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GENERAL DETERMINANTAL REPRESENTATION
OF PSEUDOINVERSES OF MATRICES

Predrag Stanimirovic

Abstract. In this paper we establish general determinantal representation of generalized
inverses and general form of different definitions of rectangular determinants and induced general
inverses, in terms of minors of a matrix, satisfying certain conditions. Using this representation we
obtain a general algorithm for exact computation of different classes of pseudoinverses: Moore-
Penrose and weighted Moore-Penrose inverse, group inverse, {1,2,3}, {1,2,4}, {1,2} inverses,
left /right inverses, Radié¢’s and Stojakovié’s generalized inverses.

We also give some examples which illustrate our results.

1. Introduction

Let C"*" be the set of m x n complex/rational matrices whose rank is 7.
Conjugate, transpose and conjugate-transpose matrix of A will be denoted by A,

AT and A* respectively. Minor of A containing rows aj, ..., a; and colums
81, ..., B¢ will be denoted by A(%ll%f)v while its algebraic complement

corresponding to the element a;; is defined by Aij(
+ Q] .o Qp—1 Opygl ... O
(_1)p 1A (51 v Bg—1 Byg1 .- Bi )

For any matrix A € C™*™ consider the following equations in X:

Q1 e Qp—1 i QAp41 .- a{)

B1 .o Ba=1 J Bat1 - Bt

(1) AXA=A, (2) XAX =X, (3)(AX)" = AX, (4)(XA)"=XA

and if m = n also
(5) AX = XA.

For a subset S od {1,2,3,4,5} the set of matrices G obeying the conditions
represented in S will be denoted by A(S). A matrix G € A(S) is called an S-inverse
of A and denoted by A(S). In particular for any A € C™*" the set A{1,2,3,4}
consists of a single element, the Moore-Penrose inverse of A, denoted by Af [13]. In
the case m = n, the group inverse, denoted as A*, of A is the unique {1, 2,5} inverse,
and exists if and only if ind(A) = min{k : k > 0 and rank(A*+1) = rank(A*)} = 1.
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2 P. Stanimirovié¢

The starting point of the investigations of this paper is the determinantal
representation of Moore-Penrose inverse, studied in [1], [4], [6], [7], [8], [L1]. The
main result of these papers is:

THEOREM 1.1 Element ajj in the i-row and j-column of the Moore-Penrose
pseudoinverse of a given matriz A € CI'*™ is given by

T [ a1 . J .y e J e o
> oo A(pine) (e
1<P1<<Pr<n
ol = 1< < <o, <m ( 1<i<n )
ij T < (Y1 - U Y1 oo Vr ) IR
> A(s T )A(s Tsh) =
1<61<--<6.<n
1< < <yr<m

For the sake of completeness in the following definition we unify definitions
of generalized inverses introduced by M. Radié¢ [16], [17], M. Stojakovi¢ [20] and
V.N.Joshi [9].

DEFINITION 1.1 Let 4, j be integers, 1 <i < n, 1 < j < m. Then the (i, j)-th
entry of Radi¢’s, Stojakovi¢’s and Joshi’s generalized inverse A € C**™ is defined
by

D clivt i)+ (Gittin) g, (10T i
EAR NS BT T
1j1 << G<e<grn
1<0 < <1<l <t <
> elartetan)+(Bit+8:) 4 (0‘1 0‘")

B1 .. Br
IS < <ar<m
1B1 <+ <Br s

, where € € {—1,1}.

For ¢ = 1 we get Stojakovi¢’s definition, and for ¢ = —1, we get Radi¢’s definition.

The following theorem [15] has described an useful representation of {3, j,k}
generalized inverses:

THEOREM 1.2 If A € C"*™ has a full-rank factorization A = PQ, P € CI**",
Qe CX"™, Wy € C™" and Wy € C™*™ are some matrices such that rank(QW7) =
rank(Ws P) = rank(A), then:

AT = QTP = (QQ") (P P) 1P

the generalized solution of the equations (1), (2) is given by
Wi QW)™ (WaP) ™! Wa;

the generalized solution of the equations (1), (2), (3) is given by
WL (QWh) "L (P P) P

the generalized solution of the equations (1), (2), (4) is given by
QY (QQ*)~ (WoP)~'Wy.

In [19] we developed determinantal representation of class of {1,2} inverses
and the weighted Moore-Penrose inverse, as follows in the following two theorems:
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THEOREM 1.3 If A = PQ is a full rank factorization of A € CI**" and
Wy € C™*", Wy € C™*™ are some matrices such that rank(QW;) = rank(W,P) =

5]1_,2) e A2 s given by

T (a1 ...v..a (o1 g
1<,31<;<ﬂ‘<n (W1W2) (ﬁl e e Br ) AJZ (ﬁl R ﬁ")
(1,2) _ 1€a1<~~~<a:‘§m

a;; " = ST ST
N E A ( 51 §T) (W1W2)T (ﬁi 5,‘)
1<61 < <6,<n
1< < <yr<m

rank(A), then an element a

THEOREM 1.4 Let M € C™*™, N € C™" be positive definite, and sup-
pose that A = PQ is a full rank factorization of A, such that rank(P*MP) =
rank(QNQ*) = rank(M AN) = r. Element of the weighted Moore-Penrose inverse
A}L\/l.’.N, lying on the t-th row and j-th column, can be represented in terms of
square minors as follows:

Z W(al ...Z...a,)A_i(al ia,)
1<B1<---<B-<n Bl . i Br JE\ B1 -t Br
(aT ) _ IS < <o <m
e Y AQG D) (MAN) (500
1<61 < <6,.Kn ' '
1< <<y <m

Now we describe the main results of the paper. First we obtain determinantal
representation of {, j, k} generalized inverses and the group inverse. Then we show
that determinantal representation of the Moore-Penrose and the weighted Moore-
Penrose inverse, {1, 2}, {4, j, k} inverses are only partial cases of the common general
determinantal inverses, generalization of the Arghiriade-Dragomir representation
of the Moore-Penrose inverse [18], possesses the same general form. We also show
that the class of left/right generalized inverses can be obtained from this general
determinantal representation.

2. General determinantal representation

Applying method used in [19, Theorem 2.1] and using general form of {i, 7, k}
inverses (Theorem 1.2), the following lemma can be proved.

LEMMA 2.1. If A € C™" and A = PQ is a full rank factorization of A,
and if Wi € C™*" and Wy € C™™" are some matrices such that rank(QW;) =
rank(W2 P) = rank(A), then ag;,zs) € AL23) gngd a%,2,4) € AL24Y can be repre-
sented in this way:

*\T (@1 oo ] - Qe o e ) e O
1<ﬁ1<;<,8r<n (Wr (ﬁl SR ) As (ﬁl R BT)
(1,2,3) _ 1<ai<-<ar<m

a

v > AT YW POT (30
1€61<<6,<n
<< <yr<m
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1< <¥<B <n (@ W)™ (5 a5 ) A (510305
L(12.4) 1<ar < <an<m

v > AT )@ W)T (3078
1<61<+-<6,<n
<< <yr<m

Note that conditions rank(QW;) = rank(W, P) = rank(A) are satisfied if and
only if rank(W;) = rank(W>) = rank(A).

Determinantal representation of the group inverse of a singular n by n matrix
can be obtained from [2] and [10]:

LEMMA 2.2. The group inverse A* = (agj) of A € CI*" exists if

w= 3 a(li) 2o

ISpr < <pr<n

Then A* has the following determinantal representation:

T (o1 o J ..oy o1 gy
1<a1<¥<a <nA (ﬁl e e fBr ) Aji (51 SR ,Br)
§  1<Bi<-<Br<n

@iy = REERE RERE
? Yo AT(, Da) Al D)
ISy < <yrsn
1<61 <+ <6.<n

Proof. In view of the supposition u # 0 from [10, Theorem 8] we get the
following determinantal representation for the (i, j)-th entry of A¥:

> A(fi :::;:::ii)Aﬁ(gi IZZZIIZ%Z)
I<ai < <ar-<n
t_ 1<Bi<-<Bi<n
a’ij = 2

Now the proof of the lemma can be completed using the following relation [10,
Theorem 8]
—2 Q... o B Br\ _
A (G )a(ho )=
and the following, evident relation: A (Zl a") = AT (ﬁl e P ) n

1 - ﬂr QAT ver Qg

Now we introduce a general determinantal representation which include all
of presented determinantal representations, generlaized inverses introduced by M.
Stojakovi¢, M. Radi¢ and V.N. Joshi and the well known concept of the inversion
of square regular matrices.

THEOREM 2.1. Let A € C**"™ and matriz R satisfies condition

U rank(AR*) = rank(A4), ifm<n
@) { rank(R*A) = rank(A4), ifn < m.
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An arbitrary (i, 7)-th entry of all the above mentioned generalized inverses has the
following determinantal representation:
Z R(al...z...at)A_i(al ...Z...at)
1<Br < <Br<n B1 -t Bi JE\ B1 e b By
1€a << <m

gi; = ; = BT
Y Aln s B(s )
161 <---<br<n
ISy < <me<m

(2.1)

t

The numerator in (2.1) we simly denote by AEJR’ ) and denominator by DET (g,1)(A).
(R.t)

The expression Aij will be called generalized albebraic complement corresponding
to element aj;, and DET (g 1)(A) will be called generalized determinant.

Notation r.(A) =t < r < min{m,n} denotes the greates integer which ensures
DET (g, (A) # 0.
Proof. Consider the following cases:

1. Suppose that t = m < n. Using Laplace’s development for the square
minors of A, we get

DET(le)(A) =det(AR") = Z ( P ) |:Z @ij. Aijy (]1 i ):|

J1<-<Jm

—Zau[ > RG] = ZazzA(R’”)

71 < <Jm

For two integers p # ¢, 1 < p,q¢ < m, substituting in the minors of A in the

expression
/(1 .. m 1 ...m
DET(g,m)(4) = Z R (ﬁ - ) A (jl ])
J1< < om

the g-row by the p-row, starting from DET g ,,)(4) = 0, in a similar way it can be
proved >, aplAgf”m) =0.
I=1

In this way, g;; = 6;j DET (g m)(A), and consequently A - A(}% m) = I, which
means that A(}al m) represents a right inverse of a full-rank matrix A.

In a similar way it can be proved that A(}al n) Tepresents a left inverse in the
case t = n < m. Now it is evident that (2.1) represents general determinantal
representation of right/left inverses of a full rank matrix A.

2. For R = A we obtain determinantal representation of Af, presented in
Theorem 1.3. Then it is trivial to conclude r.(A) = r, which represents a known
result in [8].

3. If m=n,ind(A) =1 and R = A*, the determinantal representation of the
group inverse is obtained (Lemma 2.2).
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4. If r = r.(A) and the matrix R satisfies condition

R (il Z) = K -clatti)tbit+ir) where K € Cand ¢ € {—1,1},

Ji e g

(Uz)
for all combinations 1 < i1 < --- <, <m; 1 <y <+ < Jjr <1,

then, in the case ¢ = 1, A(}%’T)

inverse in the case ¢ = —1 (Definition 1.1)
5. If A= PQ is a full-rank factorization of A € C**™ and if W; € C™*" and

Wy € C™*™ are some matrices such that rank(QW;) = rank(W,P) = rank(A) =7,
then:

is equal to Stojakovié¢’s inverse and the Radié’s

— for R = PW;" we obtain determinantal representation of A{1,2,3} (Lemma

2.1);

—for R = W5 Q we obtain determinantal representation of A{1,2,4} (Lemma
2.1);

—for R = (W71 W3)* we obtain determinantal representation of A{1,2} (Lemma
1.3).

6. For R = M AN, where M and N are positive definite matrices of the
appropriate sizes, A(}% ) reduces to the weighted Moore-Penrose inverse (Theorem

1.4).

7. For a regular matrix A formula (2.1) is transformed into the well known
inversion of regular square matrices, for an arbitrary n by n matrix R.

8. If A is a full-rank matrix and each minor of R is the degree of the corre-
sponding minor of A with the exponent ﬁ, for some positive integer k, we obtain
Radié’s generalization of the Arghiriade-Dragomir representation of the Moore-
Penrose inverse [18].

3. Examples

If a matrix R runs over the set of m by n matrices, in (2.1) we get various
definitions of generalized inverses.

1. If r = r.(A) and a matrix R satisfies condiiton (U;), then A(_R1 - 1s equal
to Stojakovié’s inverse, i.e. equivalent Joshi’s inverse, in the case ¢ = 1 and the
Radié’s inverse, in the case ¢ = —1.

12

2 _
For example, consider matrix A = ( 3 5 o, ) Using R = (ﬁ (1) 02>

V)

007 233 58600 619780
(e nw
. . o -1

we get the following Stojakovié’s inverse of A: A( ) = | oam

otor |- Now,

22135 1720705
. . . . 80382 1320573 /.

using fixed point representation for the elements in A anc? the same matrix R we

get

A= 5.50000000000000000000 1.53333333333333344000 1.00000000000000000000
7\ 0.14999999999999999400 —0.28571428571428569800 1.00429184549356232000 / °
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and the following Stojakovié¢’s inverse of A:

0.13312403025050492700 —0.46932657263172883300
A(_R1 5y = 0.15826652521291895100  0.83367220138530784300
0.02514249496241404220  1.30299877401703657000

2. Furthermore, if R = A satisfies (Uy), then A(}l ) = A", and both generalized
inverses are identical to the Stojakovié¢’s or Radi¢’s generalized inverse.

5729 5729 0
2 B 12
Concretely for R = A = 0 %57 357 | we get the following Moore-
_57120 5 _5729
. 327 327
Penrose inverse of A:
2008044837 0 _ 2008044837
256295020 256295920
Al — gt — | 2008044837 2008044837 0
(R,2) — 41 = | 256295920 256205929 J
0 2008044837 2008044837
256295929 256295929

which is identical to the Stojakovié’s generalized inverse.

3. f A e CI"" and R = A we get A(}%T) = A'. For example, if we use

5 g 175
23 23
0 L Iis
R=A=| ;s P 2% |, then we obtain
23 13 46
o L 175
i3 23
192878339 —201305230  —4258450  —201395239
497627891 995255782 297627891 995255782
A=l — gt — | 1684865000 1263648750 421216250 2263648750
(R2) — ‘1 = | “aprezrsol 497627801 197627801 497627891
—655721205 ~—1075979571 1281633260  —1075979571
297627891 995255782 995255782 995255782

4. For a square matrix A, such that ind(4A) < 1 and R = A* we get A(_R1 m) =

21.93—3i 4 3205 9.13570+2950.8447254
# _ 11.35 35.75—2i 0 1257420
A", For example, let A = 257384 oLsss gy 15 213574 , Where
159384—1357 109825.23 183234 0.000579
1 =+/—1. Using R = A*, we get

At=At=4""=
< —0.005992—0.010995¢ —0.000026+0.00001472 0.000004+0.000001%

—0.029221+0.010681% 0.0000254-0.0000682 —0.000004+40.000001%

0.000010
167.244553—23.2306527 0.053301—0.3926502 —0.01094-0.0004387 0.0057030.000733i> .
0.000001 0.000001 0

20 —5 4
5. Consider the following matrix of rank 2: A = <7 -4 -9 3 ) Matrices

3 -4 1 13
20
P:<7—4> andQ:(é(l):

2
3 —4
0 11

rofen

2
2

5
B

=
-

) form a full-rank factorization of A. If we use

o

matrix W = § satisfying rank(QW;) = rank(A) and R = PW{', then the
7
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following {1, 2,3} inverse of A can be obtained:

143 _ 11
735 147

__3 20

Al = 245 245
(R,2) 109 _ 31
735 147

6 _1

35 7

_341
735
26
245
_373
735
_17
35

6. In this example we show necessity of the condition rank(QW;) = rank(A).

20 —5 4
7—4-9 3
3-4 7 -1
20 -5
7 -4 -9
3 -4 7

Given matrix A = (

obtained from matrices P = <

) of rank 3, full-rank factorization of A can be

Yoo (

100 2
010 &F

. Now we use the
001 %

0 11 0
matrix Wy = (f ?, _48> such that rank(QW,) = 2. For R = PW{ we get:
2 7 —4
17 990 057
5717 5717 5717
129 176 _ 211
X=A"1 = 5717 5717 5717
(R,2) 51 78 1031 ;
5717 5717 5717
_ 120 634 994
5717 5717 5717
and it is trivial to verify that the equations (1), (2) and (3) are not satisfied.
1..00..0
. E=10 . 000~ \o o) ’
0..00.0

obtain DET(RJ) (A)

element a;;

Ao

0,
AER’T) = { 1.
! Aji (1 o d o

Generalized inverse of A € C™*", is equal to

T) and the following algebraic complement of the

forj>rori>r

:), for j,i < r.

1..r 1..r
All(l...r) ATl(l..r 0 0
1 r 1...r
A*l _ 1 Alr (1 7_) ATT (1 r 0 0
Rr) =
(Ber) = (1 ) 0 0 0 0
1...r
0 0 0 0
13 476
56 115 T3
1 _379 23 100
Concretely, for A = _33 N 33 | and R = (o010 | the following right
3 7 001
2 1 0
generalized inverse of A can be obtained:
10652600 ~ —8558144  —1364047612
6188751 80433763 26817921
Al — 35980 —3615752 —7448660 )
(R,2) — | 2062017 8939307 160907526
76388480 7857808 —1097248
18566253 6188751 6188751
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PROBLEM. Find determinantal representation of the Drazin inverse, i.e. deter-

mine the value of the matrix R corresponding to the Drazin inverse.
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