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AND RELATED FUNCTIONS
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Abstract. A uni�ed theory has been developed on the basis of the similarity in properties
of perfect and allied types of functions. The theory intromites as a starting point a certain subset
of P(X), the power set of a nonvoid set X, and an operator � on P(X); a second operator � is also
brought into action. This theory of �-perfect functions includes the theories of perfect, �-perfect
and �-perfect functions and is seen to generate many new types of functions when di�erent pairs
of operators take the roles of the pair (�; �).

1. Introduction

Perfect functions and certain allied types of functions re�ered to in the liter-
ature have been studied thoroughly by several authors. These types of functions
have similarity in many aspects. Certain characterizations are quite analogous. The
analogous features existing in their de�nitions and the types of results obtained in
the process of their study point to the necessity of promoting a uni�ed theory. The
purpose of this paper is thus to present a uni�ed theory by agglomeration of the
individual �ndings.

In the next section, we display the development of the uni�ed theory in a
general perspective, while in Section 3 we bring about certain concepts viz. those
of �-sets, 
-sets and �-continuity to �nd other characterizations of �-perfect func-
tions from an altogether di�erent perspective. In the process, we show up the
individual behaviours in particularized settings where the underlying spaces under
consideration are topological spaces.

2. ���-perfect functions

Definition 2.1. Let X be a nonempty set and let B be a family of subsets of
X such that each point of X belongs to some member of B, and that B is closed
under �nite intersection. The set of all members of B, each containing a given point
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x of X is denoted by Bx. In addition, let us consider an operator � on the power
set P(X) of X such that

A � B (� X) =) �(A) � �(B): (�)

Henceforth by a space X (or Y ) or simply by X (or Y ) we mean a nonempty set
X (respectively Y ) endowed with an operator � and associated with a collection B
of subsets of X (or Y ), where � and B are de�ned as above.

Definition 2.2. A point x of a space X is called a �-adherent point of a set
A � X if for each U 2 Bx, �(U) \ A 6= ;. The set of all �-adherent points of A is
denoted by [A]� .

Remark 2.3. It is clear from the above de�nition that the operator � is
increasing, i.e. [A]� � [B]� whenever A � B (� X).

When we consider a function f from a space X to a space Y , we use the same
notations �, � etc. for the space Y as well, with the hope that the context will
leave no scope for confusion.

Definition 2.4. A point x 2 X is called a �-adherent point of a �lterbase F
on X , written as x 2 �-adF , if x 2

T
f [F ]� : F 2 F g.

Definition 2.5. A �lterbase F on X is said to �-converge to a point x of X ,

denoted by F
�
�! x, if for each U 2 Bx, there exists an F 2 F such that F � �(U).

Definition 2.6. A �lterbase F on X is said to be �-directed to a subset A

of X , denoted by F
��d
�! A, if for each �lterbase G �ner than F , A \ �-adG 6= ;.

Let us now illustrate the above uni�ed de�nitions in ceratian particular and
well known settings. Suppose Bx denotes the set of all open neighbourhoods of
any point x of a topological space X , and B =

S
x2X Bx. We shall restrict our

discussion of particularization to only three cases as follows.

When � stands for the identity (closure, interior-closure) operator, the operator
� becomes the closure (resp. �-closure [11], �-closure [11]) operator. Then the notion
of �-adherent point of a �lterbase reduces to its adherent point (resp. �-adherent
point [3,2], �-adherent point [11,7]). A �lterbase is �-directed towards a set A or a
point x becomes equivalent to it being directed [12] (resp. �-directed [2], �-directed
[7]) towards A or x. The �-closure of a set takes the meaning of its closure (resp.
�-closure [11] or almost closure [3], �-closue [11]) and �-convergence of a �lterbase
becomes its ordinary convergence (resp. �-convergence [11] or almost convergence
[3], �-convergence [11]).

Stated below is a list of results elaborating the uni�ed concepts de�ned so
far. We shall omit the proofs as they are quite analogous to those concerning
ordinary convergence and adherence of �lterbases in topological spaces, and can be
constructed without much di�culty.

Proposition 2.7. For a �lterbase F on X, if F �-converges to x 2 X, then
x 2 �-adF .
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Proposition 2.8. If x 2 [A]�, where x 2 X and A � X, then there exists a

�lterbase F on A such that F
�
�! X.

Proposition 2.9. If x 2 �-adF , for some �lterbase F on X (where x 2 X),

then there exists a �lterbase G on X �ner than F such that G
�
�! x.

Proposition 2.10. For a �lterbase F on X and x 2 X, F
�
�! x i� F

��d
�! x.

Remark 2.11. We see that the above propositions generalize the correspond-
ing results in the particular cases under consideration. For example, Proposition
2.10 encompasses Result 2(d) of [12] and Proposition 2.9 of [3] (with A a singleton).

Definition 2.12. Let X and Y be two spaces. A function f : X ! Y is called

�-perfect i� for each �lterbase F on f(X), F
��d
�! B (� f(X)) implies f�1(F)

��d
�!

f�1(B).

We note, at this stage, that the three widely studied types of functions viz. per-
fect [12,10], �-perfect [2,3] and �-perfect [7] functions are achieved as special cases
of �-perfect functions in the three respective particular cases under consideration.

Theorem 2.13. For a function f : X ! Y , the following are equivalent:

(a) f is �-perfect.

(b) For each �lterbase F on f(X) such that F
�
�! y (2 f(X)), f�1(F)

��d
�!

f�1(y).

(c) For any �lterbase F on X, �-ad f(F) � f(�-adF).

Proof. '(a) =) (b)' follows from De�nition 2.12 and Proposition 2.10. The
proof of '(b) =) (c)' is quite similar to Theorem 3.1 of [7] by using Proposition
2.9 and (�), while that of '(c) =) (a)' goes parallel to the proof of Theorem 3.1
((b) =) (c)) of [3].

Remark 2.14. The above theorem along with Proposition 2.10 gives a gen-
eralized version of each of Result 2(e) [12], Theorem 3.1 [3] and Theorem 3.1 [7].

Definition 2.15. A function f : X ! Y is called �-closed i� [f(A)]� �
f([A]�), for each A � X .

The following result uni�es Theorem 2.2 of [7] and Theorem 3.1.1((a) and
(b)) of [3]. Its proof can be done in the same way as in Theorem 2.2 of [7] using
Proposition 2.8, Theorem 2.13 and the fact that � is increasing.

Proposition 2.16. A �-perfect function f : X ! Y is �-closed.

3. ���- and 


-sets, ���-continuity and ���-perfect functions

We have just seen in Proposition 2.16 that a �-perfect function is �-closed.
This motivates us to �nd conditions which along with the �-closedness of functions
yield �-perfect functions. For this purpose we introduce �-sets as follows as a
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uni�ed concept corresponding to compact sets, �-rigid sets [3] and N -sets [1] in
the three particular situations under consideration, and ultimately characterize �-
perfect functions in terms of this type of sets.

Definition 3.1. A subset of a space X is called a �-set i� for every �lterbase
F on X , A\ �-adF = ; implies the existence of an F 2 F such that A\ [F ]� = ;.

Theorem 3.2. If f : X ! Y is �-closed such that f�1(y) is a �-set for each
y 2 Y , then f is �-perfect.

Proof. The proof is similar to that of Theorem 3.4 of [3], where we have to use
Theorem 2.13 and Proposition 2.10.

The concept of �-continuity [4] (�-continuity [8]) is achieved by replacing the
roles of identity and closure operators in the de�nition of continuity by respectively
closure (interior-closure) and �-closure (�-closure) operators. The following de�-
nition uni�es these concepts and the next result gives a uni�ed form of Corollary
2.10.1 of [3], Th 2.2 ((1) =) (3)) of [8] and a well known result on continuity.

Definition 3.3. A function f : X ! Y is called �-continuous i� for each x 2
X and each B 2 Bf(X) in Y , there exists A 2 Bx in X such that f(�(A)) � �(B).

Proposition 3.4. If f : X ! Y is �-continuous, then f([A]�) � [f(A)]�, for
A � X.

Theorem 3.5. If a �-continuous function f : X ! Y is �-perfect, then f is
�-closed and f�1(y) is a �-set, for each y 2 Y .

Proof. A similar demonstration as in Theorem 3.4 of [3] using Theorem 2.12
and Proposition 2.15 furnishes the proof.

Combining Theorem 3.2 and Theorem 3.5 we obtain:

Theorem 3.6. A �-continuous function f : X ! Y is �-perfect i� f is �-
closed and f�1(y) is a �-set, for each y 2 Y .

The following theorem which incidentally generalizes Theorem 3.4 of [3], follows
at once from the above theorem and Proposition 3.4.

Theorem 3.7 A �-continuous function f : X ! Y is �-perfect i� f([A]�) =
[f(A)]�, for each A � X and f�1(y) is a �-set, for each y 2 Y .

QHC sets [9] and N -sets [1] are well known weaker forms of compact sets.
The following de�nition of 
-sets takes all these concepts into account and gives a
generalized version for the de�nitions of all such sets.

Definition 3.8. A subset A of X is said to be a 
-set i� for every cover U of
A by members of B, there exists a �nite subset U0 of U such that A �

S
f�(B) :

B 2 U0 g.
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Theorem 3.9. For a subset A of a space X, the following are equivalent:

(a) A is a 
-set.

(b) Every maximal �lterbase on X which meets A, �-converges to some point
of A.

(c) Every �lterbase on X which meets A, has a �-adherent point in A.

Proof. (a) =) (b): Let A be a 
-set and suppose that U is a maximal
�lterbase on X which meets A, but does not �-converge to any point of A. Then
for each x 2 A, there exists a Bx 2 Bx such that U \ (X n �(Bx)) 6= ;, for every
U 2 U . The maximality of U implies that (X n�(Bx)) 2 U . Then Ux \ �(Bx) = ;,
for some Ux 2 U . Since fBx : x 2 A g is a cover of A by members of B and A is
a 
-set, we have A �

Sn

i=1 �(Bxi
), where fx1; . . . ; xng is a �nite subset of A. We

can �nd U 2 U such that U \ A � (
Tn

i=1 Uxi
) \ (

Sn

i=1 �(Bxi
)) = ;, and this is a

contradiction, since U meets A.

(b) =) (c): Let F be a �lterbase on X which meets A. Then F is contained
in a maximal �lterbase F0 which meets A. Since F0 �-converges to some x 2 A
(by (b)), for every V 2 Bx there exists an F0 2 F0 such that F0 � �(V ). Since
F \ F0 6= ; for each F 2 F , we have �(V ) \ F 6= ;, for all F 2 F and all V 2 Bx.
Hence x (2 A) is a �-adherent point of F .

(c) =) (a): If A is not a 
-set, there is a cover U of A by members of B such
that for every �nite subfamily U0 of U , A n

S
U2U0

�(U) 6= ;. Then

F = fX n
[

U2U0

�(U) : U0 is a �nite subfamily of U g

is a �lterbase on X which meets A. By (c), there exists x 2 A such that x 2 �-adF .
Since U is a cover of A, there exists Ux 2 U such that x 2 Ux. Then Ux 2 Bx and
X n �(Ux) 2 F , so that x =2 [X n �(Ux)]� which is a contradiction.

Remark 3.10. From the above theorem we get Theorem 2.6 [3], Theorem
2 [5], Lemma 3.3 [7] and some well known characterizations of compact sets as
immediate consequences.

Theorem 3.11 If f : X ! Y is �-perfect, then inverse images of 
-sets are

-sets.

Proof. Proceeding similarly as in Corollary 3.1.1 (c) of [3] and using Theorems
3.9 and 2.13, and the fact that � is increasing the proof can be constructed.

Remark 3.12. In the three particular situations, i.e. when � is taken to
mean the identity (resp. closure, interior-closure) operator, the above theorem yields
Corollary 2 of [12], Theorem 3.1.1 (c) of [3] and Theorem 3.4 of [7] respectively.

In certain usual situations it is found that there remains no di�erence between
the notions of �-sets and 
-sets. For example, as we have already observed, such a
collapse takes place when the operator � is taken to stand for the identity operator
and B for the collection of all open sets in a topological space X . Under such a
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condition which we shall denote by 'Condition C' (i.e., when the concepts of �-sets
and 
-sets coincide) and the assumption that singletons are 
-sets (which is trivially
true in all the three particular situations under consideration and in many other
cases), the requirement of �-continuity in Theorem 3.6 can be dispensed with, i.e.,
we have:

Theorem 3.13. Under 'Condition C' on X, a function f : X ! Y is �-perfect
i� f is �-closed and f�1(y) is a 
-set for each y 2 Y (assuming the singletons of
Y to be 
-sets).

Proof. It follows from Proposition 2.16, Theorem 3.2 and Theorem 3.11.

Remark 3.14. It is easy to see that the above theorem together with Theorem
2.13 ((a) () (b)) is a uni�ed form of Corollary 1 and Theorem 3 of [12], and
Theorem 3.5 of [7].

Definition 3.15. A space X is said to be �-separated if for each pair of
distinct points x, y of X , there exists Ux 2 Bx and Uy 2 By such that �(Ux) \
�(Uy) = ;.

It is clear that the above de�nition is an o�shoot of the consideration of the
analogy in the de�nitions of Hausdor� and Urysohn separation axioms. The next
theorem and the corollary thereafter crop up as generalized formulations of Theo-
rems 3.7 and 3.7.1 of [3] in our uni�ed setting. As the proofs of these results here
follow from the corresponding proofs of the above mentioned results of [3] with
obvious modi�cations concerning the operators � and �, we omit the proofs.

Theorem 3.16. Let f : X ! Y be �-continuous and Y be an �-separated

space. Then f is �-perfect i� for every �lterbase F on X if f(F)
�
�! y 2 f(X)

then �-adF 6= ;.

Corollary 3.17. If f : X ! Y is �-continuous, X is a 
-set and Y is
�-separated, then f is �-perfect.

Theorem 3.18. The composition of �-perfect functions f : X ! Y and
g : Y ! Z is �-perfect if 'Condition C' is satis�ed on X, and singletons of Z
are 
-sets.

Proof. In view of Proposition 2.16, g�f is clearly a �-closed function. If
z 2 Z, then g�1(z) is a 
-set. As f is �-perfect, by Theorem 3.11 it follows that
f�1(g�1(z)) is a 
-set in X . Hence g�f is �-perfect, by Theorem 3.13.

Remark 3.19. The above theorem uni�es Theorem e (1.8) of [10] and Theo-
rem 3.1 of [2].

4. Conclusions

In the last two sections we have shown as to how the three widely studied
types of functions viz. perfect, �-perfect and �-perfect functions are achieved as
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special cases of �-perfect functions when the operator � stands respectively for the
identity, closure and interior-closure operator. Also, the existing analogous results
concerning these types of functions have been uni�ed from an algebraic standpoint
minus the aid to topological structure. Apart from the results encompassed so far,
we now derive certain new results on �-perfect functions from Theorem 3.16 and
Corollary 3.17, when � becomes the interior-closure operator. These are formulated
as follows.

Theorem 4.1. Let X, Y be topological spaces and f : X ! Y be �-continuous
with Y a Hausdor� space. Then f is �-perfect i� for any �lterbase F on X, f(F)
�-converges to y (2 Y ) implies �-ad F 6= ;.

Theorem 4.2. Let X be a nearly compact space and Y a T2 topological space.
Then a �-continuous function f : X ! Y is �-perfect.

Moreover, Theorem 3.2 shows that in the converse of Theorem 3.4 of Dickman
and Porter [3], the condition of �-continuity is super
uous; also the condition of
almost closedness on f can be weakened by the condition [f(A)]� � f([A]�).

We conclude with the remark that many other perfect-like functions than those
considered so far, could be accomplished by assigning di�erent interpretations to
the operators � and � and/or by replacing the collection B of open sets by some
other collection like �-open sets [6] or regulary open sets etc.
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