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AN INEQUALITY RELATED TO THE UNIFORM CONVEXITY
IN BANACH SPACES

Miroslav Pavlovié

Abstract. We prove an inequality that implies that a 2-concave and p-convex Banach lattice
is “more” uniformly convex than L?.

1. Introduction
In this note we prove the following

THEOREM. Let X be a 2-concave Banach lattice with 2-concavity constant
equal to one, and let 1 < p < 2. Then

1/
(2 + P + |z = y")PIL = {2l + Iy D+ [l = [yl (1)

for all x,y € X. In particular, inequality (1) holds in an arbitrary L9 space with
I<g<g2

For the definition of the expression (|u|?+|v|?)'/? and other notions concerning
abstract Banach lattices we refer to [3], Ch. 1 (especially Theorem 1.d.1). In the
case where X = LP (1 < p < 2) inequality (1) becomes

P
Iz + 517+l = l” > (Il + lyID? + [l = vl (2)

which was used by Hanner [2] to calculate the precise value of the modulus of
convexity of LP. Moreover, it follows from [4] that the validity of (2) in some
normed spaces X implies that X is “more” uniformly convex than LP (where L?
is at least two-dimensional). An immediate consequence of Theorem is that (1)
holds in a large class (denoted by A(p,2); see Section 2) containing, for example,
L9 for p < g < 2 as well as certain Orlicz and mixed normed Lebesgue spaces. Note
that, in [4], the validity of (2) in L? (p < ¢ < 2) was deduced from the case ¢ = p
by using the fact that L? can be embedded into L?(0,1) isometrically (see [3], pp.
181-182). The proof in the present note is quite elementary and lies on the fact
that (for 1 < p < 2) the function

Fy(,m) = {(EYV2 + g2 112 gt 2p)2P ez 0,200 (3)
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is convex. Before proving the result we mention a generalization of F}, that could
be of some independent interest. Let r; (j = 0,1,2,...) denote the Rademacher
functions,

r;(t) = sign(sin(2’7t)) (t real).

Define the functions ®, on the positive cone I} of the sequence space I* by

@A&={Al

That the definition is correct follows from the well known fact that if (a;)5° €
I2, then the series Y a;r;(t) converges almost everywhere, and from Khintchine’s
inequality [3], Theorem 2.b.3, which says that

P 2/p
ﬁ} (€= ()5 2 0).

i 7“a‘(?f)@l-/z
7=0

ApllElln < @p(E) < Bpllélln (Ap, By = const > 0).

Starting from the observation that ®(&1,£2,0,0,...) = const F,(&1,&2) we conjec-
ture that @, is a convex function on I} (for 1 < p < 2). (We shall also prove that
if p > 2, then F), is concave, and we conjecture that ®, is concave if p > 2).

This would lead to the inequality

1@ (21, 22, ) = @p(flzall, 2], - ),

where x1, T2, ... are elements of a Banach lattice whose 2-concavity constant is
eual to one. Further remarks are at the end of the paper.

2. Definitions and examples

We denote by A(p,q), where 1 < p < ¢ < 400, the class of (real) Banach
lattices X such that

I(Jul? + [0 /7)) < (lul + [lo]?) /7 (4)

and
(] + ol = (lell? + [lol2)' /¢ (5)

for all u,v € X. In other words, X is in A(p,q) if it is p-convex and g-concave and
its p-convexity and g-concavity constants are equal to one. It is clear that A(1, o0)
is just the class of all Banach lattices. And by [3], Proposition 1.d.5, A(p,q) is
contained in A(r,s) for r < p < ¢ < s. In particular, LY € A(r,s) if r < ¢ < s, a
fact which can easily be verified by direct calculations.

It was proved by Figiel [1] (see also [3], pp. 80-81) that if X € A(p,q) with
p>1and g < 400, then X is uniformly convex in the sense that

8x(e) :inf{ 1-

T+y
32| e = el =l =1} > 0

for ¢ > 0. The function 6x is called the modulus of convexity of X. Let ¢,
denote the modulus of convexity of L?, dim(L?) > 2. (It follows from [2] that ¢, is
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independent of a particular choice of LP.) As noted in Introduction, the following
fact follows immediately from (1) and (4).

COROLLARY 1. If X € A(p,2) (in particular, X = LY for 2 > q > p), then
inequality (2) holds.

As noted in Introduction, this implies the following
COROLLARY 2. If X € A(p,2), then 6x(g) = 6,(¢) (¢ > 0).

Mized normed spaces. For technical reasons we define only sequence spaces.
Let 1 < r,s < 2. The space X = [™*® consists of those scalar sequences = =

{2k }55%=0 such that
oo r/sy1/r
Jall = {z[ |xj,k|s] } e
7=0 Lk

=0
It is not hard to show that I™* € A(p,q), where p = min(r, s) and ¢ = max(r, s).
Hence, by Corollary 2, 6x(¢) > 6,(¢). Since I™*® contains an isometric copy of 17,
we conclude that 0x = 6p.

Orlicz spaces. Let M be a convex, strictly increasing function on the interval
[0, 00) with M (0) = 0. The space [M consists of the scalar sequnces z = {z;}§° for
which

||x||:||x||M:inf{)\>0: EM(@) gl} < 00.
3=0

One can prove that [™ € A(p,q) provided that the function M(t'/?) is convex
and the function M(t'/9) is concave. Therefore, inequality (1) holds in I if the
function M (t'/9) is concave. Estimates for the moduli of convexity of Orlicz spaces
can be found in [1].

3. Proofs
Our proof is based on the following lemma.

LEMMA. Let F, be defined by (3). Then, if 1 < p < 2, the function F, is
convez, and if p > 2, it is concave. In all the cases F,(§,n) increases with & and 0.

Before proving the lemma we use it to prove the theorem. Let x,y € X, where
X € A(1,2), and 1 < p < 2. Then

1
(| +yl + e —y")77 = (2] + ly)? + |l=| = yI[") """

(this is deduced from the case where x, y are real scalars, by using Theorem 1.d.1
of [3]) and we may assume that z > 0, y > 0. Assuming this we have

(lz + yI? + |z — y[")/? = F,p(2?,y*)*/?
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(see [3], Theorem 1.d.1). Since F), is convex, homogeneous and “increasing”, there
isaset AC {(o,3) :a>0,8>0} such that

Fp(&,m) =sup{al + Bn: (a,B) € A},
whence F,(22,y*)'/? > (az? + By*)'/?, (a, B) € A, and hence, by (5) with ¢ = 2,
IF, (2, 9%) 21 > (allel® + Bllyl*)/?
for all (o, 8) € A. Taking the supremum over (a, 3) € A we obtain
IFp (2,921 = Fyll=ll?, ly1*)?,
which concludes the proof. m

Proof of Lemma. Let 1 < p < 2. (The case p = 1 is similar.) Since
Fy(X,An) = AF,(&,n) for A > 0, the convexity of F, will follow from the con-
vexity of the function f(t) = ( ,t), t > 0. To prove that f is convex observe first
that f(t) = tf(1/t), whence f’( ) = t=3f"(1/t) for t # 1. And since f'(1) exists,
it remains to prove that f”(t) > 0 for 0 < t < 1. To prove this write f as

)y =g, gty=Q+t)P+(1-t) (0<t<1).
We have

2
2pf”(t) — t72/39(t1/2)(2/p)72 [(5 _ 1) gl(t1/2)2t1/2

g(tl/Q)gH(tl/Q)tl/Q _ g(t1/2)g/(t1/2):| )
Hence, f"(t) > 0 if and only if A(t) > 0, where

1 2 1D " ,
A =21 (2 -1) dwre+ gt - oo o)
=4(p— (1 = )P = [(1+ )72 = (1 = 1) 7],
If 3/2 < p < 2, the function ¢(t) = (1+¢)??=2 — (1 —1)??~2 is concave and therefore
(1) < 9(0) +¢'(0)t = 4(p — 1)t <4(p — 1)t(1 - 7)P~°
which implies A(¢) > 0. If 1 < p < 3/2, then
A'(t) = DA =P+ (3= 2p)t°] = 2(p — D1+ )77 + (1 = )* 7.

=4(p -
Since 0 < 3 — 2p < 1, the function ¢ — t372P is concave, hence

1 3—2p 1 3—2p
- - < 1_t2 2p—3.
() () ] 1)

A(t)>4(p - DA =)L+ (3 —2p)t* —1] >

(L41¢)2P73 4 (1 —t)?r3
2

1
2

Hence
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This implies A(t) > A(0) = 0, which concludes the proof in the case 1 < p < 2. If
p > 2, proving that F}, is concave reduces to proving that A(t) <0 (0 <t < 1). In
this case the function ¢ is convex which implies that

e(t) > (0) + @' (0)t = 4(p — 1)t > 4(p — (1 — £7)P72,
and this completes the proof. m

Remark. The discussion of the case 1 < p < 2 can be made simplier. Namely,
it is easy to see that the function g(t'/?) is convex (0 < t < 1), which implies that
f(t) = g(t'/?)?/? is convex (since 2/p > 1). This trick can also be used if 2 < p < 3,
because then the function g(t'/2) is concave. However, if p > 3, g(t'/?) is convex.

4. Dual results

Using the case p > 2 of Lemma one proves that if z,y € X, where X € A(2,00)
(which means that X satisfies (4) with p = 2), then there holds the reverse of (1).
A consequence is that the reverse of (2) is valid in every lattice of class A(2,p)
(p > 2) and, in particular, in L7 for 2 < ¢ < p. (The latter was proved in [4]
by using the Riesz-Thorin interpolation theorem.) Combining this with Hanner’s
results we see that if X € A(2,p), then X is “more” uniformly convex than LP
(dimension > 2) in the sense that px(7) < p,(7), where

lz + 7yl + [z — 7yl
px(T)Z P{ -

! Lol =1, ol =1,

and p, = pr». The function px is called the modulus of smoothness of X (see [3],
Ch. 1, for further information).
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