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A NOTE ON PO-EQUIVALENT TOPOLOGIES

Dimitrije Andrijevié

Abstract. Two topologies on a set X are called PO-equivalent if their families of preopen
sets concide. Let P(7) stand for the class of all topologies on X which are PO-equivalent
to T and denote by Tas the topology on X having for a base 7o U {{z} | {z} is closed-and-
open in 75 }. It was proved in [Andrijevié, M. Ganster, On PO-equivalent topologies, Suppl.
Rend. Circ. Mat. Palermo, 24 (1990), 251-256] that the class P(7) does not have the
largest member in general. Precisely, if P(7) has the largest member, say U, then U = Tys.
On the other hand, it was shown that Tas does not necessarily belong to P(7). In this
paper we are going to show that the topology 7 is actually the least upper bound of the
class P(T).

1. Introduction

Let A be a subset of a topological space (X,7). We denote the closure and the
interior of A in (X,7) by clA and intA respectively. The class of closed sets (resp.
closed-and-open sets) in (X,7) is denoted by C(T) (resp. CO(T)). The class of
nowhere dense sets in (X, T) is denoted by N (7).

DEFINITION 1.1. A subset A of a space X is called:
(i) an a-set if A C int(cl(intA)) ([6]), (i) semi-open if A C cl(intA) ([4]),

(iii) preopen if A C int(clA) ([5]).

We denote the classes of these sets in (X,7) by T, SO(T) and PO(T) respec-
tively. They are all larger than 7 and closed under forming arbitrary unions. It was
shown in [6] that 7, is a topology on X. The closure and interior of A in (X, 7,)
are denoted by cl, A and int, A. The complement of a semi-open set (resp. preopen
set) is called semi-closed (resp. preclosed). We denote these classes by SC(T) and
PC(T). For a subset A of X, the semi-closure (resp. preclosure) of A, denoted by
sclA (resp. pclA), is the intersection of all semi-closed (resp. preclosed) subsets of X
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that contain A. The semi-interior (resp. preinterior) of A, denoted by sintA (resp.
pintA), is the union of all semi-open (resp. preopen) subsets of X contained in A.

Although the classes SO(T) and PO(T) are not topologies on X in general, they
generate a topology in a natural way. Let T(A) = {G € A| GNA € A whenever A €
A} where A stands for SO(T) and PO(T). It is clear that T (A) is a topology on X
that is larger than 7 and {z} € T(A) if {z} € A. It was shown in [6] that T(A) = T
for A = SO(T). The topology generated in this way by PO(T) was studied in [1]
and denoted by 75. The closure and the interior of a set A in (X, 7,) are denoted by
clyA and int,A. Further details on 7(A) can be found in [2].

DEFINITION 1.2 ([3]). Two topologies 7 and U on a set X are called PO-equivalent
if PO(T) = POU).

The class of all topologies on X that are PO-equivalent to 7 is denoted by P(7).
For a space (X,7) let M = M(T) = {z € X | {z} € CO(T;)} and let Ty be the
topology on X that has for a base T, U {{z} | x € M}, i.e. V € Ty if and only
if V=GUK with G € 7, and K C M [3]. The question arose as to whether
the class P(T) has the largest member and in [3] it was answered in the negative.
It was proved [3, Theorem 2.9] that if P(7) has the largest member, say U, then
U = Trr- The next example [3] shows that Tps does not necessarily belong to P(T).
Let X=Z={...,-2,-1,0,1,2,...}. St A={AC X |z€ Aiff —z¢€ A} and let
T={0,X}U{Ge A|0¢ G or X\G is finite}. Then:

(i) T is a topology on X,

(i) PO(T)={0, X} U{AC X |0¢ Aor clA is open},
(iii) 7, ={0,X}U{AC X |0¢ Aor X\ A is finite},

(iv) PO(T,) = T,.
If now S = {0,1,2,...}, then S € PO(T) \ PO(T,), so T and T, are not PO-
equivalent. On the other hand, since z € CO(T,) for every z # Owe have Ty = T,
In our case, Ty does not belong to P(T), i.e. P(T) does not have the largest member.
In this paper we will show that the topology 7as is indeed the smallest upper
bound or supremum of the class P(T).
Now we recall some results that we will need in the sequel.

PROPOSITION 1.3 ([2]). Let A be a subset of a space X. Then:
(i) clo A= AUcl(int(clA)), int, A = ANint(cl(intA)),

(i1) sclA = AU int(clA), sintA = ANcl(intA),
(#ii) pclA = AU cl(intA), pintA = ANint(clA).
PROPOSITION 1.4 ([2]). Let A be a subset of a space X. Then intocl, A = int(clA).
PropoOsITION 1.5 ([6]). Let (X,T) be a space. Then T, ={U\A|U € T,A € N(T)}.

PROPOSITION 1.6 ([1]). Let A be a subset of a space X. Then:
(1) clyintA = cl(intA), intyclA = int(clA),  (i1) pint(cl,A) = clyANint(clA).
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PROPOSITION 1.7 ([1]).
(i) clo A= clyAUint(cl

). | Let A be a subset of a space X. Then:

(cld),  (it) into A = int, AN cl(intA).

PROPOSITION 1.8 ([1]). Let (X,T) be a space and A € T,. Then sintA = int, A.
PROPOSITION 1.9 ([2]). Let G € Ty x € G\ cl(intG). Then {z} € PO(T)\T.

PROPOSITION 1.10 ([2]). Let A be a subset of a space (X, T) and x € int(clA)\ cl,A.
Then {z} € PO(T)\T.

PROPOSITION 1.11 ([2]). Let A be a subset of a space (X,T). Then A € T, if and
only if A= GUH with G € T, and {h} € PO(T)\ T for every h € H.

PROPOSITION 1.12 ([3]). Let (X,T) be a space, A € CO(T,) and U the topology on
X having T U{A, X \ A} as a subbase. Then PO(U) = PO(T).

2. Topological space (X, Tas)

We have already mentioned that our main goal is to show that Tjs is the smallest
upper bound of P(T). First, we establish a few lemmas. The operators on a set A in
(X,U) with U € P(T) are denoted by cly A, inty A, pcly A, ete.

LEMMA 2.1. LetUd € P(T) and A€ U. Then cl,A = pclA.

Proof. Since U € P(T), we have that P(4) = P(T) and sod C U, = T,. Thus by
Proposition 1.3(iii) we have cl, A C cly A = AUclyinty A = pelyA = pclA C cl,A. U

LEMMA 2.2. Let U € P(T) and A € U. Then {x} € PO(T)\ T for every xz €
int(clA) \ cl(intA).

Proof. By Lemma 2.1 we have that cl, A = AUcl(intA) and thus int(clA)\cl(intA) =
(int(clA) \ cl,A)) U (A\ cl(intA)). Now the statement follows from Propositions 1.
and 1.10. O

LEMMA 2.3. Let A€ PO(T)NC(T,). Then clA€T.

Proof. Since cl,A = clA for A € PO(T), applying Proposition 1.7(i) we have that
A = clyAUint(clA) = AU int(clA) = int(clA) that is clA € T. O

The next lemma follows immediately from Proposition 1.10.
LEMMA 2.4. Let {z} € PO(T) and y € int(cl{z}) \ cly{x}. Then cl{y} = cl{x}.

LEMMA 2.5. LetU € P(T) and {z} € PO(T)\C(T,) such that int(cl{z})Ncl{z} =
{z}. Then intycly{z} = int(cl{z}).

Proof. First, we note that cl{z} = clo{z} = cly{z} Uint(cl{z}) by Proposition 1.7.
Since PO(T) = PO(U) impliesT,, = U.,, we have by Proposition 1.6(ii) that intycly{x}n
c{z} = pintycl,{z} = pint(cly{z}) = cl,{z} Nint(cl{z}) = {z}. Now set U =
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intyint(cl{z}). Since int(cl{z}) ¢ C(T), we have that int(cl{z}) ¢ PC(T) = PCU)
and therefore U # (. On the other hand, since by Lemma 2.4 clU = cl{z} ¢ T, it
follows from Lemma 2.3 that U ¢ C(7;) and therefore U ¢ C(U). Consequently,
U ¢ PCUU) = PC(T) and therefore intU # ). Therefore, we have by Lemma 2.4
that intU = int(cl{z}) and thus U = int(cl{x}), that is int(cl{z}) € U.

In a similar way, we prove that intycly{z} € T and thus int(cl{z}) Nintycly{z}
is open in both 7 and U. Therefore, intycly{zr} = int(cl({z})) is again given by
Lemma 2.4. U

PROPOSITION 2.6. LetU € P(T) and A€ U. Then A\ cl(intA) C M.

Proof. Let A € U and « € A\cl(intA). Then {z} € T, by Proposition 1.9 and assume
that {z} ¢ C(75). Since int(cl{z}) C int(clA)\ cl(intA), we have by Lemma 2.2 that
int(cl{z}) Ncl,{z} = {«}. Now it follows from Lemma 2.5, Proposition 1.6(i) and
Lemma 2.1 that int(cl{z}) = intycly{z} C clyA\ cl(intA) = cly A\ cl(intA) =
cly A\ cl(intA) = (AUcl(intA)) \ cl(intA) = A\ cl(intA), a contradiction. Therefore
{z} € C(T,) and thus A\ cl(intA) C M. U

Now we are in a position to prove [3, Theorem 2.8] without the condition 7 C U.

PROPOSITION 2.7. Let (X,T) be a space and U € P(T). Then U C Tar.

Proof. Let A € U. Since A = sintA U (A \ cl(intA)), the statement follows from
Propositions 1.8 and 2.6. ([l

COROLLARY 2.8. Let (X,T) be a space. Then Ty is the least upper bound of the
class P(T).

Proof. Let V be an upper bound of the class P(7) and suppose that {z} € CO(T5).
Then {z} € V by Proposition 1.12. On the other hand, 7, C V follows from Propo-
sition 1.4 and hence Ty C V. g

We conclude our investigation with some further results on 7,;. The closure and
the interior of a set A in (X, Tps) are denoted by clpr A and intps A.

LEMMA 2.9. Let (X,T) be a space, and {z} € CO(T,). Then {y} € CO(T,) for
every y € cl{z}.

Proof. By Lemma 2.3 we have that c/{z} € T and Proposition 1.10 implies that all
singletons in cl{z} are preopen in (X,7). Therefore all of them are closed-and-open
in (X,75). 0

PROPOSITION 2.10. Let (X,7T) be a space. Then N(Ty) = N(T).

Proof. By Proposition 1.6(i) we have that intprclpr A C intyclA = int(clA) and thus
N(T) € N(Ta). To prove the reverse inclusion, assume that intpclyy A = 0 and
int(clA) # 0. Let x € U = int(clA) \ clprA. Then U € Ty, intU = () and thus {z} €
CO(T,). Then by Lemma 2.3 cl{z} € T and thus cl{z} N A # . So by Lemma 2.9
intpr A # 0, a contradiction. Therefore, int(clA) =0, i.e. N(Tp) C N(T). U
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COROLLARY 2.11. Let (X,T) be a space and z € X. Then {z} € PO(T) if and only
if {x} € PO(Twm).-

PROPOSITION 2.12. Let (X, T) be a space. Then:
(i) Tvaa =Tu, (i) Tuy =Ty, (it8) T =T

Proof. (i) By Proposition 1.5 it suffices to show that every nowhere dense set in
(X, Ta) is closed in (X,Ty) and from Proposition 2.10 we have that N(Tp) =
N(T) Cc C(Ta) € C(Tm)-

(ii) Suppose that A € Tp. Then by Proposition 1.9 we have that A = GUH
with G € Tyq and {h} € PO(Tar) \ Tas for every h € H. Hence A € T, by (i)
and Corollary 2.11. To prove the reverse inclusion suppose that A € 7,. Then by
Proposition 1.11 we have that A = GU H with G € 7, and {h} € PO(T)\ T for
every h € H. By Corollary 2.11 we have that {h} € PO(Tys) that is {h} € Tar, and
so A € Tary.

(iti) Let A € Tym. Then A = GU H with G € Ty and {h} € CO(Tay) for
every h € H. Now the statement follows from (i) and (ii). U
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