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UNIQUENESS OF SOME DELAY-DIFFERENTIAL POLYNOMIALS
SHARING A SMALL FUNCTION WITH FINITE WEIGHTS

Anjan Sarkar, Suman Pal and Pulak Sahoo

Abstract. In this paper, we study the uniqueness problems of fn(z)L(g) and gn(z)L(f)
when they share a non-zero small function α(z) with finite weights, where L(h) represents
any one of h(k)(z), h(z + c), h(z + c) − h(z) and h(k)(z + c), k ≥ 1 and c is a non-zero
constant. Here f(z) and g(z) are transcendental meromorphic (or entire) functions and α(z)
is a small function with respect to both f(z) and g(z). Our results improve and supplement
the recent results due to Gao and Liu [Bull. Korean Math. Soc. 59 (2022), 155-166].

1. Introduction

In this paper, by a meromorphic function we will always mean a meromorphic function
in the complex plane. We adopt the standard notations of the Nevanlinna theory
of meromorphic functions as explained in [9, 12, 22]. Let E be an arbitrary set of
positive real numbers of finite linear measure, which do not necessarily have to be
the same for each occurrence. For a non-constant meromorphic function f we denote
by T (r, f) the Nevanlinna characteristic of f and by S(r, f) any quantity satisfying
S(r, f) = o{T (r, f)} as (r → ∞, r ̸∈ E). A meromorphic function a(z)( ̸≡ ∞) is called
a small function with respect to f if T (r, a) = S(r, f). It is said that two meromorphic
functions f(z) and g(z) share a small function a(z) CM (taking into account the
multiples) if f(z)−a(z) and g(z)−a(z) have the same zeros with the same multiples.
If we do not take the multiplicities, then we say that f(z) and g(z) share the small
function a(z) IM (ignoring multiplicities). The order ρ(f) and hyperorder ρ2(f) of a
meromorphic function f is defined as follows:

ρ(f) = lim sup
r→∞

log T (r, f)

log r
and ρ2(f) = lim sup

r→∞

log log T (r, f)

log r
.

At the beginning of this century, I. Lahiri [10, 11] introduced the concept of
weighted sharing, which reads as follows:
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Definition 1.1. Let k be a non-negative integer or infinity. For a ∈ C ∪ {∞} we
denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is
counted m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g), we say
that f , g share the value a with the weight k.

The definition implies that if f , g share a value a with weight k, then z0 is an a-
point of f with multiplicity m(≤ k) if and only if it is an a-point of g with multiplicity
m(≤ k), and z0 is an a-point of f with multiplicitym(> k) if and only if it is an a-point
of g with multiplicity n(> k), where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with the weight k.
Clearly, if f , g share (a, k), then f , g share (a, p) for every integer p, 0 ≤ p ≤ k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

Definition 1.2 ([20]). Let f(z), g(z) and α(z) be meromorphic functions on a domain
D. We say that the functions f and g share the function α with weight k if for every
m = 1, 2, . . . , k the m-fold zeros of f − α coincide with the m-fold zeros of g− α, and
the zeros of f − α of a multiplicity greater than k coincide with the zeros of g − α of
a multiplicity greater than k.

Definition 1.3 ( [10, 11]). We denote by N(r, a; f | ≥ k) the counting function of
those a−points of f whose multiplicities are not smaller than k, where each a−point
is counted according to its multiplicity. N(r, a; f | ≥ k) is the counting function of
those a−points of f whose multiplicities are not smaller than k, where each a−point
is counted only once, without taking its multiplicity into account.

Definition 1.4 ([10,11]). We denote byN2(r, a; f) the sumN(r, a; f)+N(r, a; f | ≥ 2).

In 1959 Hayman [8] proved the following result with respect to the zero distribution
of a special type of complex differential polynomials.

Theorem 1.5. If f(z) is a transcendental entire function and n ≥ 2 is a positive
integer, then fn(z)f ′(z)−a has infinitely many zeros, where a is a non-zero constant.

In 1967, Clunie [5] proved that Theorem 1.5 also holds if n = 1. The analogous
result for meromorphic functions is known as the Hayman Conjecture [8] and is as
follows:

If f(z) is a transcendental meromorphic function and n is a positive integer, then
fn(z)f ′(z)− a has infinitely many zeros, where a is a non-zero constant.

It should be noted that the above conjecture has been fully proved by many
researchers. Hayman himself proved the conjecture for n ≥ 3. Mues [19] proved the
conjecture for n = 2. For n = 1 it was proved in [3,4,23]. In 2007, Laine and Yang [14]
proved a result for the zero distribution of zeros of a complex difference polynomial.

Theorem 1.6 ([14]). If f(z) is a transcendental entire function of finite order and
n ≥ 2, then fn(z)f(z + c) − a has infinitely many zeros, where a, c are non-zero
constants.
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Some improvements of this result have been made in [18]. Analogous theorems for
transcendental meromorphic functions with ρ2(f) < 1 were proved in [17, 18, 21]. In
2009, Liu and Yang [16] considered the zero distribution of fn(z)(f(z+c)−f(z))−p(z),
where p(z) is a nonzero polynomial. In 2020, Laine and Latreuch [13] proved the
following result, which relates to the delay differential form of the Hayman Conjecture.

Theorem 1.7. Let f(z) be a transcendental meromorphic (resp. entire) function with
ρ2(f) < 1 and a(z) a non-zero small function with respect to f(z). If n ≥ k+4 (resp.
n ≥ 3), then fn(z)f (k)(z + c)− a(z) has infinitely many zeros, where c is a non-zero
constant.

In the following, we denote M as the class of transcendental meromorphic func-
tions and M′ as the class of transcendental meromorphic functions of hyperorder less
than 1. Similarly, we denote E as the class of transcendental entire functions and E ′

as the class of transcendental entire functions of hyperorder less than 1.
Recently, Gao and Liu [6] proved a result related to the paired Hayman conjecture

for complex delay-differential polynomials.

Theorem 1.8 ([6]). If one of the following conditions is satisfied:
(i) L(h) = h(k)(z), n ≥ k + 4 and h ∈ M or n ≥ 3 and h ∈ E ;
(ii) L(h) = h(z + c), n ≥ 4 and h ∈ M′ or n ≥ 3 and h ∈ E ′;

(iii) L(h) = h(z + c)− h(z), n ≥ 5 and h ∈ M′ or n ≥ 3 and h ∈ E ′;

(iv) L(h) = h(k)(z + c), n ≥ k + 4 and h ∈ M′ or n ≥ 3 and h ∈ E ′;
then at least one of fn(z)L(g)− a(z) and gn(z)L(f)− a(z) has infinitely many zeros,
where a(z) is a non-zero small function with respect to both f(z) and g(z), k ≥ 1 and
c is a non-zero constant.

Remark 1.9. The above theorem is not true for n = 1. The condition ρ2(f) < 1
cannot be lifted either. Counterexamples to this can be found in [6].

In the same paper, Gao and Liu [6] proved the following two theorems about the
uniqueness of delay differential polynomials.

Theorem 1.10. Let f(z) and g(z) be two transcendental meromorphic functions and
n, k two positive integers. If fn(z)L(g) and gn(z)L(f) share a non-zero small function
α(z) CM, and one of the
(i) L(h) = h(k)(z), n ≥ 3k + 16 and f, g ∈ M;

(ii) L(h) = h(z + c), n ≥ 16 and f, g ∈ M′;

(iii) L(h) = h(z + c)− h(z), n ≥ 19 and f, g ∈ M′;

(iv) L(h) = h(k)(z + c), n ≥ 3k + 16 and f, g ∈ M′;
is satisfied, then either fn(z)L(g) = gn(z)L(f) or fn(z)L(g)gn(z)L(f) = α2(z).

Theorem 1.11. Let f(z) and g(z) be two transcendental entire functions and n, k
be two positive integers. If fn(z)L(g) and gn(z)L(f) share a non-zero small function
α(z) CM and one of
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(i) L(h) = h(k)(z), n ≥ 8 and f, g ∈ E ;
(ii) L(h) = h(z + c), n ≥ 8 and f, g ∈ E ′;

(iii) L(h) = h(z + c)− h(z), n ≥ 8 and f, g ∈ E ′;

(iv) L(h) = h(k)(z + c), n ≥ 8 and f, g ∈ E ′;
is satisfied then either fn(z)L(g) = gn(z)L(f) or fn(z)L(g)gn(z)L(f) = α2(z).

Regarding Theorems 1.10 and 1.11 it is natural to ask following questions: Whether
the nature of sharing can be relaxed in Theorems 1.10 and 1.11? What will be the
effect of such relaxation?

We prove that the conclusions of Theorems 1.10 and 1.11 remain unchanged if we
replace the CM sharing by the weighted sharing with weight 2. We also prove the
related results for the sharing of small functions with weights 1 and 0. We now state
our main results.

Theorem 1.12. Let f(z) and g(z) be two non-constant transcendental meromorphic
functions, n, k be two positive integers, and α(z) be a non-zero small function with re-
spect to both f(z) and g(z). If fn(z)L(g) and gn(z)L(f) share (α, l)(l ≥ 2, an integer)
and one of
(i) L(h) = h(k)(z), n ≥ 3k + 16 and f, g ∈ M;

(ii) L(h) = h(z + c), n ≥ 14 and f, g ∈ M′;

(iii) L(h) = h(z + c)− h(z), n ≥ 19 and f, g ∈ M′;

(iv) L(h) = h(k)(z + c), n ≥ 3k + 16 and f, g ∈ M′;
holds, then either fn(z)L(g) = gn(z)L(f) or fn(z)L(g)gn(z)L(f) = α2(z).

Theorem 1.13. Let f(z) and g(z) be two non-constant transcendental meromorphic
functions, n, k be two positive integers, and α(z) be a non-zero small function with
respect to both f(z) and g(z). If fn(z)L(g) and gn(z)L(f) share (α, 1) and one of
(i) L(h) = h(k)(z), n ≥ 7k

2 + 18 and f, g ∈ M;

(ii) L(h) = h(z + c), n ≥ 16 and f, g ∈ M′;

(iii) L(h) = h(z + c)− h(z), n ≥ 22 and f, g ∈ M′;

(iv) L(h) = h(k)(z + c), n ≥ 7k
2 + 18 and f, g ∈ M′;

holds, then either fn(z)L(g) = gn(z)L(f) or fn(z)L(g)gn(z)L(f) = α2(z).

Theorem 1.14. Let f(z) and g(z) be two non-constant transcendental meromorphic
functions, n, k be two positive integers, and α(z) be a non-zero small function with
respect to both f(z) and g(z). If fn(z)L(g) and gn(z)L(f) share (α, 0) and one of
(i) L(h) = h(k)(z), n ≥ 6k + 28 and f, g ∈ M;

(ii) L(h) = h(z + c), n ≥ 26 and f, g ∈ M′;

(iii) L(h) = h(z + c)− h(z), n ≥ 37 and f, g ∈ M′;

(iv) L(h) = h(k)(z + c), n ≥ 6k + 28 and f, g ∈ M′;
holds, then either fn(z)L(g) = gn(z)L(f) or fn(z)L(g)gn(z)L(f) = α2(z).
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For transcendental entire functions f and g we obtain the following corollaries.

Corollary 1.15. Under the same hypothesis as in Theorem 1.12, the same conclu-
sions hold in each of the following cases:
(i) L(h) = h(k)(z), n ≥ 8 and f, g ∈ E ;
(ii) L(h) = h(z + c), n ≥ 8 and f, g ∈ E ′;

(iii) L(h) = h(z + c)− h(z), n ≥ 8 and f, g ∈ E ′;

(iv) L(h) = h(k)(z + c), n ≥ 8 and f, g ∈ E ′.

Corollary 1.16. Under the same hypothesis as in Theorem 1.13, the same conclu-
sions hold in each of the following cases:
(i) L(h) = h(k)(z), n ≥ 9 and f, g ∈ E ;
(ii) L(h) = h(z + c), n ≥ 9 and f, g ∈ E ′;

(iii) L(h) = h(z + c)− h(z), n ≥ 9 and f, g ∈ E ′;

(iv) L(h) = h(k)(z + c), n ≥ 9 and f, g ∈ E ′.

Corollary 1.17. Under the same hypothesis as in Theorem 1.14, the same conclu-
sions hold in each of the following cases:
(i) L(h) = h(k)(z), n ≥ 14 and f, g ∈ E ;
(ii) L(h) = h(z + c), n ≥ 14 and f, g ∈ E ′;

(iii) L(h) = h(z + c)− h(z), n ≥ 14 and f, g ∈ E ′;

(iv) L(h) = h(k)(z + c), n ≥ 14 and f, g ∈ E ′.

2. Lemmas

We now give some lemmas which will be needed in the sequel. We define

H =

(
F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G− 1

)
,

where F and G are non-constant meromorphic functions defined in the complex plane.

Lemma 2.1 ([22]). Let f be a non-constant meromorphic function and k be a positive
integer. Then

N

(
r,

1

f (k)(z)

)
≤ N

(
r,

1

f(z)

)
+ kN(r, f(z)) + S(r, f(z)).

Lemma 2.2 ([15]). Suppose that T : [0,∞) → [0,∞) is a non-decreasing continuous
function with ρ2(T ) < 1 and c is a non-zero real number. If δ ∈ (0, 1− ρ2(T )), then

T (r + c) = T (r) + o

(
T (r)

rδ

)
.

The next lemma can be proved easily by using Lemma 2.2.
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Lemma 2.3. Let f be a transcendental meromorphic function with ρ2(f) < 1 and c
be a non-zero constant. Then the following inequalities hold.
(i) N(r, 0; f(z + c)) ≤ N(r, 0; f) + S(r, f);

(ii) N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f);

(iii) N(r, 0; f(z + c)) ≤ N(r, 0; f) + S(r, f);

(iv) N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f).

The following lemma gives the characteristic function of L(h) when L(h) takes the
difference h(z+ c)−h(z) or the delay-differential h(k)(z+ c). These results can easily
be obtained by [7, Lemma 8.3] and the first fundamental theorem of Nevanlinna.

Lemma 2.4. (i) T

(
r, 1

h(z+c)−h(z)

)
≤ 2T (r, h(z)) + S(r, h(z)), h ∈ M′ and

T

(
r, 1

h(z+c)−h(z)

)
≤ T (r, h(z)) + S(r, h(z)), h ∈ E ′.

(ii) T

(
r, 1

h(k)(z+c)

)
≤ (k + 1)T (r, h(z)) + S(r, h(z)), h ∈ M′ and T

(
r, 1

h(k)(z+c)

)
≤

T (r, h(z)) + S(r, h(z)), h ∈ E ′.

Lemma 2.5 ([6]). (i) If f, g ∈ M, then

nT (r, f)− (k + 1)T (r, g) ≤ T (r, fng(k)) + S(r, g) ≤ nT (r, f) + (k + 1)T (r, g).

(ii) If f, g ∈ E , then
nT (r, f)− T (r, g) ≤ T (r, fng(k)) + S(r, g) ≤ nT (r, f) + T (r, g).

Lemma 2.6 ([6]). If f, g ∈ M′ or E ′, then

nT (r, f)− T (r, g) ≤ T (r, fn(z)g(z + c)) + S(r, g) ≤ nT (r, f) + T (r, g).

Lemma 2.7 ([6]). (i) If f, g ∈ M′ and g(z + c)− g(z) ̸≡ 0, then

nT (r, f)− 2T (r, g) ≤ T (r, fn(z)(g(z + c)− g(z))) + S(r, g) ≤ nT (r, f) + 2T (r, g).

(ii) If f, g ∈ E ′ and g(z + c)− g(z) ̸≡ 0, then

nT (r, f)− T (r, g) ≤ T (r, fn(z)(g(z + c)− g(z))) + S(r, g) ≤ nT (r, f) + T (r, g).

Lemma 2.8 ([6]). (i) If f, g ∈ M′, then

nT (r, f)− (k + 1)T (r, g) ≤ T (r, fn(z)g(k)(z + c)) + S(r, g) ≤ nT (r, f) + (k + 1)T (r, g).

(ii) If f, g ∈ E ′, then

nT (r, f)− T (r, g) ≤ T (r, fn(z)g(k)(z + c)) + S(r, g) ≤ nT (r, f) + T (r, g).

The proof of the following lemma is exactly the same as the proof of [1, Lemma 2].

Lemma 2.9. Let f, g be two non-constant meromorphic functions and let α be a non-
zero small function with respect to both f and g. If f and g share (α, 2), then one of
the following holds:
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(i) T (r, f)+T (r, g)≤2{N2(r, 0; f)+N2(r, 0; g)+N2(r,∞; f)+N2(r,∞; g)}+S(r, f)+S(r, g);

(ii) f = g; (iii) fg = α2.

Lemma 2.10. Let f, g be two non-constant meromorphic functions and let α be a
non-zero small function with respect to both f and g. If f and g share (α, 1) and
H ̸≡ 0, then

T (r, f)+T (r, g) ≤ 2{N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g)}

+
1

2
{N(r, 0; f) +N(r, 0; g) +N(r,∞; f) +N(r,∞; g)}+ S(r, f) + S(r, g).

Proof. Let F = f/α and G = g/α. If f and g do not share a zero or a pole with
α, then F and G share (1, 1). Now N2(r,∞;F ) = N2(r,∞; f) + N2(r, 0;α). Also
T (r, f) = T (r, F.α) ≤ T (r, F ) + S(r, f) and T (r, g) = T (r,G.α) ≤ T (r,G) + S(r, g).
With [2, Lemma 2.15] we get the result. □

Lemma 2.11. Let f, g be two non-constant meromorphic functions and let α be a
non-zero small function with respect to both f and g. If f and g share (α, 0) and
H ̸≡ 0, then

T (r, f)+T (r, g) ≤ 2{N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g)}
+3{N(r, 0; f) +N(r, 0; g) +N(r,∞; f) +N(r,∞; g)}+ S(r, f) + S(r, f).

Proof. Let F = f/α and G = g/α. Then F and G share (1, 0). Also T (r, f) =
T (r, F.α) ≤ T (r, F ) + S(r, f) and T (r, g) = T (r,G.α) ≤ T (r,G) + S(r, g). We get the
result with [2, Lemma 2.14]. □

3. Proof of the Theorems

Proof (Theorem 1.12). Let F (z) = fn(z)L(g), G(z) = gn(z)L(f). Then F and G
share (α, 2). Suppose that (i) of Lemma 2.9 holds. Then

T (r, F ) + T (r,G)

≤ 2{N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)}+ S(r, F ) + S(r,G). (1)

Part I. Let L(h) = h(k)(z). Then F (z) = fng(k)(z), G(z) = gnf (k)(z). Therefore

N2(r,∞;F ) ≤ 2N(r,∞;F ) ≤ 2{N(r,∞; f) +N(r,∞; g)}; (2)

N2(r,∞;G) ≤ 2N(r,∞;G) ≤ 2{N(r,∞; g) +N(r,∞; f)}. (3)

Using Lemma 2.1 we have

N2(r, 0;F ) ≤ 2N(r, 0; f) +N(r, 0; g(k))

≤ 2N(r, 0; f) +N(r, 0; g) + kN(r,∞; g) + S(r, g), (4)

and N2(r, 0;G) ≤ 2N(r, 0; g) +N(r, 0; f (k))

≤ 2N(r, 0; g) +N(r, 0; f) + kN(r,∞; f) + S(r, f). (5)
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Using (i) of Lemma 2.5 and (2)-(5) in (1) we get

(n−k−1){T (r, f)+T (r, g)}
≤ (2k+8){N(r,∞; f)+N(r,∞; g)}+6{N(r, 0; f)+N(r, 0; g)}+S(r, f)+S(r, g)

≤ (2k + 14){T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

i.e. {n−(3k+15)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

contradicts the assumption that n ≥ 3k + 16 for L(h) = h(k)(z).

Part II. Let L(h) = h(z + c). Then F (z) = fng(z + c), G(z) = gnf(z + c). Using
Lemma 2.3 we get

N2(r,∞;F )≤2N(r,∞; f)+N(r,∞; g(z+c))≤2N(r,∞; f)+N(r,∞; g)+S(r, g); (6)

N2(r,∞;G)≤2N(r,∞; g)+N(r,∞; f(z+c))≤2N(r,∞; g)+N(r,∞; f)+S(r, f); (7)

N2(r, 0;F )≤2N(r, 0; f)+N(r, 0; g(z+c))≤2N(r, 0; f)+N(r, 0; g)+S(r, g); (8)

N2(r, 0;G)≤2N(r, 0; g)+N(r, 0; f(z+c))≤2N(r, 0; g)+N(r, 0; f)+S(r, f). (9)

Using Lemma 2.6 and (6)-(9) in (1) we get

(n− 1){T (r, f) + T (r, g)}
≤ 6{N(r,∞; f) +N(r,∞; g) +N(r, 0; f) +N(r, 0; g)}+ S(r, f) + S(r, g)

≤ 12{T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

i.e. (n− 13){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

that is a contradiction to the assumption that n ≥ 14 for L(h) = h(z + c).

Part III. Let L(h) = h(z + c) − h(z). Then F (z) = fn(g(z + c) − g(z)), G(z) =
gn(f(z + c)− f(z)). Using Lemma 2.3 we get

N2(r,∞;F ) ≤ 2N(r,∞; f) +N(r,∞; g(z + c)) +N(r,∞; g)

≤ 2{N(r,∞; f) +N(r,∞; g)}+ S(r, g); (10)

N2(r,∞;G) ≤ 2N(r,∞; g) +N(r,∞; f(z + c)) +N(r,∞; f)

≤ 2{N(r,∞; g) +N(r,∞; f)}+ S(r, f). (11)

Using (i) of Lemma 2.4 we get

N2(r, 0;F ) ≤ 2N(r, 0; f) +N(r, 0; g(z + c)− g(z)) + S(r, g)

≤ 2{N(r, 0; f) + T (r, g)}+ S(r, g); (12)

N2(r, 0;G) ≤ 2N(r, 0; g) +N(r, 0; f(z + c)− f(z)) + S(r, f)

≤ 2{N(r, 0; g) + T (r, f)}+ S(r, f). (13)

Using (i) of Lemma 2.7 and (10)-(13) in (1) we get

(n− 2){T (r, f) + T (r, g)} ≤ 8{N(r,∞; f) +N(r,∞; g)}+ 4{N(r, 0; f) +N(r, 0; g)}
+ 4{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ 16{T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

This gives (n − 18){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g). Since n ≥ 19 for L(h) =
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h(z + c)− h(z), we again get a contradiction.

Part IV. Let L(h) = h(k)(z + c). Then F (z) = fng(k)(z + c), G(z) = gnf (k)(z + c).
Using Lemma 2.3 we get

N2(r,∞;F ) ≤ 2N(r,∞;F ) ≤ 2{N(r,∞; f) +N(r,∞; g(z + c))}
≤ 2{N(r,∞; f) +N(r,∞; g)}+ S(r, g); (14)

N2(r,∞;G) ≤ 2N(r,∞;G) ≤ 2{N(r,∞; g) +N(r,∞; f(z + c))}
≤ 2{N(r,∞; g) +N(r,∞; f)}+ S(r, f). (15)

Using (ii) of Lemma 2.4 we get

N2(r, 0;F ) ≤ 2N(r, 0; f)+N(r, 0; g(k)(z+c)) ≤ 2N(r, 0; f)+(k+1)T (r, g); (16)

N2(r, 0;G) ≤ 2N(r, 0; g)+N(r, 0; f (k)(z+c)) ≤ 2N(r, 0; g)+(k+1)T (r, f). (17)

Using (i) of Lemma 2.8 and (14)-(17) in (1) we get

(n− k − 1){T (r, f) + T (r, g)} ≤ 8{N(r,∞; f)+N(r,∞; g)}+4{N(r, 0; f)+N(r, 0; g)}
+ 2(k + 1){T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ (2k + 14){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

This gives {n − (3k + 15)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g). Since n ≥ 3k + 16
for L(h) = h(k)(z + c), we get a contradiction.

Therefore either F = G or FG = α2. This means that either fn(z)L(g) = gn(z)L(f)
or fn(z)L(g)gn(z)L(f) = α2(z). This completes the proof of Theorem 1.12. □

Proof (Theorem 1.13). Let F, G be defined as in Theorem 1.12. Then F and G share
(α, 1). Let H ̸≡ 0. Then by Lemma 2.10 we get

T (r, F ) + T (r,G) ≤ 2{N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)}

+
1

2
{N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) +N(r,∞;G)}+ S(r, F ) + S(r,G). (18)

Part I. Let L(h) = h(k)(z). Then

N(r,∞;F ) = N(r,∞; fng(k)) = N(r,∞; f) +N(r,∞; g); (19)

N(r,∞;G) = N(r,∞; gnf (k)) = N(r,∞; g) +N(r,∞; f). (20)

Using Lemma 2.1 we get

N(r, 0;F ) = N(r, 0; fng(k)) ≤ N(r, 0; f) +N(r, 0; g(k))

≤ N(r, 0; f) +N(r, 0; g) + kN(r,∞; g) + S(r, f) + S(r, g). (21)

Similarly,

N(r, 0;G) = N(r, 0; gnf (k))

≤ N(r, 0; f) +N(r, 0; g) + kN(r,∞; f) + S(r, f) + S(r, g). (22)

Therefore using (i) of Lemma 2.5, (2)-(5) and (19)-(22) in (18) we get

(n− k − 1){T (r, f)+T (r, g)}

≤
(
5k

2
+9

)
{N(r,∞; f)+N(r,∞; g)}+7{N(r, 0; f)+N(r, 0; g)}+S(r, f)+S(r, g)
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≤
(
5k

2
+16

)
{T (r, f)+T (r, g)}+S(r, f)+S(r, g),

i.e.

{
n−

(
7k

2
+17

)}
{T (r, f)+T (r, g)} ≤ S(r, f)+S(r, g).

Since n ≥ 7k
2 +18 for L(h) = h(k)(z), we get a contradiction.

Part II. Let L(h) = h(z + c). Then using Lemma 2.3 we have

N(r,∞;F ) ≤ N(r,∞; f)+N(r,∞; g(z+c)) ≤ N(r,∞; f)+N(r,∞; g)+S(r, g); (23)

N(r,∞;G) ≤ N(r,∞; g)+N(r,∞; f(z+c)) ≤ N(r,∞; g)+N(r,∞; f)+S(r, f); (24)

N(r, 0;F ) ≤ N(r, 0; f)+N(r, 0; g(z+c)) ≤ N(r, 0; f)+N(r, 0; g)+S(r, g); (25)

N(r, 0;G) ≤ N(r, 0; g)+N(r, 0; f(z+c)) ≤ N(r, 0; g)+N(r, 0; f)+S(r, f). (26)

Therefore using Lemma 2.6, (6)-(9) and (23)-(26) in (18) we obtain

(n− 1){T (r, f) + T (r, g)}
≤ 7{N(r,∞; f) +N(r,∞; g) +N(r, 0; f) +N(r, 0; g)}+ S(r, f) + S(r, g)

≤ 14{T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

i.e. (n− 15){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

contradicts with the fact n ≥ 16 for L(h) = h(z + c).

Part III. Let L(h) = h(z + c)− h(z). Then using Lemma 2.3 we have

N(r,∞;F ) ≤ N(r,∞; f) +N(r,∞; g(z + c)) +N(r,∞; g) + S(r, g)

≤ N(r,∞; f) + 2N(r,∞; g) + S(r, g); (27)

N(r,∞;G) ≤ N(r,∞; g) +N(r,∞; f(z + c)) +N(r,∞; f) + S(r, f)

≤ N(r,∞; g) + 2N(r,∞; f) + S(r, f). (28)

From Lemma 2.4 follows:

N(r, 0;F ) ≤ N(r, 0; f)+N(r, 0; g(z+c)−g(z)) ≤ N(r, 0; f)+2T (r, g)+S(r, g); (29)

N(r, 0;G) ≤ N(r, 0; g)+N(r, 0; f(z+c)−f(z)) ≤ N(r, 0; g)+2T (r, f)+S(r, f). (30)

Therefore by Lemma 2.7 (i), (10)-(13), (27)-(30) and (18) we obtain

(n− 2){T (r, f) + T (r, g)} ≤ 19{T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

i.e. (n− 21){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g).

Since n ≥ 22 for L(h) = h(z + c)− h(z), we get a contradiction.

Part IV. Let L(h) = h(k)(z + c). Then using Lemma 2.3 we get

N(r,∞;F )≤N(r,∞; f)+N(r,∞; g(z+c))≤N(r,∞; f)+N(r,∞; g)+S(r, g); (31)

N(r,∞;G)≤N(r,∞; g)+N(r,∞; f(z+c))≤N(r,∞; g)+N(r,∞; f)+S(r, f). (32)

Using Lemma 2.4, we get

N(r, 0;F )≤N(r, 0; f)+N(r, 0; g(k)(z+c))≤N(r, 0; f)+(k+1)T (r, g)+S(r, g); (33)

N(r, 0;G)≤N(r, 0; g)+N(r, 0; f (k)(z+c))≤N(r, 0; g)+(k+1)T (r, f)+S(r, f). (34)
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Therefore using Lemma 2.8 (i), (14)-(17) and (31)-(34) in (18) we obtain

(n−k−1){T (r, f)+T (r, g)} ≤
(
5k

2
+16

)
{T (r, f)+T (r, g)}+S(r, f)+S(r, g).

i.e.

{
n−

(
7k

2
+17

)}
{T (r, f)+T (r, g)} ≤ S(r, f)+S(r, g),

that contradicts our assumption that n ≥ 7k
2 + 18 for L(h) = h(k)(z + c).

Thus we have H = 0. Then F ′′

F ′ − 2F ′

F−1 = G′′

G′ − 2G′

G−1 . Integrating twice, we get

F =
(B − 1)G− (A+B − 1)

BG− (A+B)
and G =

(A+B)F − (A+B − 1)

BF − (B − 1)
,

where A ̸= 0 and B are constants. Now we consider the following two cases.
Case 1. Let B = 0. Then F = 1

A (G− (1−A)) and G = A(F − A−1
A ).

Subcase 1.1. If A ̸= 1, then N(r, 1 − A;G) = N(r, 0;F ) and N
(
r, A−1

A ;F
)
=

N(r, 0;G). Using second fundamental theorem of Nevanlinna we have

T (r, F ) ≤ N(r, 0;F ) +N

(
r,
A− 1

A
;F

)
+N(r,∞;F ) + S(r, F )

= N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) + S(r, F ),

and T (r,G) ≤ N(r, 0;G) +N(r, 1−A;G) +N(r,∞;G) + S(r,G)

= N(r, 0;G) +N(r, 0;F ) +N(r,∞;G) + S(r,G).

Therefore

T (r, F ) + T (r,G)

≤ 2{N(r, 0;F ) +N(r, 0;G)}+N(r,∞;F ) +N(r,∞;G) + S(r, F ) + S(r,G). (35)

Part I. Let L(h) = h(k)(z). Then using Lemma 2.5 (i) and (19)-(22) in (35) we get

(n− k − 1){T (r, f) + T (r, g)} ≤ (2k + 2){N(r,∞; f) +N(r,∞; g)}
+ 4{N(r, 0; f) +N(r, 0; g)}+ S(r, f) + S(r, g),

i.e. {n− (3k + 7)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

contradicting the assumption that n ≥ 7k
2 + 18 for L(h) = h(k)(z).

Part II. Let L(h) = h(z + c). Then using Lemma 2.6 and (23)-(26) in (35) we get
(n− 7){T (r, f) + T (r, g)} ≤ S(r, f) +S(r, g) which is a contradiction as n ≥ 16 when
L(h) = h(z + c).

Part III. Let L(h) = h(z + c) − h(z). Then using Lemma 2.7 (i) and (27)-(30)
in (35) we get (n − 11){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g). Since n ≥ 22 when
L(h) = h(z + c)− h(z), we get a contradiction.

Part IV. Let L(h) = h(k)(z + c). Then using Lemma 2.8 (i) and (31)-(34) in (35)
we get {n− (3k + 7)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g). Since n ≥ 7k

2 + 18 when

L(h) = h(k)(z + c), we get a contradiction.

Subcase 1.2. If A = 1, then F = G, that is fn(z)L(g) = gn(z)L(f).

Case 2. Let B ̸= 0. Now we consider the following three subcases.
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Subcase 2.1. Assume thatB ̸= 1. ThenN
(
r, B−1

B ;F
)
= N(r,∞;G) andN

(
r, A+B

B ;G
)

= N(r,∞;F ). Using Nevanlinna’s second fundamental theorem we obtain

T (r, F ) ≤ N(r, 0;F ) +N
(
r,
B − 1

B
;F

)
+N(r,∞;F ) + S(r, F )

= N(r, 0;F ) +N(r,∞;G) +N(r,∞;F ) + S(r, F ),

and T (r,G) ≤ N(r, 0;G) +N
(
r,
A+B

B
;G

)
+N(r,∞;G) + S(r,G)

= N(r, 0;G) +N(r,∞;F ) +N(r,∞;G) + S(r,G).

Therefore

T (r, F ) + T (r,G)

≤ N(r, 0;F ) +N(r, 0;G) + 2{N(r,∞;F ) +N(r,∞;G)}+ S(r, F + S(r,G). (36)

Part I. Let L(h) = h(k)(z). Then using (i) of Lemma 2.5 and (19)-(22) in (36) we
get {n− (2k+7)}{T (r, f)+T (r, g)} ≤ S(r, f)+S(r, g). This contradicts the fact that
n ≥ 7k

2 + 18 when L(h) = h(k)(z).

Part II. Let L(h) = h(z + c). Then using Lemma 2.6 and (23)-(26) in (36) we get
(n − 7){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g). This contradicts the fact that n ≥ 16
when L(h) = h(z + c).

Part III. Let L(h) = h(z + c) − h(z). Then using Lemma 2.7 (i) and (27)-(30)
in (36) we get (n − 11){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g). Since n ≥ 22 when
L(h) = h(z + c)− h(z), we get a contradiction.

Part IV. Let L(h) = h(k)(z + c). Then using Lemma 2.8 (i) and (31)-(34) in (36)
we get {n− (2k + 7)}{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g). Since n ≥ 7k

2 + 18 when

L(h) = h(k)(z + c), we get a contradiction.

Subcase 2.2. Assume that B = 1, A ̸= −1. Then F = − A
G−(A+1) and G =

(A+1)F−A
F . Hence N(r, 0;F ) = N(r,A + 1;G) and N(r, 0;G) = N

(
r, A

A+1 ;F
)
. Us-

ing Nevanlinna’s second fundamental theorem we have

T (r, F ) ≤ N(r, 0;F ) +N

(
r,

A

A+ 1
;F

)
+N(r,∞;F ) + S(r, F )

= N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) + S(r, F );

T (r,G) ≤ N(r, 0;G) +N(r,A+ 1;G) +N(r,∞;G) + S(r,G)

= N(r, 0;G) +N(r, 0;F ) +N(r,∞;G) + S(r,G).

Therefore

T (r, F ) + T (r,G)

≤ 2{N(r, 0;F ) +N(r, 0;G)}+ {N(r,∞;F ) +N(r,∞;G)}+ S(r, F + S(r,G).

If we now proceed in a similar way to Subcase 2.1., we arrive at a contradiction.

Subcase 2.3. Let B=1, A=−1. Then FG=1 and fn(z)L(g)gn(z)L(f)=α2(z).

This proves the theorem. □
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Proof (Theorem 1.14). Let F, G be defined as in Theorem 1.12. Then F and G share
(α, 0). Assume that H ̸≡ 0. Therefore by Lemma 2.11 we have

T (r, F )+T (r,G) ≤ 2{N2(r, 0;F )+N2(r, 0;G)+N2(r,∞;F )+N2(r,∞;G)}
+3{N(r, 0;F )+N(r, 0;G)+N(r,∞;F )+N(r,∞;G)}+S(r, F )+S(r,G). (37)

Part I. Let L(h) = h(k)(z). Then we obtain with (i) of Lemma 2.5, (2)-(5) and (19)-
(22) in (37):

(n− k − 1){T (r, f)+T (r, g)}
≤ (5k+14){N(r,∞; f)+N(r,∞; g)}+12{N(r, 0; f)+N(r, 0; g)}+S(r, f)+S(r, g)

≤ (5k+26){T (r, f)+T (r, g)}+S(r, f)+S(r, g),

i.e. {n− (6k+27)}{T (r, f)+T (r, g)} ≤ S(r, f)+S(r, g).

This contradicts our assumption that n ≥ 6k + 28 when L(h) = h(k)(z).

Part II. Let L(h) = h(z+ c). Then we obtain with Lemma 2.6, (6)-(9) and (23)-(26)
in (37): (n−25){T (r, f)+T (r, g)} ≤ S(r, f)+S(r, g). This contradicts our assumption
that n ≥ 26 when L(h) = h(z + c).

Part III. Let L(h) = h(z + c) − h(z). Then using (i) of Lemma 2.7, (10)-(13) and
(27)-(30) in (37) we get:

(n− 2){T (r, f)+T (r, g)} ≤ 17{N(r,∞; f)+N(r,∞; g)}+7{N(r, 0; f)+N(r, 0; g)}
+10{T (r, f)+T (r, g)}+S(r, f)+S(r, g)

≤ 34{T (r, f)+T (r, g)}+S(r, f)+S(r, g).

i.e. (n− 36){T (r, f)+T (r, g)} ≤ S(r, f)+S(r, g).

Since n ≥ 37 when L(h) = h(z + c)− h(z), we arrive at a contradiction.

Part IV. Let L(h) = h(k)(z + c). Now using Lemma 2.8 (i), (14)-(17) and (31)-(34)
in (37) we get {n− (6k+27)}{T (r, f)+T (r, g)} ≤ S(r, f)+S(r, g). Since n ≥ 6k+28
when L(h) = h(k)(z + c), we arrive at a contradiction.

Therefore, H = 0.

Rest of the proof is similar to that of the case H = 0 in Theorem 1.13. This proves
the theorem. □

Proof (Corollary 1.15). Since f and g are entire functions, L(h) is also an entire
function. Consequently, F and G are also entire functions. Therefore

N(r,∞; f) = 0, N(r,∞; g) = 0, N(r,∞;F ) = 0 and N(r,∞ : G) = 0. (38)

Then the proof follows from the proof of Theorem 1.12. □

Proof (Corollary 1.16). Let us assume that H ̸≡ 0. Since f and g are entire functions,
we obtain with (38) from Lemma 2.10

T (r, F ) + T (r,G) ≤ 2{N2(r, 0;F ) +N2(r, 0;G)}

+
1

2
{N(r, 0;F ) +N(r, 0;G)}+ S(r, F ) + S(r,G).

Now the proof follows from the proof of Theorem 1.13. □
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Proof (Corollary 1.17). Let us assume that H ̸≡ 0. Since f and g are entire functions,
we obtain with (38) from Lemma 2.11

T (r, F ) + T (r,G) ≤ 2{N2(r, 0;F ) +N2(r, 0;G)}
+ 3{N(r, 0;F ) +N(r, 0;G)}+ S(r, F ) + S(r,G).

Now the proof follows from the proof of the Theorem 1.14. □
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