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PROPERTIES OF f-RECTIFYING CURVES IN GALILEAN 3-SPACE

Joydeep Sengupta, Zafar Iqbal and Sarani Chakraborty

Abstract. The purpose of this paper is to introduce a new class of admissible curves,
referred to as f -rectifying curves, and study their geometric properties in Galilean 3-space
G3. For some non-vanishing real-valued smooth function f , an f -rectifying curve in G3 is
introduced as an admissible curve γ of class at least C4 such that its f -position vector field,
given by γf =

∫
fdγ, lies on its rectifying planes (i.e., the planes generated by its tangent

and binormal vectors). Some geometric characterizations of such curves are explored in G3.
Moreover, they are investigated in the equiform geometry of G3.

1. Introduction

Let E3 be the 3D Euclidean space (i.e. the real vector space R3 endowed with the
standard inner product ⟨· , ·⟩). Let γ : I → E3 be a curve of class at least C4 pa-
rameterized by arc length s (and thus unit-speed). As usual, here I is a non-trivial
interval in R, i.e. a connected subset of R that contains at least two points. Let us
consider the Frenet-Serret apparatus {Tγ , Nγ , Bγ , κγ , τγ} for γ, defined as: Tγ = γ′

is the tangent field along γ; Nγ is the principal normal field along γ, derived by
normalizing the acceleration field T ′

γ ; Bγ = Tγ × Nγ is the binormal field along γ
and it is the unique vector field along γ that is orthogonal to both Tγ and Nγ , so
that the dynamic Frenet frame {Tγ , Nγ , Bγ} is positive definite along the curve γ
with the right-handed standard orientation of E3; κγ is the curvature and τγ is the
torsion of γ [2]. At every point γ(s) on γ, the planes generated by {Tγ(s), Bγ(s)},
{Tγ(s), Nγ(s)} and {Nγ(s), Bγ(s)} are referred to as the rectifying plane, osculating
plane and normal plane of γ respectively. From elementary Differential Geometry we
know that a space curve γ lies in a plane in E3 iff its position vector field always lies
in its osculating planes, and it lies on a sphere in E3 iff its position vector field always
lies in its normal planes (cf. [2]). From this point of view, it is natural to ask the
geometric question: Does there exist a space curve whose position vector field always
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remains in its rectifying planes? The existence of such space curves was established
by B.Y. Chen in his paper [3] and they were called rectifying curves. For a rectifying
curve γ : I → E3 parameterized by the arc length s, its position vector field satisfies

γ(s) = λ(s)Tγ(s) + µ(s)Bγ(s)

for smooth functions λ, µ : I → R. In [3], B.Y. Chen studied some characterizations
of rectifying curves in E3 in terms of distance functions as well as tangential, normal
and binormal components of the position vector field and also in terms of the ratios
of their curvature and torsion. He also endeavored to classify such curves in E3 on
the basis of a kind of dilation applied to curves with unit-speed curves lying on S2(1),
the unit sphere in E3.

In [5], B.Y. Chen and F. Dillen observed that rectifying curves can be viewed as
centrodes and extremal curves in E3. They also found a relation between rectifying
curves and centrodes, which plays an important role in the definition of curves with
constant procession in Differential Geometry and Kinematics (in general, Mechanics).
After that, many characterizations of rectifying curves in E3 were developed in [4,7].
In the meantime, the study of rectifying curves has been extended to several ambient
spaces; we mention the Galilean 3-space G3 [6,15,18]. Moreover, a new type of curves
in E3 was studied, which generalizes rectifying curves and helices [8].

In the previous works, we have given some characterizations of null and non-null
f -rectifying curves in Minkowski 3-space E3

1 [9, 10], Minkowski spacetime E4
1 [11],

Euclidean 4-space E4 [12] and Euclidean n-space En [13]. In the present paper we
extend the study to the Galilean 3-space G3. We organize the paper as follows:
• In Section 2 we discuss some fundamental notions of Galilean 3-space G3 and the
Frenet system for curves in it.

• In Section 3 the notion of f -rectifying curves in G3 is introduced.

• In Section 4 we study some simple geometric characterizations of f -rectifying curves
in G3. We also consider how they generalize general helices and rectifying curves in
G3 with respect to their conical curvature.

• In Section 5 we investigate some characterizations of f -rectifying curves in the
equiform geometry of G3. First and foremost, we establish a relation between their
equiform curvature and equiform torsion.

2. Galilean 3-space and Frenet system

The Galilean 3-space, denoted by G3, is a three-dimensional space modelled by a real
Cayley-Klein space endowed with a metric with projective signature (0, 0,+,+) [14].
It can be described in the three-dimensional real projective space RP3 and its ab-
solute figure is defined as a triplet (Π, L,I), consisting of a plane Π (referred to
as ideal plane or absolute plane), a line L (referred to as absolute line) in Π and
the (fixed) elliptic involution I of points on L [17]. In G3 one can introduce ho-
mogeneous coordinates so that the absolute plane Π is obtained by the equation
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x0 = 0, the absolute line L by x0 = 0 = x1 and finally the elliptic involution I by
(0, 0, x2, x3) 7→ (0, 0, x3,−x2). In fact, the projective transformations for which the
absolute form of the eight-parameter similarity group H8 of G3 remains invariant can
be written in terms of non-homogeneous affine coordinates as follows (cf. [16, 17]):

x̄ = a1 + a2x,

ȳ = b1 + b2x+ ξ(y cosφ+ z sinφ),

z̄ = c1 + c2x− ξ(y sinφ− z cosφ),

(1)

where a1, a2, b1, b2, c1, c2, ξ, φ ∈ R. As a special case, if a2 = ξ = 1, we find the
following transformations (called the Galilean transformations), which describe the
Galilean motions: 

x̄ = a1 + x,

ȳ = b1 + b2x+ y cosφ+ z sinφ,

z̄ = c1 + c2x− y sinφ+ z cosφ.

(2)

In this case, we obtain the six-parameter group B6 ⊂ H8 of the isometries of G3,
which is called the group of Galilean motions of G3 [16, 17].

In G3 there are the following two categories of planes:
1. Euclidean planes: the planes that contain the absolute line L;

2. Isotropic planes: the planes that do not contain the absolute line L.
Obviously, the planes obtained by x = constant are Euclidean and all others are
isotropic. In particular, the absolute plane Π is Euclidean. On the other hand, the
lines in G3 belong to the following four categories:
1. Absolute line L;

2. Proper isotropic lines: the lines that are not contained in the absolute plane Π but
intersect the absolute line L;

3. Proper non-isotropic lines: the lines that do not intersect the absolute line L;

4. Improper non-isotropic lines: the lines contained in the absolute plane Π, except
for the absolute line L.

In addition, the vectors in G3 belong to the following two categories:
1. Isotropic vectors: the vectors whose first component vanishes identically, i.e. vec-
tors of the form (0, v2, v3);

2. Non-isotropic vectors: the vectors whose first component does not vanish.
The metric on G3 induces a scalar product ⟨· , ·⟩G3

: G3 ×G3 → R (referred to as
the Galilean scalar product), defined by

⟨v, w⟩G3
:=


v1w1 if both v and w are non-isotropic,

0 if either v or w is non-isotropic,

v2w2 + v3w3 if both v and w are isotropic

for all vectors v = (v1, v2, v3), w = (w1, w2, w3) in G3. It is trivial to mention that
two vectors in G3 are orthogonal if and only if their Galilean scalar product vanishes.
In G3, two non-isotropic vectors cannot be orthogonal, while a non-isotropic vector
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and an isotropic vector are always orthogonal. Now the Galilean scalar product on
G3 induces a norm ∥ · ∥G3

: G3 → R (known as the Galilean norm), defined by

∥v∥G3
:=

√
⟨v, v⟩G3

=

{
|v1| if v is non-isotropic,√

v22 + v23 if v is isotropic

for all vectors v = (v1, v2, v3) in G3. As usual, a vector in G3 is unit if and only
if its Galilean norm is one. It is therefore clear that vectors of the form (1, v2, v3)
are non-isotropic unit vectors in G3. Moreover, for any two vectors v = (v1, v2, v3),
w = (w1, w2, w3) in G3 their Galilean cross product, denoted by v×G3w, is defined as
follows [1]:

v×G3
w =



∣∣∣∣∣∣∣
0 e2 e3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣ if v or w is non-isotropic,

∣∣∣∣∣∣∣
e1 e2 e3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣ if both v and w are isotropic,

where ei = (δi1, δi2, δi3) for each i = 1, 2, 3; δij = 1 iff i = j. It is evident that
v×G3

v = 0 and v×G3
w is orthogonal to both v and w.

The Galilean analogues of the regular curves in Euclidean space are now admissible
curves [16]. In G3 an admissible curve is a curve γ : I → G3 of class at least C3 with
the coordinate expression γ(t) = (x(t), y(t), z(t)), t ∈ I, such that

1. it has no point of inflection, i.e. γ′(t)×G3γ
′′(t) ̸= 0 for all t ∈ I;

2. all its velocities γ′(t) are non-isotropic, i.e. x′(t) ̸= 0 for all t ∈ I.

Let γ : I → G3 be an admissible curve of class at least C4 with arc length
parameter s (i.e. γ has the coordinate expression γ(s) = (x(s), y(s), z(s)), s ∈ I).
Then the (non-isotropic) velocity vectors γ′(s) are normalized by s, which implies
s = x and is an invariant of the group B6. Thus γ takes the coordinate expression
γ(s) = (s, y(s), z(s)), s ∈ I, and is called unit-speed in G3. With Tγ we now denote
the unit tangent γ′ of γ. Then we have

Tγ(s) = γ′(s) = (1, y′(s), z′(s)) , T ′
γ(s) = γ′′(s) = (0, y′′(s), z′′(s)) .

It is obvious that the acceleration T ′
γ = γ′′ is isotropic. Furthermore, we find

⟨Tγ(s), T
′
γ(s)⟩G3

= 0, which means that T ′
γ is orthogonal to Tγ , i.e. orthogonal to

γ. We define the function κγ : I → (0,∞), called curvature of γ, by

κγ(s) := ∥T ′
γ(s)∥G3

=
√
[y′′(s)]2 + [z′′(s)]2.

We normalize T ′
γ to define the unit principal normal of γ, denoted by Nγ , as follows:

Nγ(s) :=
1

κγ(s)
T ′
γ(s) =

1

κγ(s)
(0, y′′(s), z′′(s)) .
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We also define the unit binormal of γ, which is denoted by Bγ , as:

Bγ(s) := Tγ(s)×G3
Nγ(s) =

1

κγ(s)
(0,−z′′(s), y′′(s)) .

Thus, Bγ is the unique vector field along γ that is orthogonal to both Tγ and Nγ ,
so that {Tγ , Nγ , Bγ} forms the dynamic Frenet frame along γ. Note that Tγ is non-
isotropic, while both Nγ and Bγ are isotropic vector fields along γ. Moreover, when
studying the motion of the dynamic Frenet frame {Tγ , Nγ , Bγ} along γ, we need to
consider another function τγ : I → R, called torsion of γ, defined as follows:

τγ(s) =
⟨γ′(s)×G3

γ′′(s), γ′′′(s)⟩G3

∥γ′(s)×G3γ
′′(s)∥2G3

=
y′′(s)z′′′(s)− y′′′(s)z′′(s)

κ2
γ(s)

.

Thus, the Frenet apparatus {Tγ , Nγ , Bγ , κγ > 0, τγ} is obtained along γ and the
motion of the dynamic Frenet frame {Tγ , Nγ , Bγ} along γ is described by the following
Frenet formulae (cf. also [16]):T ′

γ

N ′
γ

B′
γ

 =

0 κγ 0
0 0 τγ
0 −τγ 0

Tγ

Nγ

Bγ

 . (3)

3. f-rectifying curves in G3

Let γ : I → G3 be a unit-speed admissible curve (parameterized by the Galilean
invariant parameter s) with the Frenet apparatus {Tγ , Nγ , Bγ , κγ > 0, τγ}. According
to the general notion, γ is called a rectifying curve in G3 iff its position vector field
lies in the rectifying planes, i.e. in the planes generated by {Tγ(s), Bγ(s)}. In this
case, we have γ(s) = λ(s)Tγ(s) + µ(s)Bγ(s) for smooth functions λ, µ : I → R. Now
for any non-vanishing smooth mapping f : I → R the f -position vector field along γ,
denoted by γf , is defined by

γf (s) :=

∫
f(s) dγ,

where the integral sign is used in the sense that γf is an integral curve of the vector
field fTγ along γ such that γ′

f (s) = f(s)Tγ(s). Motivated by this, we define an
f -rectifying curve as an admissible curve in G3 as:

Definition 3.1. Let γ : I → G3 be a unit-speed admissible curve with Frenet appa-
ratus {Tγ , Nγ , Bγ , κγ > 0, τγ} and let f : I → R be non-vanishing and smooth. Then
γ is called a f -rectifying curve in G3 if the f -position vector field γf along γ remains
in its rectifying planes, i.e. γf satisfies

γf (s) = λ(s)Tγ(s) + µ(s)Bγ(s) (4)

for some smooth functions λ, µ : I → R.

In coordinate form, the f -position vector field γf along an f -rectifying curve γ :
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I → G3 with the expression γ(s) = (s, y(s), z(s)) is another curve in G3 given by

γf (s) =

(
λ(s), λ(s)y′(s)− µ(s)

κγ(s)
z′′(s), λ(s)z′(s) +

µ(s)

κγ(s)
y′′(s)

)
for some smooth functions λ, µ : I → R.

Remark 3.2. From the definition it follows that if f ≡ 1, then γ reduces to a rectify-
ing curve in G3. From this point of view, f -rectifying curves generalize the rectifying
curves in G3.

4. Characterizations of f-rectifying curves in G3

First, let us obtain several simple characterizations of an f -rectifying curve in G3 with
respect to its f -position vector field.

Theorem 4.1. Let γ : I → G3 be a unit-speed admissible curve with Frenet apparatus
{Tγ , Nγ , Bγ , κγ > 0, τγ} and f : I → R be a non-vanishing smooth function with
a non-vanishing primitive F . Then γ is an f -rectifying curve in G3 iff any of the
following holds:
(i) The function ρ = ∥γf∥G3

satisfies ρ2(s) = F 2(s) + a for some constant a > 0.

(ii) The tangential component ⟨γf , Tγ⟩G3
is nothing but the primitive F .

(iii) The normal part γ
Nγ

f is of non-zero constant length and ρ is non-constant.

(iv) τγ is non-vanishing and the binormal component ⟨γf , Bγ⟩G3
is a non-zero con-

stant.

Proof. First, let γ : I → G3 be an f -rectifying curve. Then γf satisfies the (4) for
smooth functions λ, µ : I → R. A simple calculation on differentiation of (4) and
then the application of (3) results in

λ′(s) = f(s), λ(s)κγ(s)− µ(s)τγ(s) = 0, µ′(s) = 0

which imply

λ(s) =

∫
f(s)ds = F (s), F (s)κγ(s) = cτγ(s), µ(s) = c (5)

for a constant c ̸= 0 (otherwise κγ vanishes). Using (4) and (5) we get

ρ2(s) = ⟨γf (s), γf (s)⟩G3
= λ2(s) + µ2(s) = F 2(s) + c2

which proves the statement (i). Again using (4) and (5), we find ⟨γf (s), Tγ(s)⟩G3
=

λ(s) = F (s) which proves the statement (ii). Now γf can be decomposed as

γf (s) = ⟨γf (s), Tγ(s)⟩G3
Tγ(s) + γ

Nγ

f (s), (6)

where γ
Nγ

f denotes the normal part of γf . Then (4) and (5) suggest that γ
Nγ

f (s) =
cBγ(s), and therefore we have〈

γ
Nγ

f (s), γ
Nγ

f (s)
〉
G3

= c2, ρ2(s) = ⟨γf (s), Tγ(s)⟩2G3
+ c2 = F 2(s) + c2.
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Consequently, the statement (iii) is true. Also, the non-vanishing nature of F and (5)
ensures that τγ is non-vanishing. Moreover, with (4) and (5) we obtain ⟨γf (s), Bγ(s)⟩G3

=
µ(s) = c. This proves the statement (iv).

Conversely, let γ : I → G3 be a unit-speed admissible curve and f : I → R
be non-vanishing and smooth with a primitive F , so that the statement (i) or (ii)
holds. In both cases we must have ⟨γf (s), Tγ(s)⟩G3

= F (s). By differentiating and
then applying (3) and the non-vanishing nature of κγ we obtain ⟨γf (s), Nγ(s)⟩G3

= 0.
This shows that γf lies in the rectifying planes of γ and therefore γ is an f -rectifying
curve.

Next, let (iii) be true. Then we can find a constant a > 0 so that〈
γ
Nγ

f (s), γ
Nγ

f (s)
〉
G3

= a.

Since γf can be decomposed as (6), it follows together with the previous equation

that ⟨γf (s), γf (s)⟩G3
= ⟨γf (s), Tγ(s)⟩2G3

+ a. If we differentiate and then apply (3)
and the non-vanishing nature of κγ , we find ⟨γf (s), Nγ(s)⟩G3

= 0 and therefore γ is
an f -rectifying curve.

Finally, let the statement (iv) hold. Then let τγ ̸= 0 and ∃ a constant c ̸= 0
such that ⟨γf (s), Bγ(s)⟩G3

= c. By differentiating and then applying (3) and the
non-vanishing nature of τγ we obtain ⟨γf (s), Nγ(s)⟩G3

= 0 which indicates that γ is

an f -rectifying curve. This proves the result. □

Coincidentally, general helices and rectifying curves in G3 can be characterized by
their conical curvature (i.e. the ratio of torsion and curvature), which are similar to
those in Euclidean 3-space. That is, up to Galilean motions from B6, an admissible
curve γ in G3 parameterized by invariant parameter is
(i) a general helix iff its conical curvature is a non-zero constant (cf. [17]);

(ii) a rectifying curve iff its conical curvature is a non-constant linear function in the
invariant parameter s = x (cf. [6, 15]).
An analogous characterization can be obtained for any f -rectifying curve γ in G3 with
respect to the ratio

τγ
κγ

as follows.

Theorem 4.2. Let γ : I → G3 be a unit-speed admissible curve with curvature κγ > 0
and torsion τγ ̸= 0, and let f : I → R be non-vanishing and smooth with a primitive
F . Then, up to Galilean motions from B6, γ is congruent to an f -rectifying curve in
G3 iff its conical curvature is a non-zero constant multiple of the primitive F .

Proof. First, let f : I → R be a non-vanishing smooth function with primitive F and
γ : I → G3 be an f -rectifying curve. Then, by Theorem 4.1, we obtain (5) in which
third equation gives

τγ(s)

κγ(s)
=

1

c
F (s), (7)

where c ̸= 0 is a constant. Conversely, let γ : I → G3 be a unit-speed admissible
curve such that its conical curvature satisfies (7). Then a straightforward calculation
using (3) and (7) gives γ′

f (s) = d
ds [F (s)Tγ(s) + cBγ(s)] which produces γf (s) =
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p+F (s)Tγ(s)+cBγ(s) for some arbitrary point p ∈ G3. Consequently, up to Galilean
motions from B6, γ is an f -rectifying curve in G3. □

Remark 4.3. Relaxing the conditions laid down, if we allow f to vanish on I, then
its primitive F is a constant and hence Theorem 4.2 gives

τγ
κγ

= a constant. Conse-

quently, γ reduces to either a plane curve or a general helix in G3. To avoid these
circumstances, we have assumed f as non-vanishing. On the other hand, if f is a
non-zero constant, then its primitive F is given by F (s) = as+ b for some constants
a ̸= 0 and b, and hence Theorem 4.2 yields

τγ(s)

κγ(s)
=

a

c
s+

b

c
,

where c ̸= 0, i.e.,
τγ
κγ

is non-constant and linear in s. Consequently, up to Galilean

motions from B6, γ becomes a rectifying curve in G3.

Figure 1: The thick curve with TNB-frame and rectifying plane represents γ whereas the
thinner one represents γf .

Example 4.4. Let γ be a unit-speed admissible curve (parametrized by Galilean
invariant parameter s) in G3, and f be a non-vanishing and smooth function defined
by f(s) ..= es. Then f has primitive F given by F (s) = es+k, where k is an arbitrary
constant. We assume k = 0 and the f -position vector field γf given by

γf (s) =

(
es,−1

2
(sin s+ cos s) ,−1

2
(sin s− cos s)

)
.

Then γ is an f -rectifying curve in G3 with curvature κγ = e−s and torsion τγ = 1,
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and it has coordinate expression

γ(s) =

(
s,−1

2
e−s sin s,

1

2
e−s cos s

)
.

One can easily draw the curves γ and γf (see Figure 1).

5. Equiform geometry of f-rectifying curves in G3

To begin with, let us recall the idea of equiform geometry of curves in G3, incorporated
in [17]. In general, the projective transformations given by (1) from the similarity
group H8 of G3 do not preserve angles between lines and planes in G3. If we restrict
the condition a2 = ξ ̸= 1 in (1), then we obtain the following transformations:

x̄ = a1 + ξx,

ȳ = b1 + b2x+ ξ(y cosφ+ z sinφ),

z̄ = c1 + c2x− ξ(y sinφ− z cosφ),

(8)

where a1, b1, b2, c1, c2, ξ, φ ∈ R, and these transformations clearly preserve angles
between lines and planes in G3. Such transformations are called equiform transfor-
mations of G3 and give rise to a seven-parameter subgroup H7 ⊂ H8, referred to
as the group of equiform transformations of G3. It is found in [17] that an equiform
transformation of G3 is a homothety followed by a Galilean motion of G3. This is
how the equiform group H7 is structured and its geometry is known as the equiform
geometry of G3.

Let γ : I → G3 be an admissible curve (parametrized by invariant parameter s)
of class at least C4 with Frenet apparatus {Tγ , Nγ , Bγ , κγ > 0, τγ}. We introduce the
equiform parameter σ defined by

σ :=

∫
κγ(s) ds

so that ds
dσ = 1

κγ
. Then, in equiform geometry, the tangent, normal and binormal

vector fields of γ, respectively denoted by Tσ
γ , N

σ
γ and Bσ

γ , are related to the Frenet
frame {Tγ , Nγ , Bγ} along γ as follows:

Tσ
γ =

dγ

dσ
=

dγ

ds

ds

dσ
=

1

κγ
Tγ , Nσ

γ =
1

κγ
Nγ , Bσ

γ =
1

κγ
Bγ .

It is clear that the trihedron {Tσ
γ , N

σ
γ , B

σ
γ } forms a dynamic non-orthonormal frame,

known as equiform frame, along γ. Now, in describing the motion of the equiform
frame {Tσ

γ , N
σ
γ , B

σ
γ } along γ, two functions κσ

γ , τ
σ
γ : I → R will come up which are

defined by

κσ
γ :=

(
1

κγ

)′

, τσγ :=
τγ
κγ

,

where “prime” stands for the derivative with respect to s as earlier. In equiform geom-
etry, the functions κσ

γ and τσγ are called the equiform curvature and equiform torsion
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of γ, respectively, so that {Tσ
γ , N

σ
γ , B

σ
γ , κ

σ
γ , τ

σ
γ } forms an equiform invariant apparatus

for γ and the motion of the equiform frame {Tσ
γ , N

σ
γ , B

σ
γ } along γ is described by the

following Frenet-type formulae [17]: Ṫσ
γ

Ṅσ
γ

Ḃσ
γ

 =

κσ
γ 1 0
0 κσ

γ τσγ
0 −τσγ κσ

γ

Tσ
γ

Nσ
γ

Bσ
γ

 , (9)

where “dot” denotes the derivative with respect to equiform parameter σ.
In equiform geometry, f -rectifying curves (more precise to say equiform f -rectifying

curves) may be described as follows.

Definition 5.1. Let γ : I → G3 be an admissible curve parametrized by equiform
parameter σ, and with equiform invariant apparatus {Tσ

γ , N
σ
γ , B

σ
γ , κ

σ
γ , τ

σ
γ }. Let f :

I → R be a non-vanishing smooth function in σ. Then γ is called an equiform
f -rectifying curve in G3 if the equiform f -position vector field γf along γ, defined by

γf (σ) :=

∫
f(σ) dγ,

lies in its rectifying planes (spanned by {Tσ
γ (σ), B

σ
γ (σ)}), i.e., γf satisfies

γf (σ) = ξ(σ)Tσ
γ (σ) + ζ(σ)Bσ

γ (σ) (10)

for some smooth functions ξ, ζ : I → R in parameter σ.

Accordingly, equiform f -rectifying curves in G3 are characterized by means of
their equiform curvature and equiform torsion as:

Theorem 5.2. Let γ : I → G3 be an admissible curve parametrized by equiform
parameter σ, and having equiform invariant apparatus {Tσ

γ , N
σ
γ , B

σ
γ , κ

σ
γ , τ

σ
γ }. Also let

f : I → R be non-vanishing and smooth. Then, up to equiform transformations from
H7, γ is an equiform f -rectifying curve iff both of its equiform curvature κσ

γ and
equiform torsion τσγ are non-vanishing and satisfy

τ̇σγ (σ) = c f(σ) exp

(∫
κσ
γ (σ) dσ

)
(11)

for some constant c ̸= 0.

Proof. First, let γ : I → G3 be an equiform f -rectifying curve. Then γf satisfies (10)
for some smooth functions ξ, ζ : I → R. Differentiating (4) and then using (9), we
find 

ξ̇(σ) + ξ(σ)κσ
γ (σ) = f(σ),

ξ(σ)− ζ(σ)τσγ (σ) = 0,

ζ̇(σ) + ζ(σ)κσ
γ (σ) = 0.

(12)

Using non-vanishing nature of f , first equation in (12) imply that both of ξ and κσ
γ

are non-vanishing and consequently second equation in (12) assures that both of ζ
and τσγ are non-vanishing. Now, last equation in (12) yields

ζ(σ) = c1 exp

(
−
∫

κσ
γ (σ) dσ

)
, (13)
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for some constant c1 ̸= 0. On the other hand, applying last two equations in the first
one in (12), we get

ζ(σ) τ̇σγ (σ) = f(σ). (14)

Substituting (13) in (14) and letting c = 1
c1

( ̸= 0), we obtain (11).
Conversely, let γ : I → G3 be an admissible curve such that both of κσ

γ and τσγ
are non-vanishing and satisfy (11). We define a new vector field V along γ by

V (σ) := γf (σ)− ω(σ)Tσ
γ (σ)− η(σ)Bσ

γ (σ), (15)

where ω, η : I → R are smooth functions defined by{
ω(σ) = 1

c τ
σ
γ (σ) exp

(
−
∫
κσ
γ (σ) dσ

)
,

η(σ) = 1
c exp

(
−
∫
κσ
γ (σ) dσ

)
.

(16)

Differentiating (16) and then applying (9), we obtain

V̇ (σ) =
[
f(σ)− ω̇(σ)− ω(σ)κσ

γ (σ)
]
Tσ
γ (σ) +

[
−ω(σ) + η(σ)τσγ (σ)

]
Nσ

γ (σ)

+
[
− η̇(σ)− η(σ)κσ

γ (σ)
]
Bσ

γ (σ).

Using (16) and (11), previous equation reduces to V̇ (σ) = 0 which implies V is a
constant vector field along γ. Hence, up to equiform transformations, γ is an equiform
f -rectifying curve in G3. □

In particular, equiform rectifying curves in G3 are characterized with respect to
their equiform curvature and equiform torsion as:

Corollary 5.3. Let γ : I → G3 be an admissible curve parametrized by equiform
parameter σ, and with equiform invariant apparatus {Tσ

γ , N
σ
γ , B

σ
γ , κ

σ
γ , τ

σ
γ }. Then, up

to equiform transformations from H7, γ is an equiform rectifying curve iff both of its
equiform curvature κσ

γ and equiform torsion τσγ are non-vanishing and satisfy

τ̇σγ (σ) = c exp

(∫
κσ
γ (σ) dσ

)
(17)

for some constant c ̸= 0.
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[15] H. Öztekin, Normal and rectifying curves in Galilean space G3, Proc. of IAM, 5(1) (2016),
98–109.

[16] B. J. Pavkovic, The general solution of the Frenet system of differential equations for curves
in the Galilean space G3, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan., 9 (1990), 123–128.

[17] B. J. Pavkovic, I. Kamenarovic, The equiform differential geometry of curves in the Galilean
space G3, Glas. Mat., 22(42) (1987), 449–457.
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