
MATEMATIČKI VESNIK

MATEMATIQKI VESNIK

77, 2 (2025), 173–188

June 2025

research paper

originalni nauqni rad

DOI: 10.57016/MV-OQYT5360

TOPOLOGICAL STUDY OF g-CONVERGENCE IN GENERALIZED
2-NORMED SPACES

Anirban Kundu, Tarapada Bag and Sk. Nazmul

Abstract. Some topological properties of generalized 2-normed (G2N) spaces have been
studied in this article. The notion of g-convergence for sequences is introduced in general,
and it is compared with the usual notion of convergence. It is shown that g-convergence is
a more general idea, and under certain conditions g-convergence and convergence actually
coincide. Using these concepts, a few fixed point theorems are developed.

1. Introduction

The need to generalize the notions of metric and norm has been felt since their formal
introduction. In 1963, Gähler [5] proposed a 2-metric structure. He then introduced
the notion of 2-norm in 1964 [6]. In his subsequent works [7–10] Gähler defined and
studied n-metric and n-norm and considered metric and norm as 1-metric and 1-
norm respectively. He claimed that these new concepts were generalizations of metric
and norm. However, 2-metric and 2-norm satisfy some surprising properties that put
researchers in a difficult situation. As a way out, B. C. Dhage [3] introduced D-metric
spaces. The topological structure of the D-metric turned out to be defective [18]. To
overcome this situation, two different modifications of the D-metric were developed,
the G-metric and the S-metric. For a detailed understanding of these concepts, we
recommend [13,14,16,17,19–21]. Although the expressions of G-metric and S-metric
are different, the idea behind these two terms is the same. Both were introduced to
calculate the distance between three points, keeping in mind the idea of the perimeter
of a triangle. Chaipunya and Kumam [1] introduced g − 3ps-spaces to understand
the possible notions of distance between three points from a general point of view. In
another process, Czerwik [2] introduced the notion of b-metric spaces. Later, Mustafa
et. al. [15] proposed the notion of b2-metric spaces as a combination of the ideas of
2-metric and b-metric spaces.
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174 g-convergence in generalized 2-normed spaces

The notion of G-norm was introduced by K. A. Khan [11] in 2014. It was claimed
that it is a generalization of the norm that induces a G-metric. But the research
of Anirban Kundu, T. Bag and Sk. Nazmul [12] clearly indicates that there is no
difference between the topologies of G-normed spaces and normed linear spaces. As
an alternative, they proposed a new notion called generalized 2-norm.

Although this space is Hausdorff, it is not normable in general. Moreover, G2N-
spaces induce g − 3ps-spaces.

In this article, the notion of g-convergence in G2N-spaces is studied. It is found
that g-convergence in general does not imply convergence. However, in some special
cases these concepts coincide. Such conditions are studied using a new type of topol-
ogy on G2N-spaces called g-topology. Finally, this topological structure is compared
with the topology generated by G2N spaces. As an example, a special type of G2N
that induces a G metric is introduced. Some fixed point theorems are proved using
the ideas of g-convergence.

The rest of this article is divided into four sections. Section 2 contains the neces-
sary definitions, ideas and results that already exist in the literature and are needed
for the present article. Section 3 is the main part of this paper. In this section,
the topological study of g-convergence and some related ideas are presented. Finally,
Section 4 is the part where the ideas of g-convergence are applied to establish some
fixed point theorems.

2. Preliminaries

The notion of G2N-spaces has been introduced in [12] as a generalization of normed
linear spaces.

Definition 2.1 ([12]). Let X be a vector space over the field K (real or complex).
A mapping N : X ×X → R≥0 is called generalized 2-norm or G2N if it satisfies the
following:
(GN1) N(x, y) = 0 if and only if x = y = 0,

(GN2) N(αx, αy) = |α|N(x, y) for every x, y ∈ X and α ∈ K,

(GN3) There exist two positive numbers r and s such that N(x− z, y− z) < s for all
x, y, z ∈ X satisfying N(x, x), N(y, y), N(z, z) < r.
The pair (X,N) is called a generalized 2-normed space or G2NS.

This space is closely related to g − 3ps space introduced in [1].

Definition 2.2 ([1]). Let X be a non-empty set. A function g : X3 → R≥0 is called
a g − 3ps if:
(g1) g(x, y, z) = 0 if and only if x = y = z,

(g2) There exists some r0 > 0 such that for each x ∈ X, Bg(x, r0) ··= {y ∈ X :
g(x, x, y) < r0} is bounded, i.e.

sup
a,b,c∈Bg(x,r0)

g(a, b, c) < ∞.
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The pair (X, g) is called a g − 3ps space. The sets Bg(x, r) are called open ball for
the g − 3ps space (X, g).

Chaipunya and Kumam [1] showed that g − 3ps-spaces are generalized forms of
G-metric and S-metric spaces. For a better understanding, the definitions of these
two notions are given below.

Definition 2.3 ([17]). Consider a non-empty setX. A functionG : X×X×X → R≥0

is called a G-metric on X if:
(G1) G(x, y, z) = 0 for x, y, z ∈ X satisfying x = y = z,

(G2) G(x, x, y) > 0 for x, y ∈ X with x ̸= y,

(G3) G(x, x, y) ≤ G(x, y, z) for every x, y, z ∈ X,

(G4) G is invariant under all permutations of (x, y, z),

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.
The pair (X,G) is called a G-metric space.

Definition 2.4 ([20]). Consider a non-empty setX. A mapping S : X×X×X → R≥0

is said to be an S-metric on X if
(S1) S(x, y, z) = 0 for x, y, z ∈ X if and only if x = y = z,

(S2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a) for all x, y, z, a ∈ X.
The pair, (X,S) is called an S-metric space.

Following theorem is the bridge between G2N and g − 3ps-spaces.

Theorem 2.5 ([12]). Consider a G2NS (X,N). The function g : X ×X ×X → R≥0

defined by g(x, y, z) ··= N(x− z, y − z) for every x, y, z ∈ X is a g − 3ps on X.

Thus, any G2N can induce a g − 3ps. Open balls BN (x, r) in a G2N space are
described in [12] as follows:

BN (x, r) ··= Bg(x, r) (Where g is a g − 3ps induced by N)

= {y ∈ X : g(x, x, y) < r} = {y ∈ X : N(x− y, x− y) < r},
for all x ∈ X and r > 0.

Here is an important property of the open balls in a G2N space.

Proposition 2.6 ([12]). If N is a G2N on X, then BN (x, r) = x + rBN (0, 1) for
each x ∈ X and r > 0.

The notion of maximal perimeter plays a critical role in the study of G2N-spaces.

Definition 2.7 ([12]). Let (X,N) be a G2NS. For A ⊆ X, M(A) ··= sup{N(x −
z, y − z) : x, y, z ∈ A} is called maximal perimeter of A.

Remark 2.8 ([12]). If M(A) < ∞ then A is bounded, otherwise A is unbounded.

One can easily verify that every finite set is bounded in this sense. Moreover, the
union of two bounded sets is also bounded.
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Theorem 2.9 ([12]). For a G2NS (X,N) we have:
(i) M(BN (0, 1)) < ∞,

(ii) M(BN (x, r)) = M(BN (0, r)) = rM(BN (0, 1)) for all x ∈ X and r > 0.

Remark 2.10. Theorem 2.9 establishes that every open ball in a G2N space is
bounded. Moreover the expression ofM(B(x, r)) is independent of x. So the following
terminology makes sense Mr ··= M(BN (x, r)) for all r > 0. Using this new notation
Theorem 2.9 can be rephrased as: Mr = rM1 for all r > 0 and so limr→0 Mr = 0. In
another language, for any ϵ > 0, there exists s > 0 such that Mr < ϵ whenever r > s.

The topology of G2NS was constructed in [12] using the set BN of all open balls
of (X,N) as follows.

Definition 2.11 ([12]). Let (X,N) be a G2NS. The topology of (X,N), denoted by
τN , is defined as the smallest topology containing BN , the set of all open balls.

Following remark is a direct consequence of the Definition 2.11.

Remark 2.12 ([12]). BN is a subbase of the topology τN .

A big family of examples of G2N-spaces can be constructed using the following
proposition.

Proposition 2.13 ( [12]). For a periodic function a : [0, 2π) → R with period π,
satisfying a([0, 2π)) ⊆ [ϵ, δ] for some ϵ, δ > 0, the function N : R2 × R2 → R defined

by N(r1e
iθ1 , r2e

iθ2) = r1+r2
2 a

(
θ1+θ2

2

)
forms a G2NS, (R2, N).

A specific example of a G2N space in which this proposition is used is given in
Section 3 (see Example 3.5).

Researchers have studied the notions of g-convergence and g-Cauchyness for var-
ious spaces. Chaipunya and Kumam [1] introduced these notions for g − 3ps-spaces
as follows.

Definition 2.14 ([1]). Let X be a g−3ps space and {xn} be a sequence in it. Then,
(i) {xn} is said to be g-convergent if there is a point x ∈ X such that for each ϵ > 0
there exists k ∈ N such that g(x, x, xn) < ϵ whenever n ≥ k. In this case it is said

that {xn} g-converges to x and is written as xn
g→ x.

(ii) {xn} is said to be Cauchy if for any ϵ > 0, there exixts k ∈ N such that
g(xm, xm, xn) < ϵ whenever m,n ≥ k.

This article deals with g-convergence and related ideas from a topological point of
view. For this purpose, a certain type of topological spaces is used, whose properties
can be completely understood by convergent sequences. Spaces of this type are known
as sequential spaces, which were introduced by S. P. Franklin [4].

Definition 2.15 ([4]). A topological space (X, τ) is said to be sequential if any set
F ⊆ X is closed if and only if any any convergent sequence in F converges in F .
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In fact, we have another theorem to characterize sequential spaces.

Theorem 2.16 ([4]). A topological space (X, τ) is sequential if and only if for every
open set G, each sequence in X converging in G, is eventually in G.

Example 2.17. Every first countable space is sequential. In particular, metric spaces
are sequential.

3. Topological understanding of g-convergence

The notion of G-convergence was introduced by Mustafa and Sims [17] for sequences
in G-metric spaces. Notions of a similar nature are also studied for S, D and D∗-
metric spaces. During the unification process of various generalized distance functions,
Chaipunya and Kumam [1] reintroduced the same notion as g-convergence for g−3ps-
spaces. The Definition 2.14 can be used in this context. In this section, we propose
a possible analogy of g-convergence for G2N-spaces and find its topological meaning.
Unless otherwise mentioned, X denotes a G2N space (X,N) in this section.

Definition 3.1. Let X be a G2N space. A sequence {xn} in X is said to be g-
convergent if there exists x ∈ X such that for each ϵ > 0 there exists k ∈ N such that
N(x − xn, x − xn) < ϵ for all n ≥ k. In such situation, x is said to be a g-limit of

{xn} and is written as xn
g→ x.

A few elementary properties are as follows.

Proposition 3.2. In a G2NS, g-limit of a g-convergent sequence is unique.

Proof. Let {xn} be a g-convergent sequence with a g-limit x. If possible, let x′ be
another g-limit of {xn}. Consider any ϵ > 0. Then with the help of Remark 2.10 we
may conclude that, there exists r > 0 such that Mr < ϵ. Again, {xn} g-converges to
x and x′. So, there exists k ∈ N such that

N(xn − x, xn − x), N(xn − x′, xn − x′) < r whenever n ≥ k

⇒ xn − x, xn − x′ ∈ BN (0, r) whenever n ≥ k

⇒ N(xk − x− xk + x′, xk − x− xk + x′) < Mr < ϵ (by Remark 2.10)

⇒ N(x′ − x, x′ − x) < ϵ.

Since ϵ > 0 is arbitrary, we have N(x′ − x, x′ − x) = 0 and so x = x′. □

Proposition 3.3. Every g-convergent sequence in a G2NS is bounded.

Proof. Let {xn} be a sequence in X which g-converges to a point x ∈ X. Then, for
any ϵ > 0, there exists k ∈ N such that

N(xn − x, xn − x) < ϵ whenever n ≥ k

⇒ xm − x, xn − x, xp − x ∈ BN (0, ϵ) whenever m,n, p ≥ k

⇒ N(xm − x− xp + x, xn − x− xp + x) < Mϵ whenever m,n, p ≥ k
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⇒ N(xm − xp, xn − xp) < Mϵ whenever m,n, p ≥ k.

So, A = {xn : n ≥ k} is a bounded set. Again, B = {xn : n < k} is a finite set. So,
it is also bounded. Thus, the set A ∪B, which is the collection of all the elements of
the sequence {xn}, is bounded. □

Remark 3.4. Chaipunya and Kumam [1] stated that for sequences in g− 3ps-spaces
g-convergence and convergence are two different notions. Indeed, convergence implies
g-convergence, but not vice versa. Since a G2N space is also a g− 3ps-space, one can
conclude that a sequence {xn} in a G2N space X converges to x, which implies that
{xn} is g-convergent to x. But the converse is not true for G2N-spaces either. We
illustrate this with an example.

Example 3.5. Consider a function a : [0, 2π) → R defined by

a(θ) =

{
π

2π−θ if θ ∈ [0, π)
π

3π−θ if θ ∈ [π, 2π).

The Proposition 2.13 leads to the conclusion that a defines a G2N on R2. We are
interested to understand the topology τN in more details. For this purpose, consider
the set BN (0, 1). We have,

BN (0, 1) = {reiθ : N(reiθ, reiθ) < 1} = {reiθ : ra(θ) < 1}

=
{
reiθ : r <

2π − θ

π
, 0 ≤ θ < π

}
∪
{
reiθ : r <

3π − θ

π
, π ≤ θ < 2π

}
.

One can check that, BN ((0, 0), 1) ∩ BN ((3, 0), 1) = {(x, 0) : 1 < x < 2}. In fact,
any set of the form S((a, c), (b, c)) = {(x, c) : a < x < b} can be written as intersection
two open balls and so is an open set. Hence, B = {((a, c), (b, c)) : a, b, c ∈ R} ⊆ τN .
Observe that, the elements of B are the open segments on straight lines parallel to x-
axis. Moreover, any finite intersection of open balls can be written as a union of some
elements of B. Thus, B is a basis of τN . If we consider a metric, d : R2 × R2 → R
defined by

d((x1, y1), (x2, y2)) =

{
|x1 − x2| if y1 = y2

|x1|+ |x2|+ 1 if y1 ̸= y2
,

then, the B is a subset of open balls in (R2, d). Moreover, all other open balls of
(R2, d) can be written as union of elements of B. Hence, the topology of (R2, d) is
nothing but (X, τN ). Thus, (X, τN ) is metrizable.

Now, consider the sequence {xn} defined by

xn =
(
0,

1

n

)
for each n ∈ N.

Consider the open set ((−1, 0), (1, 0)) containing (0, 0). Then, for every n ∈ N,

xn =
(
0,

1

n

)
/∈ ((−1, 0), (1, 0)).

However,

N(xn − (0, 0), xn − (0, 0)) = N
((

0,
1

n

)
,
(
0,

1

n

))
=

1

n
· π

2π − π
2

=
1

3n
.
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Hence, as n → ∞, N(xn − (0, 0), xn − (0, 0)) → 0. Therefore, xn ↛ (0, 0) but

xn
g→ (0, 0).

The above example clearly shows the difference between convergence and g-con-
vergence of sequences in G2N-spaces. With this difference in mind, let us examine
g-convergence from a topological point of view. We investigate the possibility of a
topology for which these two notions coincide. First, we define g-open sets.

Definition 3.6. A subset G of a G2NS X is said to be g-open if for any x ∈ G
and any sequence {xn} in X g-converging to x, there exists k ∈ N such that xn ∈ G
whenever n ≥ k.

The relation between open sets and g-open sets is an interesting point to study.
We discuss on this after introducing a new kind of topology.

Proposition 3.7. For a G2N space (X,N), the set τg of all g-open sets forms a
topology on X.

Proof. Let (X,N) be a G2N space and τg be the set of all g-open sets. Then, by
definition, empty set ϕ and X are in τg. Now consider an arbitrary family {Gλ : λ ∈
Λ} ⊆ τg. Take any x ∈ ∪

λ∈Λ
Gλ. Then x ∈ Gλ′ for some λ′ ∈ Λ. So, for any sequence

{xn} in X g-converging to x, there exists k ∈ N such that xn ∈ Gλ′ whenever n ≥ k.
But Gλ′ ⊆ ∪

λ∈Λ
Gλ. Thus, xn ∈ ∪

λ∈Λ
Gλ whenever n ≥ k and so ∪

λ∈Λ
Gλ ∈ τg.

Finally, consider G1, G2, . . . , Gm from τg. We need to show that
m
∩
i=1

Gi ∈ τg. For

this, take any x ∈
m
∩
i=1

Gi and any sequence {xn} in X g-converging to x. Thus, for

each i ∈ {1, 2, . . . ,m} we have xn
g→ x ∈ Gi ∈ τg ⇒ there exists ki ∈ N such that

xn ∈ Gi whenever n ≥ ki. Take k = max{ki : i = 1, 2, . . . ,m}. Then, for each

i ∈ {1, 2, . . . ,m}, xn ∈ Gi whenever n ≥ k ⇒ xn ∈
m
∩
i=1

Gi whenever n ≥ k.

Hence,
m
∩
i=1

Gi ∈ τg. Therefore, τg forms a topology on X. □

Remark 3.8. We propose to call this topology τg as “g-topology”. Note that, for the
topological space (X, τg), the open sets are the g-open sets. Since there is another
topology τN into play, we prefer to call the open sets in (X, τN ) as N -open.

Following theorem gives an alternative description of g-open sets.

Theorem 3.9. Let X be a G2NS. G ⊆ X is g-open if and only if for each x ∈ G
there exists r > 0 such that BN (x, r) ⊆ G.

Proof. Suppose X be a G2NS and G ⊆ X be a g-open set. Take any x ∈ G. We need
to show the existence of a r > 0 for which BN (x, r) ⊆ G. If no such r > 0 exists, then

for any 1
n , where n ∈ N, we have BN

(
x, 1

n

)
⊈ G there exists xn ∈ BN

(
x, 1

n

)
such

that xn /∈ G ⇒ N(xn − x, xn − x) < 1
n and xn /∈ G.
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In this way, we have a sequence {xn} such that xn
g→ x but xn /∈ G for each

n ∈ N. This contradicts the g-openness of G. Hence, there exists r > 0 for which
BN (x, r) ⊆ G.

Conversely, let G ⊆ X such that for each x ∈ X, there exists r > 0 for which

BN (x, r) ⊆ G. Take any sequence {xn} in X so that xn
g→ x. Then, there exists

k ∈ N for which N(xn − x, xn − x) < r whenever n ≥ k ⇒ xn ∈ BN (x, r) whenever
n ≥ k ⇒ xn ∈ G whenever n ≥ k. Thus, G is a g-open set. □

With reference to the above theorem, we have an alternative definition of g-
topology as follows.

Definition 3.10. In a G2NS (X,N), the g-topology τg is defined as follows

τg ··= {G ⊆ X : for each x ∈ G there exists r > 0 such that BN (x, r) ⊆ G}.

The idea of g-topology originated from the concept g-convergence. Now we move
back to discuss the notion of g-convergence under the framework of g-topology.

Lemma 3.11. For a G2NS (X,N), x ∈ X and a sequence {xn} in X, xn → x in

(X, τg) if xn
g→ x in (X,N).

Proof. Suppose {xn} be a sequence in X and x ∈ X such that xn
g→ x. Take any

G ∈ τg containing x. Then, there exists r > 0 such that x ∈ BN (x, r) ⊆ G. Now,

xn
g→ x in (X,N) ⇒ N(xn−x, xn−x) → 0 as n → ∞

⇒ there exists k∈N such that N(xn−x, xn−x) < r whenever n ≥ k

⇒ there exists k∈N such that xn∈BN (x, r) whenever n ≥ k

⇒ there exists k∈N such that xn∈G whenever n ≥ k

⇒ xn → x in (X, τg).

Remark 3.12. Combining Remark 3.4 and Lemma 3.11 we may conclude that, for a

point x and a sequence {xn} in (X,N), xn → x in (X, τN ) ⇒ xn
g→ x in (X,N) ⇒

xn → x in (X, τg). So, if τN and τg coincide under certain condition, then all the
notions of convergence coincide.

We have the following proposition regarding the relation between τN and τg.

Proposition 3.13. For a G2NS (X,N), we have τN is finer than τg.

Proof. Suppose (X,N) be a G2NS. Take any g-open set G. Then by Definition 3.10,
for each x ∈ G, we have rx > 0 such that BN (x, rx) ⊆ G. Thus, G = ∪

x∈G
BN (x, rx).

Now, each BN (x, rx) ∈ τN . Thus, G ∈ τN . Since G is an arbitrarily chosen g-open
set, therefore τg ⊆ τN . □

Remark 3.14. For the above proposition, equality relation does not hold in general.
As an example, consider the G2NS defined in Example 3.5. There, the sequence
xn =

(
0, 1

n

)
does not converge to (0, 0). But, g-converges to (0, 0). Hence, τN ̸= τg.
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Here we examine the case when τN = τg in detail and conclude this section. Recall
that Definition 3.10 gives a description of g-open sets. From this definition, we can
conclude that the open balls BN (x, r) play a crucial role in the description of g-open
sets. Indeed, g-open sets can be written as a union of open balls. However, open balls
are not g-open sets in general. The following theorem successfully binds all these
issues as a necessary and sufficient criterion.

Theorem 3.15. For a G2NS (X,N), the followings are equivalent:
(I) BN ⊆ τg, (II) BN is a basis of τg, (III) τg = τN .

Proof. (I) ⇔ (II): Suppose BN ⊆ τg. So, the open balls are g-open sets. Thus, from
the definition of g-open sets it follows that BN is a basis of τg.

On the other hand, basis of a topology is always a subset of that topology. Thus,
BN is a basis of τg and thus BN ⊆ τg.

(I) ⇔ (III): Suppose BN ⊆ τg. Now,

BN ⊆ τg ⇒ τN ⊆ τg (since BN is a subbasis of τN )

⇒ τN = τg (since τg ⊆ τN ).

Conversely, if τN = τg, then BN ⊆ τN = τg. □

Remark 3.16. The possibility of equality for τN and τg is discussed in Theorem 3.15.
From this it can be concluded that the notion of g-convergence can be considered as
the well-known notion of convergence for sequences if one of the three conditions
mentioned in Theorem 3.15 hold.

Topological properties are easier to understand if sequences play the key role. We
conclude this section with such discussion for G2NS.

Theorem 3.17. For a G2NS (X,N), if τN = τg, then the topology is sequential.

Proof. For instance, let τN = τg = τ. Now, take any closed set F . Choose any
sequence {xn} in F . Suppose, x be such that xn → x. Remark 3.12 assures that

xn
g→ x. Since, g-limit of a sequence is unique, we conclude that x is unique and so

there is no other limit of {xn}. Thus, it is enough to show that x ∈ F .
If x /∈ F , then x ∈ X\F . Now, X\F is an open set in (X, τg). So, by Definition 3.6

we have k ∈ N such that xn ∈ X \ F whenever n ≥ k. Thus, xk ∈ X \ F and so
xk /∈ F . This contradicts our assumption. Hence, x ∈ F . Therefore, τ is a sequential
space. □

4. Further study on g-convergence and some related fixed point theorems

In this section we study some properties of g-convergence that were not covered in
Section 3. Some related notions, such as g-Cauchy, g-quasi-Cauchy sequences, are
also introduced here. The notions of g-complete and g-compact spaces are also briefly
introduced. We start with definitions of g-Cauchy and g-quasi-Cauchy sequences.
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Definition 4.1. In a G2NS X, a sequence {xn} is said to be g-Cauchy if for each
ϵ > 0 there exists k ∈ N such that N(xm − xn, xm − xn) < ϵ whenever m,n ≥ k.

Definition 4.2 (g-Quasi-Cauchyness). A sequence {xn} in a G2NS X is said to be g-
quasi-Cauchy if for each ϵ > 0 there exists k ∈ N such thatN(xn+1−xn, xn+1−xn) < ϵ
whenever n ≥ k.

An important result related to Definition 4.2 is as follows.

Lemma 4.3. If a sequence {xn} in a G2NS X is g-quasi-Cauchy and the subsequence
{xnk

} g-converges to x,then {xnk+1} also g-converges to x.

Proof. Let ϵ > 0 be arbitrary. Then by Remark 2.10 there exists r > 0 such that
Mr < ϵ.

Given that {xnk
} g-converges to x. So for r > 0 there exists N1 ∈ N such that,

whenever nk ≥ N we have N(xnk
− x, xnk

− x) < r. On the other hand {xn} is
g-quasi-Cauchy. Thus there exists N1 ∈ N such that N(xnk+1−xnk

, xnk+1−xnk
) < r

for all nk ≥ N2.
Choose N = max{N1, N2}. Then for every nk ≥ N we have: N(xnk

−x, xnk
−x) <

r and N(xnk+1 − xnk
, xnk+1 − xnk

) < r. So, N(xnk+1 − x, xnk+1 − x) < Mr < ϵ for
all nk ≥ N. Hence {xnk+1} g-converges to x. □

The notions of g-Cauchyness and g-convergence are linked. The following results
prove this, the proof is obvious.

Proposition 4.4. In a G2NS, any subsequence of a g-convergent sequence is g-
convergent and the g-limits are same.

Proposition 4.5. In a G2NS, every g-convergent sequence is g-Cauchy.

Proof. Consider a g-convergent sequence {xn}. Choose any ϵ > 0. Then by Re-
mark 2.10 there exists r > 0 such that Mr < ϵ.

Since {xn} is g-convergent, there exists k ∈ N such that N(x − xn, x − xn) < r
whenever n ≥ k.

So for m,n ≥ k we have N(x − xm, x − xm) < r and N(x − xn, x − xn) < r.
Therefore N(xm − xn, xm − xn) < Mr < ϵ for m,n ≥ k. Hence {xn} is g-Cauchy. □

Converse of Proposition 4.5 is not always true. We have the following counterex-
ample.

Example 4.6. Consider C[0, 1], the set of all real valued continuous functions defined
on [0, 1]. Then it is already an established fact that, the norm ∥·∥2 on C[0, 1] defined by

∥f∥2 ··=
(∫ 1

0

(f(x))2dx
)1/2

for every f ∈ C[0, 1],

gives an incomplete normed linear space. Now, we define a G2N on C[0, 1] as follows,

∥f, g∥ ··= ∥f − g∥2 + ∥f∥2 for every f, g ∈ C[0, 1].
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For this G2N,

a sequence {xn} is g-Cauchy in (C[0, 1], ∥·, ·∥)
⇔ for every ϵ>0, there exists k ∈ N such that ∥xm−xn, xm−xn∥<ϵ whenever m,n≥k

⇔ for every ϵ>0, there exists k ∈ N such that ∥xm−xn∥2<ϵ whenever m,n≥k

⇔ {xn} is Cauchy in (C[0, 1], ∥ · ∥2).
Using similar argument it can be proved that, a sequence {xn} g-converges to x if and
only if it converges to x in (C[0, 1], ∥ · ∥2). These two armuments clearly establishes
that, if every g-Cauchy sequence g-converges in (C[0, 1], ∥·, ·∥), then (C[0, 1], ∥ · ∥2) is
complete, which is a contradiction. Thus there are g-Cauchy sequences which are not
g-converges in (C[0, 1], ∥·, ·∥).

However, some added condition proves the converse of Proposition 4.5.

Theorem 4.7. If a g-Cauchy sequence has a subsequence g-converging to x ∈ X,
then it g-converges to x.

Proof. Let ϵ > 0 be given. Then by Remark 2.10 there exists r > 0 such that
Mr < ϵ. Now for r > 0 there exists k ∈ N such that for all m,n, nk ≥ N we
have N(xm − xn, xm − xn) < r and N(xnk

− x, xnk
− x) < r. So, N(xnk

− xn, xnk
−

xn), N(xnk
−x, xnk

−x) < r for all nk, n ≥ N . Therefore, N(xn−x, xn−x) < Mr < ϵ

for all n ≥ N and so xn
g→ x. □

However, there are spaces where one does not need to add such condition. Such
spaces are called g-complete.

Definition 4.8 (g-completeness). A non-empty subset S of a G2NS (X,N) is called
g-Complete if every g-Cauchy sequence in S is g-converges in S.

Definition 4.9 (Contraction Mapping). Let (X,N) be a G2NS and S ⊆ X be
nonempty. A mapping T : S → S is called a contraction on S if there exists α ∈ (0, 1)
such that the following holds for every x, y ∈ S, N(T (x) − T (y), T (x) − T (y)) ≤
αN(x− y, x− y).

Theorem 4.10 (Contraction Theorem - Banach Type). Let (X,N) be a G2NS and
S ⊆ X be nonempty. T be a contraction on S. If for some x0 ∈ S the sequence {xn}
defined by xn ··= Tn(x0) ∀n ∈ N, has a subsequence {xnk

} g-converging in S, then T
has a unique fixed point in S. Moreover, {xnk

} g-converges to that unique fixed point.

Proof. For all n ∈ N we have

N(xn+1 − xn, xn+1 − xn) = N(T (xn)− T (xn−1, T (xn)− T (xn−1)

≤ αN(xn − xn−1, xn − xn−1) . . . ≤ αnN(x1 − x0, x1 − x0).

Now, α ∈ [0, 1) implies that N(xn+1 − xn, xn+1 − xn) → 0 as n → ∞.
So {xn} is g-quasi-Cauchy.

Let {xnk
} be a g-convergent subsequence of {xn}. Suppose xnk

g→ x. Now,
N(T (x) − xnk+1, T (x) − xnk+1) < αN(x − xnk

, x − xnk
) for all nk ∈ N. However,
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xnk

g→ x. So N(x− xnk
, x− xnk

) → 0 as nk → ∞. So by Sandwich theorem we can

say that N(T (x)− xnk+1, T (x)− xnk+1) → 0 as nk → ∞ i.e. xnk+1
g→ T (x).

On the other hand, Lemma 4.3 concludes that xnk+1
g→ x.

Since a G2NS is Hausdorff, we can say that T (x) = x, i.e. x is a fixed point for
T . If x is not the unique fixed point, then there exists another point y ∈ S such that
T (y) = y. Now, N(x− y, x− y) = N(T (x)− T (y), T (x)− T (y)) ≤ αN(x− y, x− y).
According to our assumption, x ̸= y and so N(x− y, x− y) ̸= 0. Thus, α ≥ 1, which
is a contradiction.

Therefore, X contains a unique fixed point for T . □

Remark 4.11. Theorem 4.10 can be seen as a general theorem for functions satisfying
the Banach Type contraction. We have simpler results for some special cases as
follows.

Definition 4.12. Let (X,N) be a G2NS. A nonempty subset S of X is said to be a
unitary disc if its maximal perimeter is less than or equal to 1.

Theorem 4.13. Let X be a G2NS and S be a g-complete unitary disc in X. Let T
be a contraction on S. Then T has a unique fixed point.

Proof. Consider any x0 ∈ X and construct the iterative sequence {xn} as: xn ··=
Tn(x0) ∀n ∈ N. Then, proceeding similarly as Theorem 4.10 we have, for each n ∈ N
N(xn+1 − xn, xn+1 − xn) ≤ αnN(x1 − x0, x1 − x0). Let, r = αnN(x1 − x0, x1 − x0).
Then,

N(xn+1 − xn, xn+1 − xn) ≤ r. (1)

Now,

N(xn+2 − xn+1, xn+2 − xn+1) = αN(T (xn+1)− T (xn), T (xn+1)− T (xn))

≤ αN(xn+1 − xn, xn+1 − xn) = αr < r. (2)

From equations (1) and (2) we have,

N(xn+2 − xn, xn+2 − xn)

=N((xn+2 − xn+1) + (xn+1 − xn), (xn+2 − xn+1) + (xn+1 − xn)) ≤ Mr = rM1 ≤ r.

Proceeding in this way iteratively, for any p ∈ N we get

N(xn+p − xn, xn+p − xn) ≤ r. (3)

Now, as n → ∞, r = αnN(x1 − x0, x1 − x0) → 0 and r is independent of p.
Equation (3) leads to the conclusion that {xn} is a Cauchy sequence. Thus, the

g-Completeness of S proves that {xn} g-converges in S. Let, xn
g→ x as n → ∞.

Since for any n ∈ N,
N(xn+1−T (x), xn+1−T (x)) = N(T (xn)−T (x), T (xn)−T (x)) ≤ αN(xn−x, xn−x),

therefore, xn+1
g→ T (x) as n → ∞. Since limit of a sequence is unique, we have

x = T (x). Uniqueness of the fixed point follows similarly as Theorem 4.10. □
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Definition 4.14. Let X be a G2NS and S ⊆ X. A function T : S → S is said to be
contractive if for every x, y ∈ S with x ̸= y, the following holds:

N(T (x)− T (y), T (x)− T (y)) < N(x− y, x− y).

The fixed point theorem for contractive mappings require the following definition.

Definition 4.15. A G2NS X is said to be g-continuous if for any two sequences {xn}
and {yn} with xn

g→ x and yn
g→ y we have, N(xn, yn) → N(x, y).

Theorem 4.16 (Contractive Theorem - Edelstein Type). Let (X,N) be a g-continuous
G2NS and T be a contractive mapping on S ⊆ X. If for some x0 ∈ S, the iterative
sequence {xn} defined as xn ··= Tn(x0) for each n ∈ N has a g-convergent subsequence
converging in S, then T has a unique fixed point.

Proof. Let T : S → S be a contractive mapping on S ⊆ X. Suppose x0 ∈ S be
such that the iterative sequence {xn} defined by xn ··= Tn(x0) has a convergent
subsequence. Let {xni} be such subsequence of {xn} converging to a point ξ in S.
We are interested to find a fixed point for T . If {xn} has two consecutive terms of
equal value, then we have:

xm = xm+1 for some m ∈ N ⇒ T (xm) = xm ⇒ xm is a fixed point for T.

If no two consecutive terms of {xn} are equal, i.e. xn ̸= xn+1 for each n ∈ N, then we
claim that ξ is a fixed point. If not, then T (ξ) ̸= ξ. So by the contractive condition
of T ,

N(T (ξ)− T 2(ξ), T (ξ)− T 2(ξ)) < N(ξ − T (ξ), ξ − T (ξ)). (4)

Now, consider the sequence {an}, where the terms are defined as

an ··= N(Tn(x0)− Tn+1(x0), (T
n(x0)− Tn+1(x0)).

Clearly, for any n ∈ N,

an+1 = N(Tn+1(x0)− Tn+2(x0), (T
n+1(x0)− Tn+2(x0))

< N(Tn(x0)− Tn+1(x0), (T
n(x0)− Tn+1(x0)) = an.

Thus, {an} is a decreasing sequence. Now,

xni

g→ ξ ⇒ N(xni−ξ, xni−ξ) → 0

⇒ For any ϵ > 0 there exists m ∈ N such that N(xni−ξ, xni−ξ) < ϵ whenever i ≥ m

⇒ N(xni+1−T (ξ), xni+1−T (ξ)) < N(xni−ξ, xni−ξ) < ϵ whenever i ≥ m

⇒ xni+1
g→ T (ξ).

Similarly, xni+2
g→ T 2(ξ). Thus, xni − xni+1

g→ ξ − T (ξ) and xni+1 − xni+2
g→

T (ξ)− T 2(ξ). Continuity of N leads to the following,

ani | = N(xni − xni+1, xni − xni+1)
g→ N(ξ − T (ξ), ξ − T (ξ))

and

ani+1 = N(xni+1 − xni+2, xni+1 − xni+2)
g→ N(T (ξ)− T 2(ξ), T (ξ)− T 2(ξ)).
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Thus, N(ξ − T (ξ), ξ − T (ξ)) is a subsequential limit of {an}.
Choose any k ∈ N arbitrarily. Then, for any n > nk + 1 we have, an < ank+1 So,

any subsequential limit of {an} is also less than ank+1. Therefore, N(ξ − T (ξ), ξ −
T (ξ)) < ank+1. Since the choice of k is arbitrary, we have a subsequence {ank+1}
whose terms are greater than N(ξ−T (ξ), ξ−T (ξ)). So, the limit of {ank+1}, which is
N(T (ξ)−T 2(ξ), T (ξ)−T 2(ξ)), satisfies the following condition, N(ξ−T (ξ), ξ−T (ξ)) ≤
N(T (ξ)− T 2(ξ), T (ξ)− T 2(ξ)). This contradicts (4). Hence, T (ξ) = ξ. □

Finally we introduce the notion of g-compactness and study fixed point theorems
in such spaces.

Definition 4.17. In a G2NS (X,N), S ⊆ X is said to be g-compact if every sequence
in S has a g-convergent subsequence converging in S.

Remark 4.18. For a g-compact set, every sequence has a convergent subsequence.
Hence, in particular for Theorem 4.10 and Theorem 4.16, the iterative sequence always
has a convergent subsequence. Thus, we have the following result.

Theorem 4.19. Let (X,N) be a continuous G2NS and S ⊆ X be a g-compact set.
Let T : S → S be a mapping satisfying the following condition for every x ∈ S,

N(T (x)− T (y), T (x)− T (y)) ≤ N(x− y, x− y).

Then, T has a unique fixed point.

We end this section with an example justifying the fixed point theory studied here.

Example 4.20. Consider the G2NS defined in Example 3.5. Consider a mapping

T (reiθ) =

{
r
5e

i(θ+π) if θ ∈ [0, π)
r
5e

i(θ−π) if θ ∈ [π, 2π).

Then, T is actually a linear transformation and

N(T (reiθ), T (reiθ)) = N(
r

5
ei(θ+π),

r

5
ei(θ+π))

=
r

5
a(θ + π) =

r

5
a(θ) =

1

5
N(reiθ, reiθ).

Thus,

N(T (r1e
iθ1)− T (r2e

iθ2), T (r1e
iθ1)− T (r2e

iθ2))

=N(T (r1e
iθ1 − r2e

iθ2), T (r1e
iθ1 − r2e

iθ2)) =
1

5
N(r1e

iθ1 − r2e
iθ2 , r1e

iθ1 − r2e
iθ2).

This proves that T is a contractive mapping. Consider the iterative sequence with
x0 = ei.0 Then, the iterative sequence {xn} converges to (0, 0). Hence, T has a unique
fixed point (0, 0).
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5. Conclusion

The notion of g-convergence has been studied by many researchers for a long time.
It has been found that this notion is similar but not identical to the notion of con-
vergence. In fact, there has been no adequate study to demonstrate these notions
topologically. In this paper, this task is solved by the authors by introducing a new
type of topology, the g-topology. As a result, some fixed point theorems are also
established.
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