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ON (o, 3,v)-METRICS

Nasrin Sadeghzadeh and Tahere Rajabi

Abstract. In this paper, we introduce a new class of Finsler metrics that generalize
the well-known (e, 8)-metrics. These metrics are defined by a Riemannian metric o and
two 1-forms 8 = b;(z)y’ and v = v;(x)y’. This new class of metrics not only generalizes
(a, B)-metrics, but also includes other important Finsler metrics, such as all (generalized)
~-changes of generalized (a,)-metrics, (o, 3)-metrics, and spherically symmetric Finsler
metrics in R". We find a necessary and sufficient condition for this new class of metrics to
be locally projectively flat. Furthermore, we prove the conditions under which these metrics

are of Douglas type.

1. Introduction

(a, B)-metrics form a special class of Finsler metrics, in part because they are com-
putationally tractable. An («,)-metric on a smooth manifold M is defined by
F = a¢(s), s = = where ¢ = ¢(s) is a C* scalar function on (—bo, by) satisfying cer-
tain regularity conditions, a = /a;;(x)y’y’ is a Riemannian metric and 8 = b;(z)y’
is a 1-form on M.

In [7] we have studied a new generalization of the («, 8)-metrics which is defined
by a Finsler metric F' and a 1-form v = 7;5° on an n-dimensional manifold M. Then
the metric is given by F' = F1)(8), where § := L, ||[7||F < go and ¥(5) is a positive C*
function on (—gg, go). These metrics could be seen as S-change of a Finsler metric.

Suppose F = a¢(s), s = g is a (a, B)- metric. For every 1-form v # 3, F =
ad(s)(8) is not necessarily an (o, 8)-metric. If FF = o+ § is a Randers metric and
F = F +~is a Randers change of F', then F' = o + 8 + 7 is a Randers metric. With
this idea, we have defined a new generalization of the («, §)-metrics in the form of

F =a¥(s,s), where ¥(s,5) = ¢(s)(525), 5 = L.

#(s) o
In this paper we intend to generalize the above metric. We consider a new general-
ization of the («, §)-metrics which is defined by a Riemannian metric o = \/a;;(z)y*y’

and two 1-forms 8 = b;y’ and v = v;4° on an n-dimensional manifold M. Then the
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160 On (a, B, y)-metrics

metric is given by F = a¥U(s,5), where s = g, 5 =2, IBlla < go and ¥(s,5) is

a positive C° function on (—bg,bg) X (—go,9go) is a Finsler metric, which we call
(o, B,7y)-metric.

This class of Finsler metrics generalizes («, 5)-metrics in a natural way. But
the main reason for our interest in them is that they include some Finsler metrics
such as all (generalized) ~-change of generalized (o, 8)-metrics, (o, 8)-metrics and
spherical symmetric Finsler metrics in R™ [10,12]. As an example, let us consider
the transformed 2nd root metric F: F = \/F2 + 3 + v, where 8 = b;;(z)y'y’ and
v = ¢;(x)y’ is a one-form on the manifold M".

There are some generalizations of the (a,)-metrics introduced in the various
papers. A generalization of the (o, 8)-metric was presented in [5,8,9], which coincides
with the (o, 8,7)-metric in the case p = 2. Another generalization of the («, 3)-
metrics are the general (a, 8)-metrics, which were first introduced by C. Yu and H.
Zhu in [11]. By definition, a general (¢, 8)-metric F' can be expressed in the following
form F = a¢(b?,s), where b := ||B||o. In the future, we can similarly define the
general (a, 8,7)-metric given by F = a¢(b?, g%, s,5), where b := ||8]|o and g := ||V

2. Preliminaries

Let M be a smooth manifold and TM := J,,, T M be the tangent bundle of M,
where T, M is the tangent space at © € M. A Finsler metric on M is a function
F:TM — [0,+00) with the following properties

— Fis C* on TM\{0};

F is positively 1-homogeneous on the fibers of tangent bundle T'M;

for each z € M, the following quadratic form g, on T, M is positive definite,
1 92
g, (1) =555
Let © € M and F, := F|p,p. To measure the non-Euclidean feature of F,, define
C,: I,MT,MT,M—Rby
1d
2 dt
The family C := {Cy},ecrn, is called the Cartan torsion. It is well known that C =0
if and only if F' is Riemannian.
Given a Finsler manifold (M, F), then a global vector field G is induced by F on
T My, which in a standard coordinate (z¢, ") for T My is given by

[F2(y + su+ tv)]|1,s=0, u,v € Tu M.

Cy(u,v,w) := [gy+tw(u,v)] lt=0, w,v,w € T, M.

.0 , 0
G‘ = i 2 * -
Y'ga 26 @y oy
where G'(z,y) are local functions on T My given by
1 ug0gi  Ogue  Ogjk ;
Gl == il J Y Igt v J J k. 1
4 {836"“ + dxi Ot } (1)



N. Sadeghzadeh, T. Rajabi 161

G is called the associated spray to (M, F'). The projection of an integral curve of the
spray G is called a geodesic in M.

A Finsler metric F = F(z,y) on an open subset i/ C R is said to be projectively
flat if all geodesics are straight in . It is well-known that a Finsler metric F' on an
open subset U C R"™ is projectively flat if and only if it satisfies the following system

of equations, Fyu,;y* — F,; = 0. This fact is due to G. Hamel [4]. In this case,

. . k
G' = Py', where P = P(x,y) is given by P = FTQ% The scalar function P is called

the projective factor of F.

3. (a,f,7)-metrics

DEFINITION 3.1. For a Riemannian metric a and two 1-form 8 = b;(x)y® and v =
vi(z)y" on an n-dimensional manifold M, an (a, 3,7)-metric F can be expressed as
the form F = a¥(s,s), s:= g, 5:= I, where ||]la < bo, |7|la < go and ¥(s, 3)
is a positive C*° function on (—bg, bg) X (—go, go)-

PROPOSITION 3.2. For an («, 3,7v)-metric F' = aVU(s,5), where s = g and 5 = 7,
the fundamental tensor is given by
9ij = paij + pobib; + poviv;
+ pr(biaj + bja) + pr(viay +vji) + pacioy + p3(biv; + i), (2)
where
pi=U(0 — sV, —5U;), po:=UV0s+ T T, p1 =YW, —spg — 3p3, (3)
p2 = —Sp1 — 5p1, po = WWs5 4 UsWs, p1 = WWs5 — Spg — sps,
p3 = VW5 + U Ws. (4)
Moreover,
det(gij) = U (U — 50, — 505)" T det(a;), (5)
where
D= —sU, —5Ug + (b? — s%)W, s + (g% — 5°) Vs + 2(0 — 55) Vg
07— ) (gt — ) — (0 — 59)7) (6)
and
b= a"bby, g% i=aPyyy, 0= a by, J = qj\;gjf\l}: \fg;lqjj
g = ;{a”' 2 [t (67— I — L[t (17— )]y (7)
- % [pl + (0 — 85) — w1 (g% — 52)] (b'a? +Vat)
1

— 5 [~ T = )+ m(0 - 53)] (v +47a)
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+ &([sw + (b — )W, + (0 — 35)\:[/5} {pl (0 — 55) — m(g? — 52)}

+ {E\I/ + (¢ =53V + (0 — s§)\115} [ﬁl —ma(b? — %) + T (0 — s.§)])aiaj},
where

T = VUsWes — UWss + sV, mo =V W5 — VWU, 4 5UJ (8)

Moreover, the Cartan tensor of F is given by

Cijk = % [hkaij + hiog, + hjaik:| + % |:Bk04ij + i, + Bjaik:|

4 (po)s [ifigho + hhahs + hihuhs | + (Po)s (Rifh, + Bhahs + hihh |

2a 2a
0 4 S )

REMARK 3.3. One could easily show that the above preposition satisfies for any («a, 3)-
metric just by putting § = 0, and satisfies for any («,v)-metric just by putting s = 0.
Proof. Recall that the fundamental tensor and Cartan tensor of a Finsler metric F
are given by gij = $[F?yi,; = FFyiy + F,iFy and Cyji = £(gij),, respectively.
Direct computations yield

1
Syi = ahi, where h; 1= b; — sa;, a; =y,
1- _
5y = —h;, where h;:=; — 5a;,
«
1
Wy =~ [Woh; + Wsh],
1 _
(Ws)yl = a [\I/sshi + ‘I’sshz],
1 _
(\Ilg)y‘ = a [‘Ilgshi + \I’gghz],
1 1
(hz)y; = —ah]‘(){i — SQyj, where Q5 = Oéyiyj = a(a,‘j — Oéi()éj).
_ 1- -
(hl)yj = —ahjozi — SQyj.
Let ¢; = F,i and {;; = F:;. By above equations we have
b = Vo, + WU h; + Vsh, (10)

1 1 .- 1 - _
gij = [\I/ — S\I/S — §\I’§:| aij + *\Ifsshihj + *\Ilgghlhj + *\Ilsg [hlhj =+ hth:I (11)
o e’ a
Then we get (2). We can rewrite (2) as follows

flz‘jP{aij+51bibj+52%:7j+5o(bv:+%')(bj+7j)+pz[aﬂrmbﬂrm%}[aﬁplbﬁm%‘}}v
P P2 P2 P2 P2
— 2 ~2
where §g := %(,03 — L;Zl), 01 1= %(po — %) — 50, 0o 1= %(,50 — %) — dp.
Using [2, Lemma 1.1.1] four times, we obtain (5) and (7). U
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REMARK 3.4. Notice that by Cauchy-Schwartz inequality we have 02 = (a¥b;7;)? <
(a"bibj)(a"yiv;) = b2g*.

We need to prove the following proposition.

PROPOSITION 3.5. Let M be an n-dimensional manifold. An («, 3,7)-metric F =
a¥(s,3), s = g, 5 = 1 is a Finsler metric for any Riemannian o and I-forms
B = by, v = vy where ||B]la < bo, |7]la < go, @ — s5 > 0 if and only if the positive
C™ function ¥ = U(s,3) satisfying

M:=0—s¥, —50,>0, T >0, (12)
whenn >3 or ' > 0, when n = 2, where I" is given by (6) and s, §, b, g are arbitrary
numbers with |s| < b < by and |5] < g < go.

Proof. The case n = 2 is similar to n > 3, so we only prove the proposition for n > 3.
It is easy to verify that F' is a function with regularity and positive homogeneity. In
the following we will consider the strong convexity condition.

Assume that (12) is satisfied, then we could write III" as a second order equation
in IT as follows

T = 1% + (a + a@)IT + (aa — bb) > 0, (13)
where
a:=(b* — )V, + (0 — 55) Vs, bi= (b —s*)Wyg + (0 — 55) Vg,
a:= (g —5)Vss+ (0 — 55) Vs, b= (9> —5) Vs + (0 — 55)V,,.
The above inequality holds if and only if one of the following holds:
(i) A <0 where A = (a+ a)? — 4(aa — bb);

(ii) A =0, then I # w and IIT" = (Il — w)? where w = —1(a + a);

a
(iii) A > 0, then 0 < II < wy or II > wy where wy := — [(a+a) + \/K] and
wy = —3[(a+a) — \/N Note that w; < wo.

Consider a family of functions ¥y(s,5) =1 —t 4+ t¥(s,5), 0 <t < 1. Put F} =
aWy(s,5) and gj; = 1[F?yiyi, then Fy = a and F; = F. We are going to prove
II; >0and I’y > 0 for any 0 <t <1, [s] < b < by and |5] < g < go. It is easy to see
that Iy = 1 — ¢ + tII > 0. Moreover II,T'; = I1? + t(a + a@)Il; + t>(aa@ — bb). Then we

have A; = t?A where

1
2

A = (a+a)? — 4(aa — bb). (14)

It is easy to see that for A.(s, §) < 0, the equation I, I"; is always positive, i.e. I'y > 0.

Now suppose that there are to and (sg, 5o) such that Ay, (so,50) > 0. Since A.(s, 5)

is continuous with respect to t and (s, §), then there is D C (—bg, bo) X (—go, go) such

that ¥(s,5) € D Ay(s,5) > 0 and ¥(s,5) € 0D A(s,5) = 0, where 9D is border
of D. Then on D we have

Htl—‘t = (Ht — tW1)(Ht — tWQ) (15)

If on D we have T',(s,§) > 0, then there is not anything to prove. Now suppose that

there exits U C D such that for (s,5) € U = U|JOU we have T';(s,5) < 0. Since
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[, Ty are both positive, then by continuity T'y we get Jt1,t2 € (0,1) s.t. Ty, (s,5) =
I'y,(s,5) =0; ¥(s,5) € U. By (15) we have
(Ht1 - tlwl)(l_[tl — tlcUQ) = 0, and

(T
Then for t; <t <ty we get V(s,5) €U T(s,3) S 0,and ¥(s,5) € D—U Ty(s,3) >
0. By continuity I'; we have I'¢(s,8) =0, t1 <t <ta, (s,5) € 0U. Then (15) yields
II; = twy or II; = twe. In this case by (16) we get t1 = t9 which is a contradiction.
So I'(s,8) >0 on D.

Now let there is Dy C (—bg, bo) X (—go, go) such that A(s,5) = 0 for every (s,5) €
D;. Then we see that for every 0 < ¢ < 1 and (s,5) € D; we have A¢(s,5) = 0. One
could easily get IT,T'y — ¢*IIT" = (1 — t) (1 — ¢ + 2¢(I1 + 252)). If for some 0 < ¢ < 1 we
have 1 — t + 2¢(IL + 2£%) > 0 then ILT; > ¢TI > 0 and therefore T'y > 0. Now we
assume that there are 0 < ¢ < 1 such that

— tgwl)(Ht2 - tg(.c)g) =0. (16)

a+a

1t g2+ 2% <o, (17)
which one could easily get 1 — ¢+ ¢(IT — %42) < 1(1 —¢) # 0. Thus
LTy = (0 —w)? = (1—t+ (- w)? = (1 —t+ (- “T9)% > 0. (18)

Then for this 0 <t < 1 we get I'y > 0, too.

All above arguments yield 'y > 0 for any 0 <t < 1. Then det(gf;) > 0 for all
0 <t < 1. Since (gy;) is positive definite, we conclude that (gj;) is positive definite
for any t € [0,1]. Therefore, F} is a Finsler metric for any ¢ € [0, 1].

Conversely, assume that F' = a¥(s, ) is a Finsler metric for any Riemannian
metric  and 1-forms § and y with b < by and g < go. Then ¥ = ¥(s, 5) and det(g;;)
are positive. By Proposition 3.2, det(g;;) > 0 is equivalent to II"2I" > 0, which
implies IT # 0 when n > 3. Noting that ¥(0,0) > 0, one could get the inequality
IT > 0. T > 0 also holds because of det(g;;) > 0. U

ExAMPLE 3.6. In [7], a new class of Finsler metrics called (F,~)-metrics was in-
troduced. A Finsler metric F' is called (F,~)-metric if it has the following form
F = F(3), 5= 4, where F is a Finsler metric and v = 7;3* is a 1-form on an n-
dimensional manifold M, v(3) is a positive C*° function on (—go, go) and ||7|[r < go-
It has been shown that F' is a Finsler metric if and only if the positive C*° function
¥(38) satisfying

Y—5' >0,  Y-§ +(p - >0, (19)
when n > 3 or ¢ — 59’ + (p* — §*)9p” > 0, when n = 2, where p* := g¥~;7;. Now
suppose that I is an (a,ﬁ)—metric, ie. F=ad(s), s= g Then

P = ag(s))(3). (20)

Let 5= 1 and ¥ := ¢(5)¢(¢(§)) Then (20) is an («, 3, +)-metric. A direct computa-
tion gives IT = (¢ — s¢') (¢ — 3¢'), T = [¢p— s¢' + (0% — s%)¢"] [ — 59" + (p* — 8°)"].
By these relations we can conclude that if F' be an ( ,5) metric, then F is Fmsler
metric iff IT > 0 and I" > 0.
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For 1-form 38 = b;(z)y* and v = 7;(z)y*, we have

1 1
Prij =5 (g +bi)s Psig o= 5 (bay — i) (21)
v . L e L
Tij == 5(%‘”‘ +7j|i)a Sij = 5(%‘\;‘ - %‘\z‘)- (22)
where ”|” denotes the covariant derivative with respect to the Levi-Civita connection
of a. Moreover, we define
Prio ==Prigy?, Prp =0 Py, Pro =gyt Proo =Pty
Psio :=Psijy?, P =0 Psij, Pso i ="siyt, Psh=a¥ Psjo,  Pso =" s,

- j P L j — iy
and PYTio .—’Y’I“ijyj, ’Y’I“j = b ’Y’I“ij, 'Y’I"O .—'Y’I”jyj, ’YTOO —’Y’/‘ijy yj,

— j — — j i ot PR R
FYSZ‘O .—’YSijy], ’ij =b ’YSij, PYSO .—’YSjy], PYSO =a" ’YSjo, FYS() =7 SQbi-

4. Spray coefficients of F'

In this section, to compute G*, we use a technique used by Matsumoto in [6].

For F' = a¥(s, 5) we can get

ﬁxi = b0|j + er;7 Yzi = Yol + ’YTG;7
1 1 -
Sgi = a(bou + h,GY), Sgi = a(%u + h,GY), (23)
where G; :“G;'/j. Moreover, by a); = 0 and «a;; = 0 we have
Qgi = a,;GY, (CONES G + a, G, (24)

where G}; =G Then

yiyd®
1 1 i T i
(hi)zs = by; — Ebouai - ahrGjai + h, G5 — s G,

= 1 1- _
(hi)ai = ijj — ol — ahrG;fai + hy Gy — 30, G (25)
Differentiating (10) with respect to 27 and using (23), (24) and (25) yield
oL 1 1
907 Wb, ;5 + Wsys); + > |:\Pssb0|j + \I’sﬂo\g} hi + S {\Ilsgbo\j + \Ifgﬂoul h;
+ [\Ilozr R, mgﬁr} G+ (U — 50, — 5U5)a, G
1 o o
+= [\Ifhh + Usshihy + Us(hihy + hihj)} . (26)
Let 7;” denotes the horizontal covariant derivative with respect to Cartan connection
of F'. Next, we deal with ¢;;; = 0, that is gﬁ- = &TN]T' + ETI‘{j. Let us define

Djy, =T, = Gy, Dji=Djyy* = Nj = Gj, D'=Djy! =2G"=2°G". (27)

Then gﬁ; = Lir(D} + G%) + £.(D}; + G7;). Putting (10) and (11) in above equation
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yields
ol;
oI

1 1 - 1 _
+ [(\11 — s, — 5U3)tir + —Uyshihy + —Vsshihy + —Ugs(hihy + hThi)} Gr. (28)
(0% « «

= 05D} + Dy + [Wa, + W,hy + Ush, |G,

By comparing (26) and (28) we get the following
‘Ijsbi\j+‘I/§’Yi\j:ZirD§+ferj— [‘I/ssbo|j+‘lfs§’70\j]hi
Thus by (21) and (22) we have
20, Prij + 25 "y = £, D} + 45, D} + 2, D}

1 1 -

1 1
- [Wasboy; + Vssvo)] hi — > [Wssboji + Vssoii) Ry

1 _ 1 _
- [W,sboj; + Wssyo) | hi — > [W,sboji + Vssvoii) My (30)
2\:[/8 ’BSij + 2\115 "’sij = KWD; — geriT

1 1
T [\IlsstU + \Ijs§70|j] hi + o [\Ilssboﬁ =+ q/s§70|i] hj

1 - 1 -
- [W,sboj; + Wssyop | hi + S [U,sbop; + Vssvopi] Ry (31)
Contracting (30) and (31) with 3/ implies that
1
20, Prig + 2U5 rig = £, D" + 20, D] — o [Wss Proo + Wz Moo hs

1 _
- [Wss Proo + sz Moo hi (32)

1
20, Py + 205 Tsi0 = £, D" — = [Wyy Proo + s Moo hs
a

— 2 [Was o0 + W5 “roo] (33)
If you subtract (33) from (32), you get
U Prio — Psio) + Ws( Trio — Tsio) = 4Dy (34)
The contraction of (34) with y® leads to
U, Prog + Uy Yoo = 4, D" (35)

To obtain the spray coefficients of F', we first propose the following lemma.
LEMMA 4.1. The system of algebraic equations (i) £;. A" = B;, (ii) £.A" = B, has
unique solution A" for given B and B; such that B;y' = 0. The solution is given by

. . o % . .
Al = ’I“AT i — B hi hz’
(arAT)a" + 7 o (B’ + peh’) (36)
where B* = a¥ By, h* = a'hy, hi = a'h; and
II:=v —s¥, — 575,
p1 = [Was + (g° — )| Bob" + [Vss — (6 — $5)J] By,
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pe = [Uss + (b7 — $*)J]| By + [Vs — (0 — 58) | B,b.
Proof. By contracting (11) with b’ and 7" we have

Eijbizé[H+(b2—s2)\1155+(9—s§)\1155]h-+l[(bz—s) ss+(0—55) W] hy, (37)

Zij'yizé[(e—sg)\llss—&—(f )\I/SS]h—i— [TI-+(6—s5) ¥ SS+(92—§2)\P55]Bj. (38)

Next contracting equation (i) with b° and 7" and using (37) and (38) we get the
following

[H + (b2 — )V, + (6 — s§)\I/S§} thj + [(b2 — 82)Wg + (0 — 55)Vgs B Al = aB;b
[(0 = s5) Wy + (g2 — 5%) W5 hj AT + [IT+ (0 — s5) W5 + (g - 52U gg]ﬁ AT = aBjy
By solving the above system we obtain
hiAl = HF{[H+ (0 — $8)W s + (g2 — 5)Wss] B;b
— [(B? = $2) s + (0 — 55)Wss] By } (39)
j o B .
= rT{ [T+ (b2 — %)Wy + (0 — 55) W 5] Bjo?
[ —885) W+ (¢° — 5 )\I/Sg]ijj}. (40)

Substituting (10) in equation (i) yields Wa; A7 + Wih; A7 + Wsh; AT = B. By (39)
and (40) we get

ajAj:é{B—% (\p [TT+(6—58) U 5+ (9> —5°) Uss] —\Ifg[(9—S§)\Ilss+(92—§2>\1’5§])ijj
o (U [T (02 —52) Wi (0—5) W — W [P 52) W5+ (0—55) Uss] ) By }.

Applying (11) in equation (4) yields

g[aijAj — (e A)y] + é[(qjﬁshi + Woshi)hj A7+ (Wgshi + Ussh;)h; A] = B

Contracting this equation with ¢/ and using (39) and (40) one could get (36). 0

Now, we are able to obtain the spray coefficients of F'.
The equations (33) and (35) constitute the system of algebraic equations whose
solution from Lemma 4.1 is given by D = (a, D)o + & B* — %= (u1h' + poh'), where

1 1
B;i=2, Ps;0+205 751‘0+a [Pss Proo+Tss Moo hﬂra[ s5 "roo+¥ss Moo b,
B=", Proo+V; oo,
. 1 1
Bib222\:[/s '880+2\I/g ’Y§0+* [\I/SS ﬁ?"00+\I/S§ 7’1"00] (b2—82)+ [\I/SS Too-l-\I/ V?“()Q] (0—85),
a a
. 1 1
By =2W, P50+2W; Tso+— [Wss Proo+Tss oo (0—85)+—[Tss Proo+Tss Moo (9°—57).
a a
Now put D? = 2G* — 2G" and then we get the followin.
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PROPOSITION 4.2. The spray coefficients G* are related to °G" by

) o« , . 1 . 1 -
G'=*G"+ 1 A2 st + Wy Tso] + 5T [T1b" + T2y + @F?)O/], (41)
where
Dy im [ (= IR + [ — (0 55)0] (2)

Ty i= [Wgs + (8 — ) TR + [Wes — (6 — 55)T]R7,
T3 := [p1 + m2(0 — 38) — (g% — 8°)|RP+[p1 — ma(b* — %) + m1 (0 — 58)|R7, (43)

and

9 2
RP =Prog — ﬁa (W, Pso+ W5 750],  RY :=Trgp — ﬁa (W, P50 + Ws Tso].

5. Projectively flat (a, 8, v)-metrics

LEMMA 5.1. An («, 8,7)-metric F = a¥(s, 5), where s = g and 5 = L, is projectively
flat on an open subset U C R™ if and only if
. o 1 _
ahij G'+ ﬁ [\I/S BS]‘O + Us ’YSjo] + ﬁ [Flh]‘ + thj] =0, (44)
where T'y and 'y are given by (43) and “hi; = a;; — auj.

Proof. Let F = a¥(s,3) be a projectively flat metric on . Therefore, we have
G' = Py’ (45)
Contracting (45) with “h;; and using (41) we get (44).
Conversely, suppose that (44) holds. Contracting (44) by a¥ yields
. . 1 , . o .
[, O5h + s sh] = — = [Dukd + D] - [GT =G ayal].
Applying it to (41) leads to

. 1 1 .
Gl = { QGTOéT + ﬁ [5F1 + §F2 + Erg} }OLZ.

This implies that F' is projectively flat. 0

EXAMPLE 5.2. We consider an («, 8,7)-metric in the following form F = aes + 7,
U(s,8) =e®+ 5. Let by > 0 and go > 0 be the largest numbers such that

M=(1-5)e>0, T'=(1—-s+b"—5%e* >0, |[s|<b<bo, |5]<g<go (46)
Note that F is a Finsler metric if and only if 8 and v satisfy that b := ||5]|o < bo and
9:= 7lla < 90-

For this metric we can prove the following lemma.

LEMMA 5.3. The («, B,7)-metric F = aes + ~ s locally projectively flat if and only
if B is parallel with respect to o and 7y is closed.
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Recall that 1-form 3 is closed (df = 0) if and only if #s;; = 0, and 3 is parallel
with respect to « if and only if b;; = 0, i.e. ﬁsij =0 and ﬁrij =0.

Proof. let F = aes + v be locally projectively flat. Putting (46) into (44) yields

2
; o
hij °G" + - [e® Psjo+7sj0]
(a—=Bex
o? 202 8
+ {ﬁr ——[ew sy 475 }h-:o.
2[a? — aff + b2a? — 2] 00 (a— 5)€§ [ 0 o thi

By multiplying this equation by 2a%(a — 8)[a? — af + b?a? — 3] s, we get
(a—B)[a® —aB+ba” — 52]6§ (a0 — yiy;) °G*
+ 2at [a2 —afB +b%a? - ﬁQ] [eg ,88],0 +Vsj0]
8 8 _
+a?(a — B)ea Broo(aij — By;) — 204 [ea Bso —&—730} (onbj — By,;) = 0.
We can rewrite this equation as a polynomial in ¢’ and «. This gives
0:{—25 [2a2+b2a2—62]e§(aijag—yiyj) G20t [az—i—bzaz—ﬁz] [eg 'sto—i—"’sjo]
8 8 _
—a?Bea Prog(ab;—By;)—2a* [ex Pso+750) (oszj—ﬂyj)}
+a{2[a2+b2a2}eg(aijof—yiyj) °Gi-2Bat [eg B8j0+78j0]+a2e§ ﬂroo(a2bj—6yj)}.

even is rational in y* and « is irrational. Then we have two following equations:

-2 [2042 +b%a? — ﬂz]eg(aijozz —yiy;) °G' + 20t [az +b%a? — 52} [eg sto +75j0]

(07

— a2Be§ Broo(aij — By;) — 20 [65 Psg +7§0] (042bj — By;j) =0, (47)
and
2[0? + 620 e (aij0” — yiy;) °G — 20t [e7 Psjo +7s0)
+ alen 67“00(042[)3‘ - By;) =0. (48)

Then we have
(a2+b2a2){2a4 [a®+b%a® — B?] [eg ﬁsjoJrWsjo]

_ O}ﬁe% ﬁ’1“00(042[)]' — By_]) — 20(4 [eg 580—&-’@0] (042bj — Byj)}
B

8 8
=— B[2a’4+b%a* — 52]{ —2Ba’[e ﬂsjo+75jo]+a26a Proo(a®b; — ﬁyj)}.
Therefore

2a2{(a2+b2a2 g2 ozzﬁz}[e
+{B(a? - g2)et

B
« B5j0+73j0]

Broo — 202 (a?4b%a?) [eg ﬁso—&-“@o] }(a2bj —By;) =0. (49)
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Contracting (49) with b’ leads to
202(a? = ) (a?+b%0? — B7)(e% Fsg+750)+(a2 — B2)(ba? — F)e Frog = 0.
(50)
Since a? # 0 (mod ) Then a? — 3% # 0. The term of (50) which does not contain
o? is —ﬁ3€§ Proo. Notice —ﬁ?’eg is not divisible by a?, then gy = k(z)a? where we
can consider two cases.

Case 1: k(z) = 0. Substituting “rop = 0 into (50) implies that (a?+b%a? —
B2) (e Bsg+750) = 0. If a2+b2a2 — B2 = 0, then the term which does not contain a2
is 32, which implies that 32 = 0 and is a contradiction. Hence

e Psy+750 = 0. (51)
Putting #rgp = 0 and (51) into (49) leads to [(a2+b2a2752)27a252] [eg stoJerjo]:O.
If (a?+b%a? — %)% — %% = 0, then by a similar argument, we get 3% = 0 which is
a contradiction. Therefore

eg B$i0+’ysi0 =0. (52)
Differentiating (52) with respect to 4/ and y* imply that

—(ajhk+akhj — sozajk) BSio+hjhk ﬁSiO‘i’Oéhj B.Sik+05hk Bsij =0.
Contracting it with »/b* yields
(b2 — s2) [(—3s+b2 — ) Bs;p — 20 ﬁsz} —0. (53)

Contracting (53) with b’ leads to (—3s+b? — s2) Psq = 0.

If —35+b% — 52 = 0, then —3a3+b%a? — 32 = 0. By separating it in the rational
and irrational terms of y’, we get 3 = 0. But this leads to a contradiction. Then
Psg = 0, that is %s; = 0. Putting %s; = 0 in (53) yields Ps;p = 0. Substituting it
into (52) implies that Ys;o = 0. From Ps;o = 0 and 7s;o = 0, we get Bsij =0, 7s;; = 0.

Case 2: k(x) # 0. Let rgo = k(z)a®. Substituting %rgp = k(x)a? into (50)
implies that

(a2+b%a2 — B2)(en Psg+50)+B(b2a? — B2)e k(z) = 0. (54)
The term of (54) which does not contain a? is —62(6g Bso+750) — ﬁ%gk‘(a:). Then
we have (eg Bso+750) = —Begk(x). Putting it into (54) yields —QQﬁegk(m) = 0.

This implies that k(z) = 0, then #rgg = 0. Similar to Case 1, we can conclude that
Bg.. =Vg.. =() O
iJ ¥ .

6. Douglas spaces by (o, 8,7)-metrics

In [3], Douglas introduced the local functions D? ;; on T M defined by
i 03 ( ;1 ogm Z)
TR 9y oy oy n+1 oym v
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It is easy to verify that D := D} da’ @ 2 ® da* ® da' is a well-defined tensor on

TMy. D is called the Douglas tensor. The Finsler space (M, F') is called a Douglas

space if and only if Gy’ — G7y* is homogeneous polynomial of degree three in y* [1].
By (41) one can gets Gly? — Giy' = (*Gly? —*GIy") + B, where

1J o 7 7 1,9 A
Bj:zﬁ[\lls (5507; ﬁj y') + Us (Ospy’ fvsjy)]

+ %{ [(Uys + (g2 = 32)T|RP + [Uys — (0 — 53)J] RW}(biyj — by
i 21F {[Wes + (07 = TR + [Ws = (0= 55) IR D3y —7y'). (55

EXAMPLE 6.1. Let F' be the metric that introduced in Example 5.2. We can prove

(a, B,7y)-metric F' = aes + ~ is Doaglus if and only if § is parallel with respect to «
and + is closed.

Proof. Substituting (46) into (55) implies that

O52

BY = P |Csty? ~Pshy)e® + Oshy? sy
o — €a

o? 202 ]
2[a® — af 4 b2a? — 52 [ 0 m(eu %0 Jﬂso)]( —b'y).

Suppose that F is a Douglas space, that is BY are hp(3). Multiplying this equation
by 2(a — 3) [a2 —aB+b%a? — 52]e§ yields

2~ B)[a® — af + ba? — §]eS B =
20°[a® — aff + b%a® — 7] 6§(556y —Pshy’) + 20 [a? — af + b%a® — 52| (Oshy’ —shy’)
+ [042(05 — 5)65 Proo — 2a'cn %s0 — 20 750] 'y’ —¥y").

+

By separating it in rational and irrational terms of 3, we obtain two equations as
follows:

2(a? + b2a2)egBij = —2042662(5863/ _5 jyl) 20526(“’563;7' —Vséyi)

+ a2 Proo(biy? — by"). (56)
and —2B(202 4+ b*a® — 62)€§Bij =20%(a® + b*a? — f?)e g( BTyt

+20%(a® + v%a” — %) sy’ —Tspy)

+ { — a2ﬁeg Broo — 20des Bsg — 2at “’50} (biy? —biy"). (57)

Eliminating B¥ from (56) and (57) yields
(0?—%a?){20% (a2 +120%— B2)ew (Pshy? — ¥y +20% (a2 +820® — %) sy Sy
—|—[ « Bea Broo—2ax 4o Fsg—2a* 'YEO} (biyj—bjyi)}:

—B(2a2—b2a2—62){—2a2ﬂea( sy’ —55y") =202 B(shy’ —shy")+ales Frop(b'y’ =Ty )}~
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By simplifying this equation one implies that

2 (0% —5%)°—a’ 8% |5 sy~ Sy )+2[ (a2 +b%0%— %) a5 Csby’ —Shy')  (58)
+[f(a2+b2a2)(ﬁe§ roo+20° e<y Fso+2a2 so)+ﬁea r00(2a +b2a2762)](biyjfbjyi):0.

By contracting it with b;y;, we get
202(a2—B2)(a2+b202—B2) (e Bso+750)+8(a2—B2) (B2 —B2)es Prop=0.  (59)
The term of (59) which does not contain a2 is —3%e% Argo. Notice that —33e% is not
divisible by a?, then #rgg = k(x)a? and we can consider two cases.
Case 1: k(x) = 0. Substituting “rgo = 0 into (59) implies that
202 (0 4 b?a® — ﬁ2)(eg Psg +750) =0
If a? + b?a? — B2 = 0, then the term which does not contain a2 is 4%. This implies
that 32 = 0 which leads to a contradiction. Hence
e By +750 = 0. (60)
Putting rgop = 0 and (60) into (58) leads to
(02 487 = )2 — 0?82 [+ (Pshy’ ~"sjy’) + (shy’ —si)] = 0.
By a similar argument, we get (o + b%a? — $2)2 — o232 # 0. Therefore
= (Pshy’ —Pshy’) + Osiy? —shy’) = 0. (61)
Contracting (61) with y; yields
e sl 47sh =0 = e Psig +7s50 = 0. (62)
Differentiating (62) with respect to 7 and y* and multiplying it by o? imply that
—(ajhg + aghj — saogy) szo+h hi sloJrozh Sire + athy, P si; = 0.
Contracting it with b7b* yields
(02 — s2)[ (=35 + b2 — 52) P9 — 20 ﬁsl} —0. (63)
Contracting (63) with b* leads to (—3s + b? — s2) fsg = 0. If —3s + b% — 52 = 0, then
—3af + b*a? — 32 = 0. By separating it in rational and irrational terms of y°, we
get 4 = 0. But this leads to a contradiction. Then #sy = 0, that is %s; = 0. Putting
Bs; = 0 in (63) yields Ps;o = 0. Substituting it into (62) implies that 7s;o = 0. From
Bsio = 0 and Ys;0 = 0, we get ﬁsij =0, 7%,;; =0.

Case 2: k(x) # 0. Let #rgp = k(z)a?. Putting #rgo = k(z)a? into (59) implies
that

2(a? 4+ b*a? — ﬂz)(eg Psg +750) + B(b%a? — ,BQ)egk(x) =0. (64)

The term of (64) which does not contain o? is —23? (eg Bso +750) — B3e§k(x). Then

we have 2(e§ Bsy +750) = fﬁegk(:c). Putting it into (64) yields foz2ﬂe§k(a:) =0.

This implies that k(z) = 0, then froo = 0. Therefore similar to Case 1, we can

conclude that Bsij ="7s;; =0. U
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