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LINEAR CONNECTIONS COMPATIBLE WITH THE

F (3;1)-STRUCTURE ON THE LAGRANGIAN SPACE

Jovanka Niki�c

Abstract. In this paper the F -structure, satisfying F 3 + F = 0 on the Lagrangian space,
is examined. The construction of this structure is given as the prolongation of fv-structure
de�ned on TV (E) using the almost product or almost complex structure on T (E). Moreover, the
metric tensor G, with respect to which F is an isometry, is constructed as well as the connection
compatible with such structures.

1. Introduction

LetM be an n-dimensional and E 2n-dimensional di�erentiable manifold and
let � = (E; �;M) be vector bundle with �E = M. The di�erential structures
(U; �;R2n) are vector charts of the vector bundles �. Hence the canonical coor-
dinates on ��1(U) are (x1; . . . ; xn; y1; . . . ; yn) = (xi; ya), i = 1; 2; . . . ; n ; a =
1; . . . ; n. Transformation maps on E are

xi
0

= xi
0

(x1; x2; . . . ; xn); ya
0

=Ma0

a (x1; . . . ; xn)ya =Ma0

a (xi)ya

rank

"
@xi

0

@xi

#
= n; rank

"
@ya

0

@ya

#
= rank Ma0

a = n:

The inverse transformations are

xi = xi(x1
0

; x2
0

; . . . ; xn
0

); ya =Ma
a0(xi

0

; . . . ; xn
0

)ya
0

; where Ma
a0Ma0

b = �ab :

The local natural bases of the tangent space T (E) are f@i; @ag,

@a =
@

@ya
= Ma0

a (xi)@a0 ; @i =
@

@xi
=

@xi
0

@xi
@i0 + (@iM

a0

b (xi))yb@a0 :

The nonlinear connection on E is distribution N : u 2 E ! Nu � Tu(E) which is
supplementary to the distribution V ,

Tu(E) = Nu � Vu; 8u 2 E: (1.1)
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They are localy determined by �i = @i �Na
i @a. The local bases adapted to decom-

positions in (1.1) is f�i; @ag.

It is easy to prove [5] that on f�i; @ag

�i0 = �i
@xi

@xi
0
; @a0 =

@ya

@ya
0
@a:

The subspace of T (E) spaned by f�ig will be denoted by TH(E) and the subspace
spaned by f@ag will be denoted by TV (E), T (E) = TH(E)� TV (E), dimTH(E) =
n = dim TV (E).

Definition 1.1 If the Riemannian metric structure on T (E) is given by
G = gij(x

i, ya)dxi 
 dxj + gab(x
i, ya)�ya 
 �yb where gij(x

i; ya) = gij(x
i),

gab = 1
2@a@bL(x

i, ya) and L(xi, ya) is a Lagrange function, then such a space
will be called a Lagrangian space.

Let X 2 T (E), then X = X i�i+ �Xa@a and the automorphism P : X (T (E))!
X (T (E)) de�ned by PX = �X i�i + Xa@a is the natural almost product structure
on T (E) i.e, P 2 = I . If we denote by v and h the projection morphisms of T (E)
to TV (E) and TH(E) respectively, we have P � h = v � P:

2. f(3;1)-structures

Definition 2.1. We call Lagrange vertical fv(3; 1)-structure of rank r on
TV (E) a non-null tensor �eld fv on TV (E) of type (1,1) and of class C1 such that
f3v + fv = 0, where rank fv = r, and r is constant everywhere.

Definition 2.2. We call Lagrange horizontal fh(3; 1)-structure of rank r on
TH(E) a non-null tensor �eld fh on TH(E) of type (1,1) of class C1 satisfying
f3h + fh = 0, rank fh = r, where r is constant everywhere.

An F (3; 1)-structure on T (E) is a non-null tensor �eld F of type
�
11
11

�
such that

F 3 + F = 0, rank F = 2r = const.

For our study it is very convenient to consider fv or fh as morphisms of vector
bundles [2], [3]

fv : X (TV (E))! X (TV (E)); fh : X (TH(E))! X (TH(E))

Let fv be a Lagrange vertical fv(3; 1)-structure of rank r. We de�ne the morphisms
lv = �f2v and mv = f2v + ITV (E), where ITV (E) denotes the identity morphism on
TV (E).

It is clear that lv +mv = I . Also we have

lvmv =mvlv = �f
4
v � f2v = �fv(f

3
v + f1v ) = 0; m2

v =mv; l
2
v = lv :

Hence the morphisms lv, mv applied to the X (TV (E)) are complementary pro-
jection morphisms. Then, there exist complementary distributions Lv and Mv
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corresponding to the projection morphisms lv and mv respectively such that dim
Lv = r and dim Mv = n� r. It is easy to see that

lvfv = fvlv = fv; mvfv = fvmv = 0; f2v lv = lvf
2
v = �I; f2vmv = 0: (2.1)

Proposition 2.1. If a Lagrange fv(3; 1)-structure of rank r is de�ned on
TV (E), then the horizontal fh(3; 1)-structure of rank r is de�ned on TH(E) by the
natural almost product structure of T (E).

Proof. If we put
fhX = PfvPX; 8X 2 TH(E); (2.2)

it is easy to see that f3hX = Pf3vPX and f3h + fh = 0, and rank fh = r.

Proposition 2.2. If a Lagrange fv(3; 1)-structure of rank r is de�ned on
TV (E), then an F (3; 1)-structure is de�ned on T (E) by the natural almost product
structure of T (E).

Proof. We put
F = fhh+ fvv; (2.3)

where fh, is de�ned by (2.2), and h, v are the projection morphisms of T (E) to
TH(E) and TV (E), respectively. Then it is easy to check that

F 2 = f2hh+ f2v v; F
3 = f3hh+ f3v v:

Thus F 3 + F = 0. It is clear that rank F = 2r.

If lh, mh are complementary projection morphisms of the horizontal fh(3; 1)-
structure, which is de�ned by the natural almost product structure of T (E), we
have

lhX = �f2hX = �Pf2vPX = P lvPX; 8X 2 TH(E)

mhX = (f2h + ITH (E))X = Pf2vPX + PITV (E)PX = PmvPX; 8X 2 TH(E)

If l, m are complementary projection morphisms of the F (3; 1)-structure on
T (E), then we have

l = �F 2 = �f2hh� f2vv = lhh+ lvv (2.4)

m = F 2 + IT (E) = f2hh+ f2v v + ITH (E)h+ ITV (E)v =mhh+mvv:

Thus, if there is given a Lagrange fv(3; 1)-structure on TV (E) of rank r, then
there exist complementary distributions Lh, Mh of TH(E), corresponding to the
morphisms lh, mh such that

Lh = PLv ; Mh = PMv: (2.5)

Thus we have the decompositions T (E) = TH(E)�TV (E) = PLv�PMv�Lv�Mv.
If L;M denote complementary distributions corresponding to the morphisms l, m
respectively then from (2.4) and (2.5) we have

L = PLv � Lv; M = PMv �Mv:
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Let �gv be a pseudo-Riemannian metric tensor, which is symmetric, bilinear and
non-degenerate on TV (E) �gv : X (TV (E)) � X (TV (E)) ! F(T (E)). (For example
�gv can be the vertical part of the Lagrange metric structure).

The mapping av : X (TV (E)) �X (TV (E))! F(T (E)) which is de�ned by

av(X;Y ) =
1

2
[�g(lvX; lvY ) + �g(mvX;mvY )] 8X;Y 2 X (TV (E))

is a pseudo-Riemannian structure on T (E) such that av(X;Y ) = 0, 8X 2 X (Lv),
Y 2 X (Mv).

Theorem 2.1. If a Lagrange fv(3; 1)-structure of rank r is de�ned on TV (E)
then there exists a pseudo-Riemannian structure of TV (E) with respect to which the
complementary distributions Lv and Mv are orthogonal and fv is an isometry on
TV (E).

Proof. If we put gv(X;Y ) = 1
2 [av(X;Y ) + av(fvX; fvY )], it is easy to see that

gv(X;Y ) = 0 8X 2 X (Lv); Y 2 X (Mv):

Using (2.1) we get gv(fvX; fvY ) = 1
2 [av(fvX; fvY ) + av(X;Y )]. Thus fv is an

isometry with respect to gv.

Let X 2 X (Lv) then fvX , f2vX 2 X (Lv) and

gv(X; fvX) = gv(fvX; f
2
vX) = �gv(fvX;X):

Consequently gv(X; fvX) = gv(fvX; f
2
vX) = 0:

We can de�ne a maping gh:

gh(X;Y ) = gv(PX;PY ); 8X;Y 2 X (TH (E));

where gh is a metric structure on TH(E). Using (2.5) the distributions Lh, Mh are
orthogonal with respect to gh and the horizontal fh(3; 1)-structure which is de�ned
by fhX = PfvPX , 8X 2 X (TH(E)) is an isometry on TH(E) with respect to gh.

We can also de�ne a metric tensor G on T (E).

G(X;Y ) = gh(X;Y )h+ gv(X;Y )v: (2.6)

The distributions L;M are orthogonal with respect to G and the F (3; 1)-
structure which is de�ned by FX = fhh+ fvv, X 2 T (E) is an isometry on T (E)
with respect to G.

3. Linear connections compatible with F (3;1)-structure

It is well known that an arbitrary distribution D is parallel with respect to a
linear connection r, if for any tangent �eld Y , rY is a transformation of D [4].

Definition 3.1. An fv(3; 1)-connection on TV (E) (or a linear connection
compatible with a fv(3; 1)-structure) is a linear connection r on TV (E) with the
property that distributions Lv and Mv are parallel with respect to r.
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In a similar way r0 is an fh(3; 1)-connection if distributions Lh and Mh are

parallel with respect to r0, and ~r is an F (3; 1)-connection if distributions L and

M are parallel with respect to ~r.

Theorem 3.1. Let lv, mv be the complementary projection morphisms of
fv(3; 1)-structure.

A linear connection on TV (E) is an fv(3; 1)-connection if and only if

rX lv = 0 8X 2 XT (E):

Proof. Since lv is a morphism on TV (E),

(rX lv)(Y ) = rX lvY � lvrXY; 8X 2 XT (E); Y 2 XTV (E): (3.1)

If rX lv = 0, then from lv +mv = I , we have

rXmvY = 0; rY lvY = lvrXY; rXmvY =mvrXY:

Since mvlv = lvmv = 0, we have

mvrXY = 0; 8Y 2 XT (Lv); X 2 XT (E);

and
lvrXY = 0; 8Y 2 XT (Mv); X 2 XT (E):

Thus rXY 2 XT (Lv) for every Y 2 XT (Lv) and rXY 2 XT (Mv) for every
Y 2 XT (Mv).

Conversely, using the decomposition Y = lvY +mvY and (3.1) we get

(rX lv)(Y ) = rX lvY � lvrX lvY � lvrXmvY:

Since rX is an fv(3; 1)-connection rXmvY 2 XT (Mv). Consequently
lvrYmvY = 0, (rX lv)(Y ) = rX lvY � lvrX lvY = 0, because l2v = lv .

Thus: rX lv = 0, 8X 2 XT (E).

In a similar way we have:

Proposition 3.1. A linear connection r0X on TH(E) is an fh(3; 1)-connection
i� r0X lh = 0, 8X 2 XT (E).

Proposition 3.2. A linear connection ~rX on T (E) is an F (3; 1)-connection

i� ~rX l = 0, 8X 2 XT (E).

Theorem 3.2. If �rX is an arbitrary linear connection on TV (E) then the
operator

rX = fv �rXfv; 8X 2 XT (E)

is an fv(3; 1)-connection.
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Proof. Applying the theorem 3.1 we have

(rX lv)Y = fvrXfvlvY � lvfvrXfvY; 8Y 2 XTV (E):

Since fvlv = lvfv = fv, we have rX lv = 0, 8X 2 XT (E), i.e. rX is an
fv(3; 1)-connection.

Let rX be a linear connection on TV (E). We de�ne the linear connection r0X
on the TH(E) by

r0XY = PrXPY; 8X 2 XT (E); Y 2 XTH(E): (3.2)

Theorem 3.3. If rX is an fv(3; 1)-connection on TV (E) then r0X de�ned by
(3.2) is a linear connection compatible with the horizontal fh(3; 1)-structure.

Proof. Using (3.1), (3.2) we have

(r0X lh)Y = r0X lhY � lhr
0

XY = PrXPP lvPY � P lvPPrXPY

= P (rX lvPY � lvrXPY ); 8Y 2 XTH(E):

According to theorem 3.1, rX lv = 0, thus r0X lh = 0, i.e. horizontal connection
r0X is compatible with the fh(3; 1)-structure.

Next, we de�ne linear connection ~rX on T (E) by

~rXY = r0XhY +rXvY; 8X;Y 2 XT (E): (3.3)

Theorem 3.4. If rX is an fv(3; 1)-connection on TV (E) then ~rX de�ned by
(3.2) is a linear connection compatible with the F (3; 1)-structure.

Proof. We shall prove that ( ~rX l)Y = 0, 8X;Y 2 XT (E).

( ~rX l)Y = r0hhlY +rXvlY � lr
0

XhY � lrXvY

= r0Xh(lhh+ lvv)Y +rXv(lhh+ lvv)Y � (lhh+ lvv)r
0

XhY � (lhh+ lvv)rXvY:

Consequently ( ~rX l)(Y ) = (r0X lh)(hY ) + (rX lv)vY , 8X;Y 2 XT (E).

According to theorems 3.3 and 3.1 we have ~rX l = 0, 8X 2 XT (E) which
proves the theorem.

REFERENCES

[1] M. Atanasieu, Modes in Finsler and Lagrange geometry, Proc. IVth Nat. Sem. on Finsler and
Lagrange geometry, Brasov, (1986), 43{56.

[2] F. Gouli Andreou, On a structure de�ned by a tensor �eld f of type (1,1) satisfying f5+f = 0,
Tensor, N.S. 36 (1982), 79{84.

[3] S. Ishiara, K. Yano, On integrability conditions of a structure satisfying f3 + f = 0, Quart-J.
Math. 15 (1964), 217{222.

[4] M. Matsumoto, Connections, metrics and almost complex structures of tangent bundles, Ibid.
5 (1966), 251{278.

[5] J. Niki�c, f(3; 1)-structure on the Lagrangian Space and Invariant Subspaces, Di�erential ge-
ometry and applications, Proc. Conf. 1995. Brno, Masaryk University.

(received 15.01.1997.)

Faculty of Technical Sciences, Trg D. Obradovi�ca 6, 21000 Novi Sad, Yugoslavia


