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FINDING THE BOUNDARY CURVES OF THE THIRD ORDER

LINEAR ORDINARY DIFFERENTIAL EQUATIONS

Zdravko F. Starc

Abstract. In this paper the boundary curves of the third order linear ordinary di�erential
equations are given.

In this paper, using the boundary curves of the third order linear di�erential
equations, we shall determine the boundary curves of the initial value problem

y000 + a1(x)y
00 + a2(x)y

0 + a3(x)y = 0; (1)

y(x0) = y0; y0(x0) = y0

0
; y00(x0) = y00

0
; (2)

where ai(x) 2 C(I) (i = 1, 2, 3).

The similar results for the second order linear equation have been obtained in
[1], [6].

1. Suppose that p = p(x) is a particular solution of the equation (1) and
p(x0) 6= 0. By the substitution

y = pz (z 2 C3(I)) (3)

the initial value problem (1), (2) becomes

pz000 + (3p0 + a1(x)p)z
00 + (3p00 + 2a1(x)p

0 + a2(x)p)z
0 = 0; (4)

z(x0) = z0 =
y0

p(x0)
; z0(x0) = z0

0
=

p(x0)y
0

0
� p0(x0)y0

p(x0)2
; (5.1)

z00(x0) = z00

0
=

p(x0)
2y00

0
� 2p0(x0)p(x0)y

0

0
+ (2p0(x0)

2 � p00(x0)p(x0))y0
p(x0)3

: (5.2)

Substituting the function

z(x) = z0 +

Z x

x0

w(t) dt (w 2 C1(I)) (6)
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into (4) we arrive at the initial value problem

pw00 + (3p0 + a1(x)p)w
0 + (3p00 + 2a1(x)p

0 + a2(x)p)w = 0; (7)

w(x0) = z0

0
; w0(x0) = z00

0
: (8)

Now, we can formulate the following result.

Proposition 1. Suppose that h, H 2 C. Let p = p(x) be a particular solution
of the equation (1) and p(x) > 0 on the interval (x0; x1). Let w = w(x) be the
solution of the initial value problem (7), (8) such that

h(x) < w(x) < H(x) (x0 < x < x2; x2 > x1)

and h(x0) = H(x0) = w(x0). Then for the solution y = y(x) of the initial value
problem (1), (2) the following inequalities

p(x)

�
y0

p(x0)
+

Z x

x0

h(t) dt

�
< y(x) < p(x)

�
y0

p(x0)
+

Z x

x0

H(t) dt

�
(9)

(x0 < x < x1) are valid.

The proof immediately follows from (6) and (3).

For the equation [4] (f(x), g(x) 2 C(I))

y000 + x2f(x)y00 � x(2f(x) � g(x))y0 + (2f(x)� g(x))y = 0;

with the particular solution p(x) = x, the equation (7) has the form

xw00 + (x3f(x) + 3)w0 + x2g(x)w = 0:

Example 1. The solution y = y(x) of the initial value problem

x3(x+ 2)y000 � x2(x+ 2)(9x+ 10)y00 + 23x(x+ 1)y0 � 23(x+ 1)y = 0;

y(1) = 0; y0(1) = 1; y00(1) = 3

satis�es the inequalities

x

�
x2

2
� 1

2

�
< y(x) < x(exp(x � 1)� 1) (x > 1)

because the solution w = w(x) of the initial value problem [6]

(x3 + 2x2)w00 � (6x2 + 4x)w0 + (5x+ 3)w = 0; w(1) = w0(1) = 1;

satis�es the inequalities x < w(x) < exp(x � 1) (x > 1).

If a1(x) 2 C2(I), ai(x) 2 C(I) (i = 2, 3) and [5]

a3(x) +
2

27
a1(x)

3 � 1

3
a1(x)a2(x) � 1

3
a00

1
(x) = 0 (10)
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then a particular solution of the equation (1) is

p(x) = exp

�
�1

3

Z x

x0

a1(t) dt

�
:

In this case the equation (7) has the form

w00 +R(x)w = 0; (11)

where R(x) = a2(x) � a0

1
(x) � 1

3
a1(x)

2.

Proposition 2. Suppose that (10) holds and R(x) < 0 on the interval (x0; x1).
Then for the solution y = y(x) of the initial value problem (1), (2) the following
inequalities

exp

�
�1

3

Z x

x0

a1(t) dt

�
(y0 + ln jY0(x� x0) + 1j) < y(x)

< exp

�
�1

3

Z x

x0

a1(t) dt

��
y0 + Y0(x� x0)�

Z x

x0

�Z s

x0

R(t) dt

�
ds

�
(12)

(x0 < x < x1) are valid, where Y0 = z00

0
=z0

0
(z0

0
, z00

0
6= 0).

Proof. By the substitution w = z0 exp
R x

x0
Y (t) dt (Y 2 C1(x0; x1)) the equa-

tion (11) becomes Y 0 + Y 2 +R(x) = 0, Y (x0) = Y0. According to the Chapligin's
theorem for a �rst order di�erential equation, from �Y 2 < �Y 2 � R(x) < �R(x)
we obtain

h(x) = Y0=(Y0(x� x0) + 1); H(x) = Y0 �
Z x

x0

R(t) dt

and by means of (9) we have the inequalities (12).

Example 2. The solution y = y(x) of the initial value problem

y000 + 3xy00 + (3x2 � x+ 2)y0 + (x3 � x2 + 2x)y = 0; y(0) = y0(0) = y00(0) = 1;

satis�es the inequalities

(1 + ln(2x+ 1)) exp

�
�x2

2

�
< y(x) <

�
1 + 2x+

x2

2
+

x3

6

�
exp

�
�x2

2

�

(x > 0). Here R(x) = �x� 1, z0

0
= 1, z00

0
= 2.

2. We shall now assume that

D3 + a1(x)D
2 + a2(x)D + a3(x) = (D + b0(x))(D

2 + b1(x)D + b2(x)); (13)

where b0(x) 2 C(I), bi(x) 2 C1(I) (i = 1, 2). Some conditions under which this
factorization is possible are considered in [3]. It means that we have

z0 + b0(z) = 0; (14)

y00 + b1(x)y
0 + b2(x)y = z: (15)
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The solution of the initial value problem (10) and

z(x0) = z0 = y00

0
+ b1(x0)y

0

0
+ b2(x0)y0

is given by z(x) = z0 exp(�
R x

x0
b0(t) dt). By virtue of (14), (15) the initial value

problem (1), (2) reduces to the initial value problem

y00 + b1(x)y
0 + b2(x)y = z0 exp

�
�
Z x

x0

b0(t) dt

�
(16)

y(x0) = y0; y0(x0) = y0

0
: (17)

Let us consider the following initial value problem

y00 + b1(x)y
0 + b2(x)y = 0; (18)

y(x0) = �1; y0(x0) = �2 (19)

and (16) with the initial conditions

y(x0) = �1; y0(x0) = �2; (20)

where �1 + �1 = y0, �2 + �2 = y0

0
.

Now, we can formulate the following result.

Proposition 3. Suppose that (13) holds. If h(x), H(x) are boundary curves
of the initial value problem (18), (19) on the interval (x0; x1) and if yp(x) is a
particular solution of (16), (20), then for the solution y = y(x) of the initial value
problem (1), (2) the following inequalities

h(x) + yp(x) < y(x) < H(x) + yp(x) (x0 < x < x1)

are valid.

The proof follows from the fact that the general solution of the equation (16)
has the form y(x) = yh(x) + yp(x).

Example 3. The solution y = y(x) of the initial value problem

(x+ 2)y000 � (x+ 2)2y00 � (2x+ 6)y0 + 2y = 0; y(0) = 2; y0(0) =
1

3
; y00(0) = 3

satis�es the inequalities

exp

�
x2

2

�
+

x

3
+ 1 < y(x) < exp

�
x2

2

�
2 +

x2

24

��
+

x

3
+ 1 (x > 0):

Here b0(x) = �1=(x+2), b1(x) = �x, b2(x) = �2, �1 = 1, �2 = 0, �1 = 1, �2 = 1=3

and h(x) = exp(x2=2), H(x) = exp(x
2

2
(2 + x2

24
)), yp(x) =

x
3
+ 1.

3. Suppose that f(x), g(x) 2 C1(I). The equation [2; eq. (3.26)]

y000 + 3f(x)y00 + (f 0(x) + 2f(x)2 + 4g(x))y0 + (4f(x)g(x) + 2g0(x))y = 0 (21)
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has the general solution y = C1u
2+C2uv+C3v

2, where u, v are linearly independent
solutions of the equation

w00 + f(x)w0 + g(x)w = 0: (22)

We now assume that u(x0) = v0(x0) = 1, u0(x0) = v(x0) = 0. The solution of the
initial value problem (22) and

w(x0) =
p
y0 (y0 > 0); w0(x0) =

y0

0

2
p
y0

(23)

is given by w(x) =
p
y0 u+

y0

0

2
p
y0
v. If

0 < h(x) < w(x) < H(x) (x0 < x < x1); (24)

then for the solution

y(x) = y0u
2 + y0

0
uv +

y0

0

4y0
v2 (25)

we have
h(x)2 < y(x) < H(x)2 (x0 < x < x1): (26)

From (25) we obtain

y(x0) = y0; y0(x0) = y0

0
; y00(x0) =

y0

0

2

2y0
� 2y0g(x0)� y0

0
f(x0): (27)

Finally, we arrive at the following result.

Proposition 4. Let w = w(x) be the solution of the initial value problem
(22), (23) such that (24) holds. Then for the solution y = y(x) of the initial value
problem (21), (27) the inequalities (26) are valid.

Example 4. The solution y = y(x) of the initial value problem

y000�3xy00+(2x2�4a�1)y0+4axy = 0; y(0) = 1; y0(0) = 0; y00(0) = 2a (a > 1)

satis�es the inequalities expx2 < y(x) < expx2(a + x2=24) (x > 0) because the
solution w = w(x) of the initial value problem [1]

w00 � xw0 � aw = 0; w(0) = 1; w0(0) = 0

satis�es the inequalities exp
x2

2
< w(x) < exp

x2

2

�
a+

x2

24

�
(x > 0).

4. Now we consider the case when p = p(x) is not a particular solution of the
equation (1). By the substitution (3) the initial value problem (1), (2) becomes

pz000 + (3p0 + a1(x)p)z
00 + (3p00 + 2a1(x)p

0 + a2(x)p)z
0

+ (p000 + a1(x)p
00 + a2(x)p

0 + a3(x)p)y = 0 (28)

with the initial conditions (5.1), (5.2).

We have the following result.
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Proposition 5. If the solution z = z(x) of the initial value problem (28),
(5.1), (5.2) satis�es h(x) < z(x) < H(x) (x0 < x < x2, x2 > x1), then for the
solution y = y(x) of the initial value problem (1), (2) the following is valid

p(x)h(x) < y(x) < p(x)H(x) (x0 < x < x1):

The proof is direct.

This proposition shows that the boundary curves of (1) can be obtained by
those of (28).

Example 5. The solution y = y(x) of the initial value problem

y000 � (3x+ 3)y00 + (2x2 + 6x� 4a+ 2)y0 � (2x2 + (3� 4a)x� 4a)y = 0 (a > 1)

y(0) = y0(0) = 1; y00(0) = 1 + 2a

satis�es the inequalities

exp(x+ x2) < y(x) < exp

�
x+ x2

�
a+

x2

24

��
(x > 0):

Here p(x) = ex and the initial value problem (28), (5.1), (5.2) is given by Example 4.

REFERENCES

[1] M. Bertolino, In�equalit�es di��erentielles et l'analyse qualitative des �equations di��erentielles

ordinaries, Ed. sp�eciales Inst. Math. Beograd 7 (1969), 59{152

[2] �. Kamke, Spravoqnik po obyknovennym differencial~nym uravneni�m, <Nauka>,

Moskva 1976

[3] P. R. Lazov, D. S. Dimitrovski, N. Rajovi�, Redukci� line�nih differencial~nyh urav-
neni� tretego por�dka, Bull. Soc. Math. Phys. Mac�edoine 26 (1975/76), 25{28

[4] D. S. Mitrinovi�c, Compl�ements au trait�e de Kamke V, Univ. Beograd Publ. Elektroteh. Fak.
Ser. Mat. Fiz. 11 (1957), 1{10

[5] B. S. Popov, �Uber die Integration der linearen Di�erentialgleichungen drite Ordnung in

geschlossener Form, Bull. Soc. Math. Phys. Mac�edoine 7 (1956), 17{19

[6] Z. Rada�sin, Nala�zenje okvirnih krivih za linearne diferencijalne jedna�cine drugog reda, Mat.
Vesnik 31 (1979), 497{509

(received 23.10.1986.)

�Zarka Zrenjanina 93

YU-26300 Vr�sac


