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ON UNIFORM CONVERGENCE OF SPECTRAL EXPANSIONS

AND THEIR DERIVATIVES CORRESPONDING TO

SELF-ADJOINT EXTENSIONS OF SCHR�ODINGER OPERATOR

Neboj�sa L. La�zeti�c

Abstract. In this paper we consider problem of the global uniform convergence of spectral
expansions and their derivatives generated by arbitrary non-negative self-adjoint extensions of the
Schr�odinger operator

L(u)(x) = �u00(x) + q(x)u(x) (1)

with discrete spectrum, for functions in the Sobolev class
�

W
(k)
p (G) (p > 1) de�ned on a �nite

interval G � R.

Assuming that the potential q(x) of the operator L belongs to the class Lp(G) (1 < p � 2),
we establish conditions ensuring the absolute and uniform convergence on the entire closed interval
G of the series

1X

n=1

(f; un)L2(G)un(x);
1X

n=1

(f; un)L2(G)u
0

n(x)

if f 2
�

W
(1)
p (G) or f 2

�

W
(2)
p (G) respectively, where fun(x)g11 is the orthonormal system of

eigenfunctions corresponding to one of the mentioned extensions of operator (1). Also, increasing
the smoothness of the functions f(x) and q(x) correspondingly, we prove a theorem concerning

the absolute and uniform convergence on the entire closed interval G of the series

1X

n=1

(f; un)L2(G)u
(2k)
n (x);

1X

n=1

(f; un)L2(G)u
(2k+1)
n (x); k � 1:

1. Introduction

1. Let G = (a; b) be a �nite interval of the real axis R. Consider an arbitrary
non-negative self-adjoint extension of the operator (1) with the potential q(x) 2
Lp(G) allowing the discrete spectrum; denote by fun(x)g11 the orthonormal (and
complete in L2(G)) system of eigenfunctions corresponding to this extension, and
by f�ng11 the corresponding system of non-negative eigenvalues enumerated in
nondecreasing order. (By de�nition, un(x) is continuously di�erentiable and u0n(x)
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is absolutely continuous on the closed interval G; un(x) satis�es the di�erential
equation

�u00n(x) + q(x)un(x) = �nun(x) (2)

almost everywhere on (a; b), and this function satis�es the corresponding boundary
conditions.)

Let f(x) 2 L1(G) and let � be an arbitrary positive number. We form the
partial sum of order � of the expansion of f(x) in terms of the system fun(x)g11 :

��(x; f)
def
=

X
p
�n<�

fnun(x);

where fn
def
= (f; un)L2(G) is the Fourier coe�cient of f(x) relative to that system.

2. We denote by
�
W

(k)
p (G) the set of functions f(x) in the class W

(k)
p (G) such

that

f(a) = f 0(a) = � � � = f (k�1)(a) = 0 = f(b) = f 0(b) = � � � = f (k�1)(b):

(By de�nition, f(x) 2 W
(k)
p (G) if functions f(x), f 0(x), . . . , f (k�2)(x) are contin-

uously di�erentiable on [a; b], function f (k�1)(x) is absolutely continuous on [a; b]
and f (k)(x) 2 Lp(G).)

Let Lk(f) def
= L(L(� � � (L(f)) � � � )), with k appearences of L. If q(x) is in

W
(2k�1)
p (G) and f(x) 2

�
W

(2k+1)
p (G), then Lk(f)(x) 2

�
W

(1)
p (G).

3. The following assertions are valid.

Theorem 1. (a) If q(x) 2 Lp(G), f(x) 2
�
W

(1)
p (G) (1 < p � 2) and f 0(x) is a

piecewise monotone function on G, then the equality

f(x) = lim
�!+1

��(x; f)

holds uniformly on G.

(b) If q(x) 2 Lp(G) and f(x) 2
�
W

(2)
p (G) (1 < p � 2), then the equality

f 0(x) = lim
�!+1

d

dx
��(x; f)

holds uniformly on the entire closed interval G.

Theorem 2. (a) If q(x) 2 W
(2k�1)
p (G), f(x) 2

�
W

(2k+1)
p (G) (1 < p � 2,

k � 1) and Lk(f)0(x) is a piecewise monotone function on G, then

f (j)(x) = lim
�!+1

dj

dxj
��(x; f); 0 � j � 2k;

uniformly on G.
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(b) If q(x) 2 W
(2k)
p (G) and f(x) 2

�
W

(2k+2)
p (G) (1 < p � 2, k � 1), then the

equalities

f (j)(x) = lim
�!+1

dj

dxj
��(x; f); 0 � j � 2k + 1;

hold uniformly on G.

Remark 1. It will be shown, under the assumptions of Theorems 1{2, that
the coresponding series

1X
n=1

fnun(x);

1X
n=1

fnu
0
n(x); . . . ;

1X
n=1

fnu
(2k�1)
n (x)

converge absolutely on the closed interval G.

Remark 2. The assertions of Theorems 1{2 are in "well accordance" with the
corresponding classical results for the global uniform convergence of the trigono-
metrical Fourier series.

As far as the uniform convergence on compact subsets ofG concerned, the exact
conditions for that covergence were obtained by means of uniform equiconvergence
theorems in [3], [4] and [6].

2. Proof of theorem 1

1. The idea of the proof is very simple. It is based on some upper-bound
estimates for fn, un(x), u

0
n(x), u

00
n(x), . . . , with respect to �n. Thus, we �rst list

the necessary estimates.

Let fun(x)g11 be the orthonormal system of eigenfunctions corresponding to
an arbitrary non-negative self-adjoint extension of the operator (1), and let f�ng11
be the corresponding system of eigenvalues enumerated in nondecreasing order.
Then the following assertions hold.

(a) If q(x) 2 L1(G), then there exists a constant C > 0, independent of n 2 N,
such that

max
x2G

jun(x)j � C; n 2 N: (3)

(b) If q(x) 2 Lp(G) (p > 1) then there exists a constant A > 0 such thatX
t�p�n�t+1

1 � A (4)

for every t � 0, where A does not depend on t.

(c) If q(x) 2 L1(G), then there exists a constant C1 > 0, not depending on
n 2 N, such that

max
x2G

ju0n(x)j �
�
C1

p
�n; if �n > 1,

C1; if 0 � �n � 1.
(5)
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(d) Suppose q(x) 2 L1(G) \C(j�2)(G) (j � 2), and the derivatives of q(x) are
bounded on G. Then the eigenfunction un(x) has bounded continuous derivatives
up to the j-th order, and there exists a constant Cj > 0, independent of n 2 N,
such that

max
x2G

ju(j)n (x)j �
(
Cj�

j=2
n ; if �n > 1,

Cj ; if 0 � �n � 1.
(6)

The propositions (a){(b) were proved in [2], and (c){(d) in [5].

2. We will also use an inequality of Riesz. Let f'n(x)g11 be an orthonormal on
G system of (complex-valued) functions such that there exists a constant M > 0,
not depending on n 2 N, with supx2G j'n(x)j � M for every n 2 N. If g(x) 2
Lp(G) (1 < p � 2), then the Fourier coe�cients gn

def
=
R b
a
g(x)'n(x) dx satisfy the

inequality � 1X
n=1

jgnjr
�1=r

�M (2=p�1)kgkLp(G); (7)

where 1=p+ 1=r = 1 (see [1], p. 154).

3. Now we can prove Theorem 1. Let f(x) 2
�
W

(1)
p (G) and let f 0(x) be a

monotone function on the closed intervals [xi�1; xi] (1 � i � l), where a = x0 <
x1 < � � � < xl�1 < xl = b. If �n 6= 0, then using equation (2), the boundary
conditions imposed on the function f(x) and the partial diferentiation, we have

fn =

Z b

a

f(x)un(x) dx =
1

�n

Z b

a

f(x)
��u00n(x) + q(x)un(x)

�
dx

=
1

�n

Z b

a

f 0(x)u0n(x) dx +
1

�n

Z b

a

q(x)f(x)un(x) dx: (8)

By the Bonnet formula we get

Z b

a

f 0(x)u0n(x) dx =

lX
i=1

Z xi

xi�1

f 0(x)u0n(x) dx

=

lX
i=1

�
f 0(xi�1 + 0)

�
un(�i)� un(xi�1)

�
+ f 0(xi � 0)

�
un(xi)� un(�i)

��
(9)

for some point �i 2 [xi�1; xi].

Denote by s(f 0;un) and hn the sum in (9) and the last integral in (8) respec-
tively. Then estimate (3) and the H�older inequality give us the estimates

js(f 0;un)j � 2C �
lX

i=1

�jf 0(xi�1 + 0)j+ jf 0(xi � 0)j� def
= Cf ;

jhnj � CkfkLr(G) � kqkLp(G); where
1

p
+

1

r
= 1:

(10)
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The absolute and uniform convergence of the series
P1

n=1 fnun(x) on the closed

interval G results now from the following formal chain of inequalities, obtained by
(8) and the estimates (3){(4) and (10):

1X
n=1

jfnj jun(x)j �

�
X

0�p�n�1
jfnj jun(x)j+

X
p
�n>1

1

�n

�js(f 0;un)j+ jhnj
�jun(x)j

� AC2kfkL1(G) + C
�
Cf + CkfkLr(G) � kqkLp(G)

� � 1X
k=1

� X
k<
p
�n�k+1

1

�n

�

� D1 +D2

1X
k=1

1

k2

� X
k<
p
�n�k+1

1

�
� D1 +AD2

1X
k=1

1

k2
;

where D1, D2 have the obvious meaning.

4. In order to prove the proposition (b) of theorem 1, we should transforme
the Fourier coe�cient fn in the following way:

fn =

Z b

a

f(x)un(x) dx =
1

�n

Z b

a

f(x)
��u00n(x) + q(x)un(x)

�
dx

=
1

�n

Z b

a

��f 00(x) + q(x)f(x)
�
un(x) dx =

1

�n
L(f)n; �n 6= 0; (11)

where L(f)n (n 2 N) denote the Fourier coe�cients of function L(f)(x) 2 Lp(G)
relative to the system fun(x)g11 .

Now, using (11), the estimates (3){(5), (7) and the H�older inequality, we for-
mally get

1X
n=1

jfnj ju0n(x)j =

=
X

0�p�n�1
jfnj ju0n(x)j +

X
p
�n>1

1

�n
jL(f)nj ju0n(x)j �

� ACC1kfkL1(G) + C1

1X
k=1

� X
k<
p
�n�k+1

1p
�n

jL(f)nj
�

� ~D1 + C1 �
1X
k=1

1

k

� X
k<
p
�n�k+1

jL(f)njr
�1=r

�
� X
k<
p
�n�k+1

1

�1=p

� ~D1 +A1=pC1

� 1X
k=1

1

kp

�1=p

�
� 1X
k=1

� X
k<
p
�n�k+1

jL(f)njr
��1=r

� ~D1 + ~D2C
(2=p�1) � kL(f)kLp(G); (12)
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wherefrom we conclude that the series
P1

n=1 fnu
0
n(x) converges absolutely and

uniformly on the interval G.

Further, it is not di�cult to see that, replacing u0n(x) in (12) by un(x), the
corresponding chain of inequalities gives us the absolute and uniform convergence
on G of the series

P1
n=1 fnun(x) under assumptions from the proposition (b) of

theorem 1.

5. By the completeness and orthonormality of the system fun(x)g11 , using the
standard "uniform convergence\ arguments and the previously obtained results, we
can prove that the equalities

f(x) =
1X
n=1

fnun(x); f 0(x) =
1X
n=1

fnu
0
n(x)

hold for every x 2 G.

Proof of Theorem 1 is completed.

3. Proof of theorem 2

1. All the important elements of the proof are actually clari�ed in the previous
section. That is why we will consider in detail the proposition (a) only.

As it was already mentioned, if q(x) 2 W
(2k�1)
p (G) and f(x) 2

�
W

(2k+1)
p (G),

then Lk(f)(x) 2
�
W

(1)
p (G), and all the functions Lj(f)(x) (1 � j � k) and their

�rst derivatives take the zerovalues at the points a and b. Therefore, if �n 6= 0,
then we have

fn =

Z b

a

f(x)un(x) dx =
1

�n

Z b

a

L(f)(x)un(x) dx

=
1

�2n

Z b

a

L2(f)(x)un(x) dx = � � � = 1

�kn

Z b

a

Lk(f)(x)un(x) dx

=
1

�k+1
n

Z b

a

Lk(f)0(x)u0n(x) dx +
1

�k+1
n

Z b

a

Lk(f)(x)q(x)un(x) dx:
(13)

Let Lk(f)0(x) be a piecewise monotone function on G; there exist closed in-
tervals [ti�1; ti] (1 � i � m) such that a = t0 < t1 < � � � < tm�1 < tm = b, and
Lk(f)0(x) is monotone on every [ti�1; ti]. Using the Bonnet formula, we have

Z b

a

L(f)0(x)u0n(x) dx =

mX
i=1

Z ti

ti�1

Lk(f)0(x)u0n(x) dx

=

mX
i=1

�Lk(f)0(ti�1 + 0)
�
un(�i)� un(ti�1)

�
+ Lk(f)0(ti � 0)

�
un(ti)� un(�i)

��
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for some points �i 2 [ti�1; ti]. Thus, denoting by s(Lk(f)0;un); hn the above sum
and the last integral in (13) respectively, we get the equality

fn =
1

�k+1
n

s(Lk(f)0;un) + 1

�k+1
n

hn (�n 6= 0): (14)

It results from estimate (3) and the H�older inequality that

js(Lk(f)0;un)j � 2C
mX
i=1

�jLk(f)0(ti�1 + 0)j+ jLk(f)0(ti � 0)j� def
= Cf;q ;

jhnj � CkLk(f)kLp(G) � kqkLr(G); where
1

p
+

1

r
= 1:

Now, using (14), the estimates (3){(6) and the above estimate, we obtain

1X
n=1

jfnj ju(2k)n (x)j �

�
X

0�p�n�1
jfnj ju(2k)n (x)j+

X
p
�n>1

1

�k+1
n

�js(Lk(f)0;un)j+ jhnj
�ju(2k)n (x)j

� ACC2kkfkL1(G) + C2k

�
Cf;q + CkLk(f)kLp(G) � kqkLr(G)

��
�

1X
k=1

� X
k<
p
�n�k+1

1

�n

�
� D3 +AD4

1X
k=1

1

k2
; (15)

where D3 and D4 have the obvious meaning. It results from (15) that the seriesP1
n=1 fnu

(2k)
n (x) converges absolutely and uniformly on G.

Also, replacing u
(2k)
n (x) in (15) by un(x), u

0
n(x), . . . , u

(2k�1)
n (x) respectively,

and using the corresponding estimates (5){(6), we can conclude that the seriesP1
n=1 fnu

(j)
n (x) (j = 0; 1; . . . ; 2k�1) converge absolutely and uniformly onG (under

the assumptions from the proposition (a)).

2. It follows then by the orthonormality and completeness of the system
fun(x)g11 , and by the known rules for di�erentiation of uniformly convergent series,

that the equalities f (j)(x) =
P1

n=1 fnu
(j)
n (x) (j = 0; 1; . . . ; 2k) hold uniformly on

the closed interval G.

The proposition (a) is proved.

3. Consider now the series
P1

n=1 fnu
(2k+1)
n (x). It is not di�cult to see, under

conditions imposed on q(x) and f(x) in the proposition (b), that for �n 6= 0 the
equality

fn =
1

�k+1
n

Lk+1(f)n (16)

holds, where Lk+1(f)n (n 2 N) denote the Fourier coe�cients of function
Lk+1(f)(x) 2 Lp(G).
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Using (16), the estimates (3){(4), (6){(7) and the H�older inequality, we can

obtain a formal chain of inequalities for the series
P1

n=1 jfnj ju(2k+1)
n (x)j which is

completely analogous to the inequalities (12). By virtue of this chain one can

prove that the series
P1

n=1 fnu
(j)
n (x) (j = 0; 1; . . . ; 2k+1) converge absolutely and

uniformly on G, and that the equalities f (j)(x) =
P1

n=1 fnu
(j)
n (x) hold everywhere

on G, for j = 0; 1; . . . ; 2k + 1. The details are left to the reader.
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