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GREEN FUNCTIONS FOR VARIOUS BLACK HOLE METRICS

D. S. Kasintsev, A. I. Popov and I. Y. Popov

Abstract. A few models in general relativity concerning to black holes are considered.
We studied the Green function for locally close points in the Schwarzschild (symmetric
non-rotating and uncharged black hole), Reissner-Nordström (charged non-rotating black
hole), Schwarzschild-de Sitter (black hole with a positive cosmological constant), Reissner-
Nordström-de Sitter (when a constant electric charge is added to the cosmological term),
Hayward (spherically symmetric non-rotating uncharged black hole having no singularity),
Bardeen (for spherically symmetric black hole being a source of electric field which does
not have a singularity but have the event horizon) metrics. The consideration is based
on the Hadamard-WKB method. The Padé approximation is used for the Green function
construction.

1. Introduction

The properties of the space-time and particles in the vicinity of black holes have been
of particular interest since the beginning of the general theory of relativity. There are
many intriguing questions that are still open today, e.g. gravitational lensing near a
black hole [10], influence of dark energy on geodesics [11], problems related to modes,
horizon, black hole accretion disk theory [2, 4, 18, 22]. Many of these problems are
related to the determination of the Green’s function for various metrics [5, 19]. The
main benefit of the Green’s function for the problem in question is that it allows
to describe the motion of a particle ( in the model - point particle) in a curved
spacetime [20]. This problem is basic for many gravitational problems.

The explicit form of the energy-momentum tensor for a black hole can be deter-
mined using the Green’s function of the wave operator:

D = (□−m2
field) + P,

where □ is the d’Alembert operator (wave operator), P is the potential function and
mfield is the field mass. There are several methods to obtain the Green’s function
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148 Green functions for various black hole metrics

in this case, but we will only consider the Hadamard-WKB method. This method
was first applied by Anderson and Hu [1] for the Schwarzschild metric and was sub-
sequently further developed and applied in the study of the Narya metric [6].

In this paper, the Green’s functions for the Schwarzschild, Reissner-Nordström,
Schwarzschild-de Sitter, Reissner-Nordström-de Sitter, Hayward and Bardeen metrics
corresponding to the different types of black holes. The algorithm for determining
the residual part of the Green’s function is based on [13]. Wolfram Mathematica 11.3
was used as the computational environment. Finally, results for these metrics were
obtained using the Pad’e approximation of Green’s functions.

2. Problem statement

Let us formulate the problem of determining the Green’s function using the Hadamard-
WKB method. For a curved space, the fundamental object is the retarded Green’s
function, where x′ is a space-time point that lies in the past with respect to the point
x. The delayed Green’s function is a solution of the wave equation [12,17]:

DGret(x, x
′) = −4πδ(x, x′).

If we assume that the points and are locally close, then we can represent this
solution in Hadamard form in four-dimensional space-time:

Gret(x, x
′) = θ (x, x′) {U(x, x′)δ(σ(x, x′))− V (x, x′)θ(−σ(x, x′))} ,

where θ (x, x′) is the Heaviside step function, δ(x, x′) is the Dirac delta function,
U(x, x′) is responsible for the singular part of the Green function, V (x, x′) — for the
residual part, σ(x, x′) is the Synge’s world function, which is equal to half the length
of the geodesic between the points x and x′ [23].

We are interested in the function V (x, x′), which is the residual part of Green’s
function and reflects the interactions of the field with the space-time geometry.

3. Problem solution

Let us expand the function V (x, x′) into a power series:

V (x, x′) =

∞∑
i,j,k=0

vijk(r)(t− t′)2i(cosγ− 1)j(r − r′)k,

where γ is the angle between x and x′.

We need to find the coefficients vi,j,k(r). Anderson and Hu have already calculated
them for the Schwarzschild metric [1]. However, by applying the Hadamard-WKB
method, the entire family of the following metrics can be considered:

ds2 = −f(r)dt2 + (f(r))−1dr2 + g(r)dΩ2
2,

dΩ2
2 = dθ2 + sin2 θdϕ2, g(r) = r2.
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In this paper, we consider metrics with different f(r) but the same g(r).

First, we express the resulting Green’s function in the Hadamard approximation
as the real part of the Euclidean Green’s function GE(t, x, t

′, x′):

Re [GE(t, x, t
′, x′)] =

1

2π

(
U(x, x′)

σ(x, x′)

)
+ V (x, x′) ln (|σ(x, x′)|) +W (x, x′).

In the case that the points x and x′ are further apart in time than in space, we
can express the Synge function σ(x, x′) = − 1

2f(r)(t− t′)2 + O
[
(x− x′)3

]
. Then the

logarithmic part of the Euclidean Green’s function has the form: 1
πV (x, x′) ln (t− t′).

To find the residual part V (x, x′) of the Green’s function, it is therefore sufficient
to determine the coefficient of the logarithmic part of the Euclidean Green’s function.
For spaces with spherical symmetry, the Euclidean Green’s function has the following
integral representation

GE(t, x, t
′, x′) =

1

π

∞∫
0

dω cos [ω(t− t′)]

∞∑
l=0

(2l + 1)Pl(cosγ)Cωlpωl(r<)qωl(r>). (1)

Here γ is the angle between x and x′, Pl((cosγ)) is the Legendre polynomial of order
l, Cωl is the normalization constants, r> and r< denote greater (resp. smaller) values
of r and r′, pωl and qωl (depending on ω) are solutions of the homogeneous scalar
wave equation:

f
d2S

dr2
+

1

g

d

dr
(fg)

dS

dr
−
(
ω2

f
+

l(l + 1)

g
+m2

field + ξR

)
S = 0, (2)

where mfield is the field mass, ξ is the coupling constant (ξ = d−2
4(d−1) , where d is the

space dimension, i.e. ξ = 1
6 ), R is the Ricci scalar [14].

Taking advantage of the fact that:
∞∫
λ

dω cos [ω(t− t′)]
1

ω2n+1
=

−1

(2n)!
(t− t′)2n log(t− t′) + . . . , (3)

we can ignore all smooth terms and obtain the following form for the cos-Fourier
transform V (x, x′, ω) of the function V (x, x′) (considering (3) we only need one term
of the expansion of V (x, x′, ω) in powers of ω):

V (x, x′, ω) =

∞∑
l=0

(2l + 1)Pl(cos(γ))Cωlpωl(r<)qωl(r>),

where Pl(cos(γ)) is the Legendre polynomial.

Next, we look for B(r, r′) = Cωlpωl(r
′)qωl(r). We define it using a power series:

B(r, r′) = β(r)+α(r)(r′−r)+

{[
2(η(r)+χ2(r))

(fg)2

]
β(r)− [ln (fg)]α(r)

}
(r′−r)

2
+. . .,

where

β(r) = Cωlpωl(r)qωl(r), α(r) =
β′(r)

2
+

1

2f(r)g(r)
,
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χ2(r) = ω2g2 + fg

(
l +

1

2

)2

, η(r) = −1

4
fg + (m2

field + ξR)fg2. (4)

Using the equations (3) and (4), we conclude that β(r) satisfies the following
differential equation:

fg
d

dr

(
fg

d
√
β

dr

)
− (η + χ2)

√
β +

1

4β3/2
= 0. (5)

Equation (5) can be converted into the following form suitable for iterations:

β =
1

2χ

(
1− 1

χ2

(
1√
β
fg

d

dr

(
fg

d
√
β

dr

)
− η(r)

))− 1
2

. (6)

Since the quasi-locality of the Green’s function is determined by large values of
ω, l, we represent β(r) as a series in ε = 1

χ : β = εβ0 + ε2β1 + . . . , β0 = 1
2 .

If you insert this series into (6) and use the method of iterations, you get the
expressions for βn(r):

βn(r) =

2n∑
m=0

An,m(r)ω2m

χ2n+2m+1
, β =

A0,0

χ
+

1

χ7

(
A1,0χ

4 +A1,1χ
2 +A1,2

)
+ . . . .

The coefficients An,m(r) result from the recursive relations for βn(r). Next, we find
the derivative of β(r): β′ = εβ′

0 + ε2β′
1 + . . .. Using the previous relations we get

β′
n(r) =

2n∑
m=0

(
A′

n,m(r)ω2m

χ2n+2m+1
−
(
n+m+

1

2

)
2χχ′An,m(r)

χ2n+2m+3

)
,

β′
n(r) =

2n+1∑
m=0

Dn,m
ω2m

χ2n+2m+1
,

where

Dn,m = A′
n,m(r)−

(
n+m+

1

2

)
An,m(r)

(fg)′

fg

−
(
n+m− 1

2

)
An,m−1(r)

[
(g2)′ − (fg)′

fg
g2
]
. (7)

Then the sum of the function series for V (x, x′) reduces to the following form:

V (x, x′, ω) =

∞∑
n=0

2n+1∑
m=0

∞∑
l=0

2

(
l +

1

2

)
Pl(cos(γ))

Dn,m(r)ω2m

χ2n+2m+1
.

We can also simplify the Legendre polynomial as γ tending to zero:

V (x, x′, ω) = 2

∞∑
n=0

2n+1∑
m=0

Dn,m(r)

∞∑
l=0

(
l + 1

2

)2p+1
ω2m

χ2n+2m+1
.

It can be seen that the Sommerfield-Watson formula can be used to convert the
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sum in l into two integrals:

∞∑
l=0

F

(
l +

1

2

)
=

∞∫
0

F (λ)dλ− Re

i

∞∫
0

2

1 + e2πλ
F (iλ)dλ

 . (8)

In our case, the first integral in (8) is real and the second integral reduces to a contour
integral in the complex plane. We transform these integrals into a series in inverse
powers of ω. Taking into account the integral representation (1) and the formula (3),
we then arrive at the residual part of the Green’s function.

In order to find a rational approximation outside the convergence domain of the
power series, the Padé approximation is used (see, e.g., [8]). We follow the idea of
this work.

Summarizing the results, we arrive at the following theorem.

Theorem 3.1. If the metric of the space has the following form

ds2 = −f(r)dt2 + (f(r))−1dr2 + g(r)(dθ2 + sin2 θdϕ2), g(r) = r2,

then the residual part of the Green function V (x, x′) is the cos-Fourier transform of
the term with the power 1

ω2n+1 of the expansion ω of the function

V (x, x′, ω) =

∞∑
n=0

2n+1∑
m=0

∞∑
l=0

2

(
l +

1

2

)
Pl(cos(γ))

Dn,m(r)ω2m

χ2n+2m+1
,

where Pl(cos(γ)) is the Legendre polynomial, γ is the angle between x and x′,

χ2(r) = ω2g2 + fg

(
l +

1

2

)2

,

Dn,m = A′
n,m(r)−

(
n+m+

1

2

)
An,m(r)

(fg)′

fg
−
(
n+m−1

2

)
An,m−1(r)

[
(g2)′− (fg)′

fg
g2
]
,

An,m(r) is the coefficient of the series β(r) =
∞∑

n=0

2n∑
m=0

An,m(r)ω2m

χ2n+2m+1 , β(r) in a regular

solution of the equation

fr2
d

dr

(
fr2

d
√
β

dr

)
−
(
−1

4
fr2 +

(
m2

field +
R

6

)
fr4 + χ2

)√
β +

1

4β3/2
= 0,

R is the Ricci scalar.

Remark 3.2. In this formulation, we have taken the formula (3) into account.

4. Results and discussion

4.1 Green’s function for the Schwarzschild metric

Based on the formulas obtained above, one can find the functions V (x, x′) for various
metrics. A change in f(r) leads to a change in the equation (2) and gives us pωl

and qωl (depending on ω). The equation (2) transforms to more convenient form (6).
Accordingly, the change in the metric leads to a change in the equation (5) and the
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next equation (6). The solution of (6) is sought in the form of series using the same
procedure for all metrics (with the corresponding substitution of functions). This
procedure is described in the previous section.

Since only a limited number of terms of the power series are used for the calcula-
tions, there may be deviations from the real data, so the Padé approximation can be
used to bring the results closer to the real data. For simplicity and better visibility,
we consider points where all coordinates, except time, coincide.

Let us first consider the Schwarzschild metric [1]. This metric is obtained from
the simplest solution of the Einstein equations without a cosmological constant, which
describes the field of a symmetric, non-rotating and uncharged black hole. The form
of the function f(r) in the metric tensor is f(r) = 1− 2M

r .

Let’s calculate V (t, t′) for M = 1, r = 1. We obtain:

V (t, t′) = 12.291dt30+7.398dt28+4.45dt26+2.673dt24+1.603dt22+0.959dt20+0.572dt18

+0.339dt16+0.199dt14+0.116dt12+0.066dt10+0.036dt8+0.018dt6+0.007dt4.

Figure 1 shows the Padé approximation for given values of the parameters.

Figure 1: Padé approximation plot for V (t, t′) at M = 1, r = 1.

4.2 Green’s function for the Reissner-Nordström metric

The formulas obtained can be used for the Reissner-Nordström metric [8]. It is similar
to the Schwarzschild metric in many respects, but has one difference - it considers a
charged, non-rotating black hole. The function in the metric tensor has the following

form f(r) = 1− 2M
r + Q2

r2 .

If we set the parameters M = 1, r = 1, Q = 1, we obtain the following expression:

V (t, t′) = −8.68× 1027dt18 − 6.706× 1024dt16 − 5.174× 1021dt14

− 3.981× 1018dt12 − 3.047× 1015dt10 − 2.31× 1012dt8

− 1.716× 109dt6 − 1.212× 106dt4 − 0.769× 103dt2.

Then the Padé approximation for the given values of the parameters has the form
presented in Figure 2.
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Figure 2: Padé approximation plot for V (t, t′) at M = 1, r = 1, Q = 1.

4.3 Green’s function for the Schwarzschild-de Sitter metric

The next example of an interesting metric is the Schwarzschild-de Sitter metric. Un-
like the previous metrics, it is a solution to the Einstein equation for a black hole
with a positive cosmological constant. This metric is the simplest solution for the
case where a black hole has both an event horizon and a cosmological horizon [7].

The type of the function f(r) in the metric tensor is f(r) = 1− 2M
r − Lr2

3 .
If you take M = 1, r = 1, L = 1, you get:

V (t, t′) = 2.468dt16 + 1.16dt14 + 0.539dt12 + 0.246dt10

+ 0.109dt8 + 0.044dt6 + 0.014dt4.

The corresponding Padé approximation is shown in Figure 3.

Figure 3: Padé approximation plot for V (t, t′) with M = 1, r = 1, L = 1.

4.4 Green’s function for the Reissner-Nordström-de Sitter metric

Let us consider Green’s function for the case where a constant electric charge is
added to the cosmological term. For this case we have the Reissner-Nordström-de

Sitter metric. In this case, the function f(r) is f(r) = 1− 2M
r − Λr2

3 + Q2

r2 .
The function V (t, t′) has the following form:

V (t, t′) = 3.585× 10−10dt10 + 1.293× 10−8dt8

+ 0.659× 10−7dt6 + 1.805× 10−6dt4 + 3.482× 10−5dt2.
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The Padé approximation for the function V (t, t′) is shown in Figure 4.

Figure 4: Padé approximation plot of V (t, t′) for the Reissner-Nordström-de Sitter metric
with M = 1, r = 10, Q = 1, Λ = 1.

Figure 5: Plot of the V (t, t′) function (blue line) and Padé approximation (orange line) for
the metric Reissner-Nordström-de Sitter at M = 1, r = 10, Q = 1, Λ = 1.

We can see that minimum points occur for both functions. This is consistent
with the fact that V (x, x′) must be smooth and continuous. The singular points
correspond to the eigenvalues of the spectrum of the operator under study. They may
well correspond to the “potential wells” of the field combined with the curvature of
the space.

4.5 Green’s function for the Hayward metric

For the Hayward metric one has [9, 15,16] f(r) = 1− 2Mr2

r3+2l2M .

Here M is the mass parameter and l is the length scale parameter. Obviously f(r)
has no singularity. Using the Hadamard-WKB algorithm, we find the residual part of
Green’s function for the Hayward metric (for a spherically symmetric, non-rotating,
uncharged black hole without singularity) for the following parameter values M = 1,
r = 10, l = 1.

V (t, t′) = 2.493× 10−8dt12 + 2.282× 10−7dt10 + 2.517× 10−6dt8

+ 5.696× 10−5dt6 + 8.592× 10−5dt4 + 1.77× 10−2dt2 − 0.333.
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Figure 7: Padé approximation plot for the Hayward metric for V (t, t′) at M = 1, r = 10,
Q = 1, Λ = 1.

Figure 8: Plot of the surface of the function V (x, x′) as a function of coordinates and time
for the Hayward metric at M = 1, r = 1, l = 1.

Figure 6: Plot of V (t, t′) function(blue line) and Padé approximation (orange line) for the
Hayward metric at M = 1, r = 1, Q = 1, Λ = 1.

From these graphs, we observe a significant decrease in the number of Padé “sin-
gularities”, which corresponds to the physical properties of this space: The Hayward
metric has no singularities. The result of the Padé approximation (one singularity)
can be explained by the insufficient accuracy of the calculations.
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4.6 Green’s function for the Bardeen metric

For the Bardeen metric one has [3, 21] f(r) = 1 − 2Mr2

(r2+q2BD)
3/2 , where qBD is the

magnetic charge.
We obtain a simplified residual part of Green’s function for the Bardeen metric

(for a spherically symmetric black hole, which is a source of the electric field and has
no singularity but an event horizon):

V (t, t′) = 4.419× 10−7dt8 − 1.117× 10−5dt6

− 5.057× 10−4dt4 − 1.252× 10−2dt2 − 0.236.

Figure 9: Plot of V (t, t′) function(blue line) and Padé approximation (orange line) for the
Bardeen metric at M = 1, r = 1, Q = 1.

Figure 10: Padé approximation plot for the Bardeen metric for V (t, t′) at M = 1, r = 1,
Q = 1.

In the resulting graphs, we observe extremum points for both functions. As for
the residual part of the Green’s function, we can say that these points correspond
to the previously mentioned eigenvalues of the spectrum of the operator. The Padé
approximation approaches them, but the accuracy is not high.

It seems quite reasonable to increase the computational complexity of the method
in order to study the behavior of the residual Green’s function. In this case, an
increase of the singular points corresponding to the eigenvalues of the spectrum -
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the quasi-normal modes - should be observed and the approximation should converge
better to a power series V (t, t′).

5. Conclusion

In this paper, a consistent description of the algorithm that can be used to cal-
culate the residual part of the Green’s function was given, and calculations have
been performed for six metrics corresponding to different types of black holes: the
Schwarzschild metrics (symmetric, non-rotating and uncharged black hole), Reissner-
Nordström metric (charged, non-rotating black hole), Schwarzschild-de Sitter metric
(black hole with positive cosmological constant), Reissner-Nordström-de Sitter metric
(when a constant electric charge is added to the cosmological term), Hayward metric
(spherically symmetric, non-rotating, uncharged black hole having no singularity),
Bardeen metric (for spherically symmetric black hole that is a source of an electric
field and has no singularity but an event horizon). The consideration is based on the
Hadamard-WKB method analogous to that in [10,11]. Padé approximation plots are
created for the residual parts of the Green’s functions that indicate the presence of
singularities.
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