MATEMATHNYEKN BECHUK UDK 514.763.6
49 (]_997)7 45-50 OPUTMHAJIHUA HAyUYHU pajl

research paper

LINEAR CONNECTIONS COMPATIBLE WITH THE
F(3,1)-STRUCTURE ON THE LAGRANGIAN SPACE

Jovanka Nikié

Abstract. In this paper the F-structure, satisfying F> + F = 0 on the Lagrangian space,
is examined. The construction of this structure is given as the prolongation of f,-structure
defined on T (E) using the almost product or almost complex structure on T'(E). Moreover, the
metric tensor G, with respect to which F' is an isometry, is constructed as well as the connection
compatible with such structures.

1. Introduction

Let M be an n-dimensional and E 2n-dimensional differentiable manifold and
let n = (E,m, M) be vector bundle with 7E = M. The differential structures
(U, ¢, R?™) are vector charts of the vector bundles . Hence the canonical coor-
dinates on 7~ 1(U) are (2!,..., 2" 9y, ...,y") = (2%,9%), i = 1,2,...,n; a =
1,...,n. Transformation maps on E are

= xil(x17x27... "), y“’ = M;I(xl,... ,xM )yt = Mg’(xi)ya

rank 8564 =n, rank 9y = rank M;I =n.
ot oy®

The inverse transformations are
i a1 2’ n' a __ Ma i n' a’ h Ma Ma' _ 60,
xt=a'(x 27,2 ), Yyt = MA(2, ... 2™ )y®, where ME M = 6p.

The local natural bases of the tangent space T'(E) are {9;, 0, },

_ 0 o _ o
Oy dxt  Oxt

The nonlinear connection on E is distribution N : w € E — N, C T,,(E) which is
supplementary to the distribution V,

T.E)y=N,®V,, V,€E. (1.1)

B = M (2))0y, 0; = By + (M (2))y 0
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They are localy determined by ¢, = 9; — N{*0,. The local bases adapted to decom-
positions in (1.1) is {6;,0,}.
It is easy to prove [5] that on {6;,0,}

oz? ay°

51" = 6iW7 aa’ = W

0o

The subspace of T'(E) spaned by {6;} will be denoted by Ty (E) and the subspace
spaned by {9,} will be denoted by Ty (E), T(E) = Tu(E) ® Ty(E), dimTy(E) =
n = dim Ty (E).

DEeFINITION 1.1 If the Riemannian metric structure on T'(E) is given by
G = gi(2%, y¥)da' @ da? + gap(z?, y*)oy® @ 6y® where g;;(z',y*) = gi;j(a?),
gab = 30.0,L(z", y*) and L(z’, y*) is a Lagrange function, then such a space
will be called a Lagrangian space.

Let X € T(E), then X = X6, + X9, and the automorphism P : X(T(E)) —
X(T(E)) defined by PX = X'¢; + X9, is the natural almost product structure
on T(E) i.e, P2 = I. If we denote by v and h the projection morphisms of T'(E)
to Ty (E) and Ty (E) respectively, we have Poh =wvo P.

2. f(8,1)-structures

DEFINITION 2.1. We call Lagrange vertical f,(3,1)-structure of rank r on
Ty (E) a non-null tensor field f, on Ty (FE) of type (1,1) and of class C*° such that
2+ f, =0, where rank f, =, and r is constant everywhere.

DEFINITION 2.2. We call Lagrange horizontal f,(3,1)-structure of rank r on
Ty (E) a non-null tensor field f, on Ty (E) of type (1,1) of class C> satisfying
f? + fn =0, rank f, = r, where r is constant everywhere.

An F(3,1)-structure on T'(E) is a non-null tensor field F of type (ﬂ) such that
F3 4+ F =0, rank F = 2r = const.

For our study it is very convenient to consider f, or f, as morphisms of vector
bundles [2], [3]

fo: X(Tv(E)) — X(Tv(E)), fn:X(Tu(E)) — X(Tu(E))

Let f, be a Lagrange vertical f,(3,1)-structure of rank r. We define the morphisms
l,=—f} and m, = f2 + I, (g), where I, (g) denotes the identity morphism on
Tv(E).

It is clear that I, +m, = I. Also we have
l,m, =myl, = —ff} —ff = —fv(fg +fv1) =0, mi = m,, lf =1,.

Hence the morphisms l,, m, applied to the X(Ty(E)) are complementary pro-
jection morphisms. Then, there exist complementary distributions L, and M,
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corresponding to the projection morphisms I, and m, respectively such that dim
L, =r and dim M, =n —r. It is easy to see that

lva = fvlv = fv7 mva = fvmv = 07 fq?lv = lvff = _Ivfgmv =0. (21)

PROPOSITION 2.1. If a Lagrange f,(3,1)-structure of rank r is defined on
Tv(E), then the horizontal fr(3,1)-structure of rank r is defined on Ty (E) by the
natural almost product structure of T(E).

Proof. If we put
WX =Pf,PX, VX € Ty(E), (2.2)

it is easy to see that f;X = Pf3PX and f? + f5, =0, and rank f, =r. m
PROPOSITION 2.2. If a Lagrange f,(3,1)-structure of rank r is defined on

Ty (E), then an F(3,1)-structure is defined on T(E) by the natural almost product
structure of T(E).

Proof. We put
F = fuh+ fo, (2.3)

where f,, is defined by (2.2), and h, v are the projection morphisms of T'(E) to
Ty (E) and Ty (E), respectively. Then it is easy to check that

F? = fZh+ f2v, F* = fih + fiv.

Thus F? + F = 0. It is clear that rank F' = 2r.

If 1;,, my, are complementary projection morphisms of the horizontal f,(3,1)-
structure, which is defined by the natural almost product structure of T'(E), we
have

I, X =—f}X = -Pf’PX = Pl,PX, VX € Ty(E)
mpX = (fi + Ity ()X = PfePX + Plr, (p)PX = Pm,PX, VX € Ty(E)
If I, m are complementary projection morphisms of the F(3,1)-structure on
T(E), then we have
l=—F?=—flh— f>v =l,h+ L (2.4)
m=F?+ IT(E) = f}%h + ffv + ITH(E)h + ITV(E)U =mph + m,v.
Thus, if there is given a Lagrange f,(3,1)-structure on Ty (E) of rank r, then

there exist complementary distributions Lj, M}, of Ty (E), corresponding to the
morphisms I, m; such that

L, =PL,, M, = PM,. (2.5)

Thus we have the decompositions T'(E) = Ty (E)®Ty(E) = PL,®PM,® L,® M,.
If L, M denote complementary distributions corresponding to the morphisms I, m
respectively then from (2.4) and (2.5) we have

L=PL,®L,, M =PM, P M,.



48 J. Nikié

Let g, be a pseudo-Riemannian metric tensor, which is symmetric, bilinear and
non-degenerate on Ty (E) g, : X(Tv(E)) x X(Tv(E)) — F(T(E)). (For example
J» can be the vertical part of the Lagrange metric structure).

The mapping a, : X(Tv(E)) x X(Tv(E)) — F(T(FE)) which is defined by

av(va) = [g(le7le) + g(va7va)] VXY € X(TV(E))

DN =

is a pseudo-Riemannian structure on T(E) such that a,(X,Y) =0, VX € X(L,),
Y € X(M,).

THEOREM 2.1. If a Lagrange f,(3,1)-structure of rank r is defined on Ty (E)
then there exists a pseudo-Riemannian structure of Ty (E) with respect to which the

complementary distributions L, and M, are orthogonal and f, is an isometry on
Ty (E).

Proof. If we put ¢,(X,Y) = %[av(X,Y) + a, (fo X, fuY)], it is easy to see that
9., (X, Y)=0 VX e X(L,), Y eX(M,).

Using (2.1) we get g,(fu X, f,Y) = %[av(va7 foY) 4+ a,(X,Y)]. Thus f, is an
isometry with respect to g,.

Let X € X(L,) then f,X, ng € X(L,) and
gv(Xv va) = gv(vavng) = _gv(vavX)'

Consequently g,(X, f,X) = g,(f. X, f2X) = 0.
We can define a maping gp:
gn(X,Y) = g.(PX,PY), VXY € X(Tu(E)),

where g, is a metric structure on Ty (E). Using (2.5) the distributions Ly, M}, are
orthogonal with respect to g, and the horizontal fj,(3,1)-structure which is defined
by fnX =Pf,PX,VX € X(Ty(E)) is an isometry on Ty (E) with respect to gy,.

We can also define a metric tensor G on T'(E).
G(X,Y) = gn(X,Y)h + go (X, Y)o. (2.6)
The distributions L, M are orthogonal with respect to G and the F(3,1)-

structure which is defined by F X = f,h + f,v, X € T(E) is an isometry on T(E)
with respect to G.

3. Linear connections compatible with F(3,1)-structure

It is well known that an arbitrary distribution D is parallel with respect to a
linear connection V, if for any tangent field Y, Vy is a transformation of D [4].

DEFINITION 3.1.  An f,(3,1)-connection on Ty (E) (or a linear connection
compatible with a f,(3,1)-structure) is a linear connection V on Ty (E) with the
property that distributions L, and M, are parallel with respect to V.
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In a similar way V' is an f5,(3,1)-connection if distributions L, and M), are
parallel with respect to V', and V is an F(3,1)-connection if distributions L and
M are parallel with respect to V.

THEOREM 3.1. Let l,, m, be the complementary projection morphisms of
fo(3,1)-structure.

A linear connection on Ty (E) is an f,(3,1)-connection if and only if

Vxl, =0 VX € XT(E).

Proof. Since 1, is a morphism on Ty (E),
(Vxl)(Y)=Vxl,Y —1,VxY, VX €XT(E),Y € XTy(E). (3.1
If Vxl, =0, then from [, + m, = I, we have
Vym,Y =0, Vyl,Y =1,VxY, Vxm,Y = m,VyV.
Since m,l, = l,m, = 0, we have
m,VxY =0, VY e XT(L,),X € XYT(E),

and
L,VxY =0, VYeXT(M,),XeXT(E).

Thus VxY € XT(L,) for every Y € XT(L,) and VxY € XT(M,) for every
Y € XT(M,).

Conversely, using the decomposition Y =1,Y +m,Y and (3.1) we get
(Vxl,)(Y)=VxlL,Y -1,Vxl,Y -1,V xm,Y.
Since Vx is an f,(3,1)-connection Vxm,Y € XT(M,). Consequently
,Vym,Y =0, (Vxl,)(Y)=Vxl,Y —1,Vxl,Y =0, because 12 = ,,.
Thus: Vxl, =0,VX € XT(E).

In a similar way we have:

PROPOSITION 3.1. A linear connection V'y on Ty (E) is an fr(3,1)-connection
iff Vigly, =0, VX € XYT(E).

PROPOSITION 3.2. A linear connection Vx on T(E) is an F(3,1)-connection

iff Vxl =0, VX € XT(E).

THEOREM 3.2. If Vx is an arbitrary linear connection on Ty (E) then the
operator
Vx = fuVxfs, VX e€XT(E)

is an f,(3,1)-connection.
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Proof. Applying the theorem 3.1 we have
(Vx1,)Y = f,Vxflb,Y =L, f,Vxf,Y, VY eXTy(E).
Since ful, = l,f, = f», we have Vxl, = 0, VX € XT(E), i.e. Vx is an
fv»(3,1)-connection.

Let Vx be a linear connection on Ty (E). We define the linear connection V'y
on the Ty (E) by

VY = PVxPY, VX € XT(E),Y € XTy(E). (3.2)

THEOREM 3.3. If Vx is an f,(3,1)-connection on Ty (E) then V' defined by
(3.2) is a linear connection compatible with the horizontal f,(3,1)-structure.

Proof. Using (3.1), (3.2) we have
(V)Y =V 1,Y - 1,VyY = PVxPPl,PY — Pl,PPV xPY
= P(Vxl,PY - l,VxPY), VY e€XTy(E).
According to theorem 3.1, VxlI, = 0, thus V' I, = 0, i.e. horizontal connection
V' is compatible with the f3(3,1)-structure.

Next, we define linear connection Vx on T(E) by
VxY =VyhY + VoY, VX,Y € XT(E). (3.3)

THEOREM 3.4. If Vx is an f,(3,1)-connection on Ty (E) then Vx defined by
(3.2) is a linear connection compatible with the F(3,1)-structure.

Proof. We shall prove that (VxI)Y =0, VX,Y € XT(E).
(VxD)Y = V,hlY + VxolY —IVhY — IV xvY
= V' h(lph +1,0)Y + Vxo(lph+1,0)Y — (Ih+1L,0)VyhY — (Ih +1,0)V xvY.

Consequently (Vx1)(Y) = (ViIn)(hY) + (Vxl,)vY, VXY € XT(E).

According to theorems 3.3 and 3.1 we have Vxl = 0, VX € XT(FE) which
proves the theorem. m
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