the following famous conjecture: Any bounded, non-single-point
subset of Rn can be partitioned into at most n+1 subsets, each of which has a smaller
diameter than the initial subset. K. Borsuk himself proved this for n = 2 and for a
ball in 3-dimensional space, [4, 5]. For n = 3 the conjecture was proved by J. Perkal
(1947) and by H.G. Eggleston (1955), then for convex subsets with smooth boundaries
in 1946 by H. Hadwiger [16, 17], and for central symmetric bodies by A. S. Riesling
(1971). In 1993, however, the conjecture was refuted by J. Kahn and G. Kalai for the
general case, see [31]. They constructed a counterexample in dimension n = 1325,
and also proved that the conjecture does not hold for all n > 2014. This estimate
was consistently improved by Raigorodskii, n ≥ 561, Hinrichs and Richter, n ≥ 298,
Bondarenko, n ≥ 65, and Jenrich, n ≥ 64, see details in a review [37]. Note that all
examples are finite subsets of the corresponding spaces, and the best known results
of Bondarenko [7] and Jenrich [30] are the 2-distance subsets of the unit sphere.

On the other hand, Lusternik and Schnirelmann [34], and somewhat later inde-
pendently Borsuk [4, 5], see also [42], have shown that the standard sphere and the
standard ball in Rn, n ≥ 2, cannot be partitioned into m ≤ n subsets with smaller
diameters. The smallest possible number of parts of smaller diameters required to
partition the sphere and ball into Rn is therefore equal to n+ 1.

In paper [27] we have formulated a generalized Borsuk problem that refers to an
arbitrary bounded metric space X and its partitions with arbitrary cardinalitym (not
necessary finite), and given a criterion for solving the Borsuk problem in terms of the
Gromov–Hausdorff distance. It is shown that to prove the existence of an m-partition
into subsets with smaller diameter it is sufficient to calculate the Gromov–Hausdorff
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distance from the space X to a simplex with cardinality m and a diameter smaller
than X. As a corollary, a solution of the Borsuk problem for a 2-distance space X
with distances a < b is obtained in terms of the clique cover number of the simple
graph G with vertex set X, whose vertices x and y are connected by an edge if and
only if |xy| = a.

Recall that a clique cover of a given simple graph is a cover of the graph’s vertex
set by subsets where two vertices are adjacent. Each such subset is called clique and
is a vertex set of a complete subgraph, which is also called clique. The minimum k
for which a k-elementary clique cover exists is called clique cover number of the given
graph. Furthermore, a graph coloring is an assignment of labels (traditionally called
“colors”) to vertices of a graph in such a way that no two adjacent vertices have the
same color. The smallest number of colors necessary to color a graph is called its
chromatic number. It is not difficult to see that the clique cover can be considered
as a graph coloring of the complement graph, so that the clique cover number of a
graph is equal to the chromatic number of the complement graph. The computation
and estimation of these numbers are very difficult combinatorial problems, see an
overview in [33]. In [27] we calculated the clique cover number of a simple graph and
the chromatic number of a simple graph in terms of the Gromov–Hausdorff distance
from an appropriate simplex to the 2-distance spaces constructed by the graph.

Isometrical embeddings and main result

Another classical problem we deal with is the isometric embedding problem, where
the question is whether a given metric space can be isometrically embedded in a
given ambient space. The most studied case is when the ambient space is Euclidean.
These investigations were initiated by Cayley in 1841, see [10], and later continued by
Menger [35], Schönberg [38], Blumenthal [6] and other specialists. One of Schöenberg’s
well-known results states that a metric space (X, d) is isometrically embeddable in
Hilbert space if and only if the squared distance d2 satisfies a list of linear inequalities.
These results were later extended in the context of Banach Lp- and ℓp-spaces. Of
particular importance for our purpose is a result of Bretagnolle, Dacunha Castelle and
Krivine [8], which states that (X, d) is isometrically Lp-embeddable if and only if the
same holds for every finite subspace of (X, d). The same is true for ℓp-embeddability,
see [12].

Embeddability into other metric spaces is also interesting and is intensively stud-
ied. In 1925, P. Urysohn [40] found a separable complete metric space U containing
an arbitrary finite metric space in such “symmetric” way that any isometry between
finite subsets of U can be extended to the isometry of the whole U . Now U is known
as the universal Urysohn space. In 1935, K. Kuratowski [32] constructed an isometric
embedding of a metric space X into the Banach space Cb(X) of bounded continuous
functions on X endowed with sup-metric. In the case of separable metric spaces, the
same constriction can be used to obtain an embedding into the Banach space ℓ∞(X) of
all bounded sequences on X with the sup-metric. Another famous result that should
be mentioned is the J. Nash Theorem [36], which guarantees the embeddability of
any Riemannian manifold into a suitable Euclidean space. Recently, in collaboration
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with S. Iliadis, see [21, 29], the authors have constructed embeddings of an arbitrary
finite metric space into the Gromov–Hausdorff space M and of any bounded metric
space into the Gromov–Hausdorff metric class (see details in [29]).

In this paper we are interested in the case of isometrical embeddings in a rectilinear
space. Based on the results just mentioned, it suffices to consider finite metric spaces
(X, d), and the embeddability of a finite pseudometric space into an ℓ1-space as into
an L1-space is equivalent to the distance d belonging to the so-called cut cone, see
definition below. This important result was first found by Assouad, see [1, 2]. On
the one hand, the cut cone is defined by a finite system of linear inequalities, but
in contrast to the Euclidean case, not all inequalities from this system are known in
general. Therefore, other approaches are of great importance. In 1998, H.-J. Bandelt,
V. Chepoi and M. Laurent [3] found that the question of the embeddability of a finite
space (X, d) in an m-dimensional rectilinear space Rm

1 can be reformulated in terms
of the colorability of a certain hypergraph associated with the space (X, d).

We reduce the colorability of the hypergraph to the colorability of several simple
graphs and then, using our results above on the relations between the coloring num-
ber of a simple graph and the Gromov–Hausdorff distance, we reduce the question
of the embeddability of a finite space (X, d) in an m-dimensional rectilinear space
to the computation of the Gromov–Hausdorff distance from special 2-distant spaces
associated with (X, d) to one-distant spaces, see Main Theorem.

2. Preliminaries

Let X be an arbitrary nonempty set. Recall that a function on d : X × X → R
is called a metric if it is non-negative, non-degenerate, symmetric and satisfies the
triangle inequality. A set with a metric is called a metric space. If such a function d
is allowed to take infinite values, then we call d a generalized metric. If we omit the
non-degeneracy condition, i.e. allow d(x, y) = 0 for some distinct x and y, then we
change the term “metric” to pseudometric. If ρ is only non-negative and symmetric
and ρ(x, x) = 0 for any x ∈ X, then we call such d a distance function, instead of
metric or pseudometric. As a rule, we write |xy| for d(x, y) if it is not ambiguous.

In the following, all metric spaces are endowed with the corresponding metric
topology. We also use the following notations. With #X we denote the cardinality of
a set X. Let X be a metric space. The closure of a subset A ⊂ X is denoted by Ā. For
any nonempty subset A ⊂ X and a point x ∈ X let |xA| = |Ax| = inf

{
|ax| : a ∈ A

}
.

Furthermore, for r ≥ 0:

Br(x) =
{
y ∈ X : |xy| ≤ r

}
, and Ur(x) =

{
y ∈ X : |xy| < r

}
,

and Br(A) =
{
y ∈ X : |Ay| ≤ r

}
, and Ur(A) =

{
y ∈ X : |Ay| < r

}
.

2.1 Hausdorff distance

Recall the basic results concerning the Hausdorff distance. The details can be found
in [9]. For a set X we denote by P0(X) the collection of all nonempty subsets of X.
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Let X be a metric space. For each A,B ∈ P0(X) we set

dH(A,B) = inf
{
r ∈ [0,∞] : A ⊂ Br(B) and Br(A) ⊃ B

}
.

It is easy to see that dH is non-negative, symmetric and dH(A,A) = 0 for any
nonempty A ⊂ X, so dH is a generalized distance on the family P0(X) of all nonempty
subsets of a metric space X, moreover it is a generalized pseudometric on P0(X), i.e.
it satisfies the triangle inequality. The function dH is called Hausdorff distance.

Furthermore, we use H(X) ⊂ P0(X) to denote the set of all nonempty closed
subsets of a metric space X. It is known that the Hausdorff distance dH is a metric
on H(X).

2.2 Gromov–Hausdorff distance

Let X and Y be metric spaces. A triple (X ′, Y ′, Z) consisting of a metric space Z
and its two subsets X ′ and Y ′, which are isometric to X and Y respectively, is called
a realization of the pair (X,Y ). Set

dGH(X,Y ) = inf
{
r ∈ R : ∃ realization (X ′, Y ′, Z) of (X,Y ) with dH(X ′, Y ′) ≤ r

}
.

The value dGH(X,Y ) is obviously non-negative, symmetric and dGH(X,X) = 0 for
any metric space X. Thus, dGH is a generalized distance function on each set of
metric spaces.

Definition 2.1. The value dGH(X,Y ) is called the Gromov–Hausdorff distance be-
tween the metric spaces X and Y .

It is known that the function dGH is a generalized pseudometric on every set of
metric spaces. If the diameters of all spaces in the family are bounded by the same
number, then dGH is a pseudometric. In general, dGH is not a metric, it may equal
zero for distinct metric spaces. However, if we restrict ourselves to compact metric
spaces considered up to an isometry, then dGH is a metric.

For specific calculations of the Gromov–Hausdorff distance, other equivalent defi-
nitions of this distance are useful.

Recall that a relation between sets X and Y is defined as a subset of the Cartesian
product X×Y . Similar to the mappings, for each σ ∈ P0(X×Y ) and for every x ∈ X
and y ∈ Y the image σ(x) :=

{
y ∈ Y : (x, y) ∈ σ

}
is defined of any x ∈ X and the

pre-image σ−1(y) =
{
x ∈ X : (x, y) ∈ σ

}
of any y ∈ Y . In addition, for A ⊂ X

and B ⊂ Y their image and pre-image are defined as the union of the images and
pre-images of all their elements.

A relation R between X and Y is called correspondence if every x ∈ X has a
non-empty image and every y ∈ Y has a non-empty pre-image. The correspondence
can therefore be regarded as a surjective multivalued mapping. With R(X,Y ) we
denote the set of all correspondences between X and Y .

If X and Y are metric spaces, then for each relation σ ∈ P0(X × Y ) its distortion
disσ is defined as follows

disσ = sup
{∣∣|xx′| − |yy′|

∣∣ : (x, y), (x′, y′) ∈ σ
}
.
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The most important known result about the relation between the correspondences
and the Gromov–Hausdorff distance is the following equality

dGH(X,Y ) =
1

2
inf

{
disR : R ∈ R(X,Y )

}
,

which is valid for all metric spaces X and Y , see for example [9].
For arbitrary nonempty sets X and Y , a correspondence R ∈ R(X,Y ) is called

irreducible if it is a minimal element of the set R(X,Y ) with respect to the order
given by the inclusion relation. The set of all irreducible correspondences between X
and Y is denoted by R0(X,Y ). It can be shown [23] that for every R ∈ R(X,Y ) there
exists R0 ∈ R0(X,Y ) such that R0 ⊂ R. In particular, R0(X,Y ) ̸= ∅. Therefore, for
any metric spaces X and Y the following equality holds

dGH(X,Y ) =
1

2
inf

{
disR | R ∈ R0(X,Y )

}
.

Here are some simple cases of exact calculation and estimation of the Gromov–
Hausdorff distance.

Example 2.2. Let Y be an arbitrary ε-net of a metric space X. Then

dGH(X,Y ) ≤ dH(X,Y ) ≤ ε.

Every compact metric space is thus approximated (according to the Gromov-Hausdorff
metric) with any accuracy by finite metric spaces.

With ∆1 we denote a single-point metric space.

Example 2.3. For every metric spaceX the following holds dGH(∆1, X) = 1
2 diamX.

Example 2.4. Let X and Y be metric spaces, and let the diameter of one of them
be finite. Then dGH(X,Y ) ≥ 1

2 |diamX − diamY |.

Example 2.5. Let X and Y be metric spaces, then

dGH(X,Y ) ≤ 1

2
max{diamX,diamY },

in particular, if X and Y are bounded metric spaces, then dGH(X,Y ) <∞.

With simplex we denote a metric space whose non-zero distances are all equal,
i.e. a one-distance space. If m is an arbitrary cardinal number, we denote by ∆m a
simplex that contains m points and whose non-zero distances are all equal to 1. Thus,
λ∆m, λ > 0, is a simplex whose non-zero distances are equal to λ. Furthermore, 0X
coincides with ∆1 by definition. The following result holds, for a proof see [27]

Proposition 2.6. Let X be an arbitrary metric space, m > #X a cardinal number,
and λ ≥ 0, then 2dGH(λ∆m, X) = max{λ,diamX − λ}.

The case 2 ≤ m ≤ #X is rather more delicate, see details in [14,19].

2.3 Elements of Graph Theory

A simple graph is a pair G = (V,E) consisting of two sets V and E, which are called
vertex set and the edge set of the graph G, respectively; elements of V are called
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vertices and the ones of E are called edges of the graph G. The set E is a subset of
the family of two-element subsets of V . If V and E are finite sets, then the graph G
is called finite.

It is convenient to use the following notations:

� If {v, w} ∈ E is an edge of the graph G, then we simply write it as vw or wv;
furthermore, we say that an edge vw connects the vertices v and w, and that v
and w are the vertices of the edge vw;

� We write V (G) and E(G) for the vertex set and the edge set of a graph G to
emphasize which graph is being considered.

Two vertices v, w ∈ V (G) are called adjacent if vw ∈ E(G). Two different edges
e1, e2 ∈ E(G) are called adjacent if they have a common vertex, i.e. if e1 ∩ e2 ̸= ∅.
Each edge vw ∈ E(V ) and its vertex, i.e. v or w, are referred to as incident to each
other. The cardinal number of edges incident to a vertex v is called degree of vertex
v and is denoted by deg v.

We also need some set-theoretical operations on graphs. They are usually defined
in an intuitively clear way in terms of vertex and edge sets. For example, if G = (V,E)
is a graph and e is a two-element subset of V , then G ∪ e =

(
V,E ∪ {e}

)
; similarly,

for e ∈ E put G \ e =
(
V,E \ {e}

)
.

The concept of hypergraph naturally generalizes the concept of graph. Namely, a
hypergraph H = (V,E) is a pair consisting of a vertex set V and an edge set E, where
E is a family of nonempty subsets of V . As with ordinary graphs, an element of V is
called vertex and an element of E is called edge.

2.4 Generalized Borsuk problem

The classical Borsuk problem deals with the partitions of subsets of Euclidean space
into parts with smaller diameters. We generalize the Borsuk problem to arbitrary
bounded metric spaces and partitions of arbitrary cardinality. Let X be a bounded
metric space, m a cardinal number such that 2 ≤ m ≤ #X, and D = {Xi}i∈I a
partition ofX intom nonempty subsets. We say thatD is a partition ofX into subsets
with strictly smaller diameters if there exists ε > 0 such that diamXi ≤ diamX − ε
for all i ∈ I.

TheGeneralized Borsuk problem: Is it possible to partition a bounded metric space
X into a given, probably infinite, number of subsets, each of which has a diameter
strictly smaller than X?

In [27] a solution to this problem is given in the terms of the Gromov–Hausdorff
distance.

Theorem 2.7. Let X be an arbitrary bounded metric space and m a cardinal num-
ber such that 2 ≤ m ≤ #X. Choose an arbitrary number 0 < λ < diamX, then
X can be partitioned into m subsets with strictly smaller diameters if and only if
2dGH(λ∆m, X) < diamX. If not, then 2dGH(λ∆m, X) = diamX.
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2.5 Clique cover number and chromatic number of a simple graph

Recall that a subgraph of an arbitrary simple graph G is called a clique if any its
two vertices are connected by an edge, i.e. the clique is a subgraph which is itself a
complete graph. Note that each single-vertex subgraph is a single-vertex clique. For
simplicity, the vertex set of a clique is also referred to as clique.

On the set of all cliques an ordering with respect to inclusion is naturally defined,
and therefore a family of maximal cliques is uniquely defined based on the above; this
family forms a covering of the graph G in the following sense: the union of all vertex
sets of all maximal cliques coincides with the vertex set V (G) of the graph G.

If we do not restrict ourselves to maximal cliques, we can generally find other
families of cliques covering the graph G. One of the classical problems in graph
theory is to calculate the minimal possible number of cliques covering a given finite
simple graph G. This number is called clique cover number and is often denoted by
θ(G). It is easy to see that the value θ(G) also corresponds to the smallest number
of cliques whose vertex sets form a partition of V (G).

Another popular problem is to find the smallest possible number of colors neces-
sary to color the vertices of a simple finite (hyper-) graph G without monochromatic
edges. This number is denoted by γ(G) and is called chromatic number of the (hyper-)
graph G.

For a simple graph G, we denote by G′ its complement graph, i.e. the graph
with the same vertex set and the complementary set of edges (two vertices of G′ are
adjacent if and only if they are not adjacent in G). It is easy to see that θ(G) = γ(G′)
for any simple finite graph G, see for example [41].

Let G = (V,E) be an arbitrary finite graph. Let there be two positive real numbers
a < b ≤ 2a and define a metric on V as follows: the distance between adjacent vertices
is equal to a, and the distance between nonadjacent vertices is equal to b. Then a
subset V ′ ⊂ V has diameter a if and only if G(V ′) ⊂ G is a clique. This implies that
the clique cover number of G equals the smallest possible cardinality of partitions
of the metric space V into subsets with (strictly) smaller diameter. However, this
number was calculated in Theorem 2.7. We therefore obtain the following result.

Corollary 2.8. Let G = (V,E) be an arbitrary finite graph. Fix two positive real
numbers a < b ≤ 2a and define a metric on V as follows: the distance between
adjacent vertices equals a, and the distance between nonadjacent ones equals b. Let m
be the greatest positive integer k such that 2dGH(a∆k, V ) = b (in the case when there
is no such k, we put m = 0). Then θ(G) = m+ 1.

Because of the duality between clique cover and chromatic numbers, we get the
following dual result.

Corollary 2.9. Let G = (V,E) be an arbitrary finite graph. Fix two positive real
numbers a < b ≤ 2a and define a metric on V as follows: the distance between
adjacent vertices equals b, and the distance between nonadjacent ones equals a. Let m
be the greatest positive integer k such that 2dGH(a∆k, V ) = b (in the case when there
is no such k, we put m = 0). Then γ(G) = m+ 1.
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Corollary 2.10. Let G = (V,E) be an arbitrary finite graph. Fix two positive real
numbers a < b ≤ 2a and define a metric on V as follows: the distance between
adjacent vertices equals b, and the distance between nonadjacent ones equals a. If
2dGH(a∆k, V ) = b, then γ(G) > k.

2.6 Embeddings into rectilinear spaces

We recall that the rectilinear m-dimensional space Rm
1 is the real m-dimensional

space Rm endowed with the distance function generated by the norm ∥y∥1 =
∑

i |yi|
for y = (y1, . . . , ym) ∈ Rm. A pseudometric space (X, d) is called m-embeddable in
a rectilinear space if there exists an isometrical embedding f : X → Rm

1 . The latter
means that d(a, b) =

∥∥f(a) − f(b)
∥∥
1
for all a, b ∈ X. As we mentioned above, the

m-embeddability problem of an arbitrary pseudometric space is equivalent to that for
its finite subspaces (see a proof in [12]).

To describe finite pseudometric spaces embeddable into rectilinear spaces, we need
to recall the concepts of cut pseudometrics and cut cones. Let X be a finite set
consisting of n elements. Without loss of generality, we set X = {1, . . . , n}. For
a proper subset S ⊂ X, the pair {S, S′}, where S′ stands for X \ S, is called a
cut. For a cut c = {S, S′}, define a pseudometric δc on X as follows: δc(i, j) = 1 if
#
(
S ∩ {i, j}

)
= 1, and δc(i, j) = 0 otherwise. The pseudometric δc is referred to as

the cut metric, which corresponds to the cut c = {S, S′}.
Recall that every pseudometric d on X = {1, . . . , n} defines the square symmetric

matrix
(
d(i, j)

)
with d(i, i) = 0, which can be given by the vector

(
d(1, 2), . . . , d(n−

1, n)
)
in RN , N = n(n − 1)/2. The set of all such vectors is a convex cone in RN

called the metric cone. Let C be a family of cuts of X, and λ : C → R a mapping such
that λc := λ(c) > 0 for all c ∈ C. The pseudometric d(C, λ) =

∑
c∈C λcδc is called a

cut metric, corresponding to the family C of cuts. Consider all such metrics d(C, λ)
over all families of C and all mappings λ. They form another cone in RN , which is
called cut cone and is denoted by CUTn. The following criterion is obtained in [1].

Assertion 2.11. A finite metric space (X, d) is isometrically embeddable in a recti-
linear space if and only if d ∈ CUT#X .

Remark 2.12. The same criterion works for L1-embeddability of finite metric spaces,
i.e., a finite metric space (X, d) is isometrically embeddable in an L1-space if and only
if d ∈ CUT#X (and if and only if it is embeddable in a rectilinear space).

Remark 2.13. The condition of Assertion 2.11 seems simple, but it is rather difficult
to verify. Moreover, it is proved that the problem is NP-complete.

If the answer is positive, that is, if a metric space (X, d) turns out to be embed-
dable, then the question on the minimal admissible dimension of the rectilinear space
arises naturally. This minimal dimension is referred as ℓ1-dimension of the space
(X, d).

To state the coloring criterion found in [3] we need to construct a special hyper-
graph associated with a cut system C of a set X. Two cuts {A,A′} and {B,B′} are
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said to be incompatible if all four intersections A ∩ B, A ∩ B′, A′ ∩ B, and A′ ∩ B′

are non-empty. Three cuts {A,A′}, {B,B′}, and {C,C ′} are said to form an asteroid
triplet if one can choose one set Ã ∈ {A,A′}, B̃ ∈ {B,B′}, and C̃ ∈ {C,C ′} from each
cut in such a way that the three resulting sets Ã, B̃, and C̃ are pairwise disjoint. The
hypergraph with vertex set C whose edges are all incompatible pairs and all asteroid
triplets is called nesting hypergraph of C and is denoted by Γ(C).

One says that a hypergraph G = (V,E) is m-colorable if there exists a coloring
with m colors without monochromatic edges. In [3] the following result is proved.

Assertion 2.14. Let (X, d) be a finite metric space, and

d =
∑
c∈C

λcδc, λc > 0,

where C is a cut family on X. Then (X, d) is embeddable in m-dimensional rectilinear
space if and only if the corresponding nesting hypergraph Γ(C) is m-colorable. In
particular, the chromatic number of Γ(C) equals the ℓ1-dimension of (X, d).

3. Embeddings an Gromov–Hausdorff distance

The main result of the paper is based on two findings: Assertion 2.14 and Corol-
lary 2.9.

Let C be an arbitrary cut family of a finite set X and Γ(C) the corresponding
nesting hypergraph. Note that for each of its edges {a, b, c} corresponding to an
asteroid triplet, none of the pairs {a, b}, {b, c} and {a, c} forms an edge of Γ(C).
Construct a family of simple graphs with vertex set C as follows: For each asteroid
triplet {a, b, c}, choose one of the pairs {a, b}, {b, c}, {a, c}, add it to the edge set and
delete the triplet. Note that such a pair could belong to multiple asteroid triplets,
but if it is chosen multiple times, we add it to the edge set only once to avoid multiple
edges. As a result, we get at most 3k simple graphs {Gi}, where k stands for the
number of asteroid triplets in the nesting hypergraph. We set G(C) = {Gi}.

Remark 3.1. If the nesting hypergraph does not contain an asteroid triplet, then it
is itself a simple graph and the family G(C) consists of a single element Γ(C).

Lemma 3.2. Let C be an arbitrary cut family of a finite set X and Γ(C) a corresponding
nesting hypergraph, and let G(C) = {Gi} be the family of simple graphs constructed
above. Then Γ(C) is m-colorable if and only if the family G(C) contains an m-colorable
simple graph.

Proof. Let Γ(C) bem-colorable, and fix some itsm-coloring ξ without monochromatic
edges. Then each asteroid triplet contains at least two differently colored vertices.
Construct a simple graph G by deleting each asteroid triplet and adding an edge
connecting these two vertices. If the vertices of such an edge belong to multiple
asteroid triplets, then we add this edge at most once. The resulting simple graph
belongs to G(C) and ξ is its coloring without monochromatic edges.
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Conversely, let G ∈ G(C) and ξ be its coloring without monochromatic edges. Then
ξ is also a coloring of the nesting hypergraph Γ(C) that contains no monochromatic
edges. In fact, each asteroid triplet of Γ(C) contains an edge of G and thus at least
two differently colored vertices. □

Corollary 3.3. Let (X, d) be a finite metric space, and d =
∑

c∈C λcδc, λc > 0,
where C is a cut family on X. Then (X, d) is embeddable in an m-dimensional rec-
tilinear space if and only if the corresponding family G(C) of simple graphs contains
an m-colorable graph. The ℓ1-dimension of (X, d) is equal to minG γ(G), where the
minimum over all G ∈ G(C) is taken.

We now fix two positive real numbers 0 < a < b ≤ 2a, and construct for each
graph G from G(C) a 2-distant metric dG on C as follows: We set dG(s, t) = b if and
only if s and t are adjacent, and dG(s, t) = a otherwise. With CG we denote the
resulting metric space (C, dG).

Theorem 3.4. Let (X, d) be a finite metric space, and d =
∑

c∈C λcδc, λc > 0, where
C is a cut family on X. Then the ℓ1-dimension of (X, d) is equal to m if and only if m
is the smallest positive integer for which minG 2dGH(a∆m, CG) < b, where minimum
is taken over the family G(C), and a∆m stands for the one-distance metric space with
nonzero distance a.

Proof. It is easy to see that 2dGH(a∆m, CG) ≤ b for all positive integers m and
every G ∈ G(C). And if m ≥ #C, then for every G ∈ G(C) the distortion of any
correspondence between a∆m and CG such that the preimages of different cuts do
not intersect is smaller than b. Therefore, the set of positive integers is such that
minG 2dGH(a∆m, CG) < b is not empty.

Let m be the smallest positive integer for which minG 2dGH(a∆m, CG) < b, G ∈
G(C). Let us start with the case m = 1. Recall that 2dGH(a∆1, CG) = diam CG, see
Example 2.3, therefore in this case all distances in the 2-distance space CG are equal
to a, and therefore the graph G is empty (i.e. it has no edges). The nesting graph
Γ(C) is therefore also empty and can be colored in one color. Therefore, (X, d) is
embeddable in the straight line R1 = R1

1 and therefore the ℓ1-dimension of (X, d) is
equal to 1.

Now let m ≥ 2. Due to the assumptions, there is G0 ∈ G(C) such that, for all
k, 1 ≤ k < m, and all G ∈ G(C): 2dGH(a∆m, CG0) < b, and 2dGH(a∆k, CG) = b.
This means that (m−1) is the largest positive integer for which 2dGH(a∆k, CG0) = b,
and therefore, due to Corollary 2.9, γ(G0) = m, and (X, d) is embeddable in an
m-dimensional rectilinear space according to Corollary 3.3.

Furthermore, if (X, d) is embeddable in a k-dimensional rectilinear space, then
due to Corollary 3.3 the family G(C) contains a k-colorable graph G. Consider the
corresponding 2-distant metric space CG = (C, dG). According to Corollary 2.10,
2dGH(a∆k, CG) < b, and therefore minG 2dGH(a∆k, CG) < b. So k ≥ m, due to the
assumptions, and therefore m is the ℓ1-dimension of (X, d).

Conversely, let ℓ1-dimension of (X, d) be equal to m. As already shown above,
the latter implies that minG 2dGH(a∆m, CG) < b. If there exists k < m such that
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minG 2dGH(a∆m, CG) < b, then by virtue of the direct statement (X, d) is embeddable
in a k-dimensional rectilinear space, and the ℓ1-dimension of (X, d) is less than m, a
contradiction. The theorem is proven. □

References

[1] P. Assouad, Plongements isométriques dans L1: aspect analytique, Séminaire d’Initiation à
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