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LP-ESSENTIAL SPECTRAL THEORY OF ORDINARY
DIFFERENTIAL OPERATORS WITH ALMOST
CONSTANT COEFFICIENTS

Valeri A. Erovenko

Abstract. In this paper investigation is conducted of various essential spectra of minimal,
maximal and intermediate ordinary differential operators in scale of Lebesque spaces L?(a,c0),
1 < p < oo, obtained by means of relatively small perturbations of differential operators with
constant coefficients of order n by differential operators of the same order, which generalizes the
results [1-3]. This makes it possible to prove the new analogons of the classical Weyl theorem of
invariance of essential spectrum as well as to obtain the precise formulas for calculating essential
spectra of various classes of ordinary differential operators in Lebesque spaces L?. In contemporary
mathematical literature a few assertions are known as Weyl’s theorem (see, for example, survey
[4]). The classical Weyl theorem states that if A and B are self-adjoint and A — B is compact
then o.(A) = o.(B), where 0. is the essential spectrum of an operator. Generalization of Weyl
theorem on various essential spectra for closed operators in Banach spaces and special classes of
perturbations is dealt with in papers [5-7].

Let T be a closed linear operator densely defined on a complex Banach space.
Essential spectra of an operator T' could be defined as complements in a complex
plane C of sets defined by various Fredholm properties of family of operators T'—AI:

oo (T):= C\ Ap(T), k=1,2,34,5,
ch(T):=C\ @ (T) and o.,(T):=C\ & (T),

where A (T) := {A € C : R(T — M) = R(T — M)}, ®+(T) := {\ € Ay(T) :
nul(T— A1) < oo}, & (T) = {\ € Ay (T) : de f(T - AI) < oo}, Az(T) 3+ (T)U
*=(T) = s — @(T), A3(T) := @ (1) = @(T), Au(T) == {X € A3(T) :

Ay

= o7(T)n

ind(T — M) = 0}, As(T) :={\ € Ay(T
resolvent set p(T)}.

Each of the sets 0. (T),k = 1,5, 05(T) and o.,(T) has been reffered to as

the essential spectrum of 7' accoding to (1) Goldberg, (2) Kato, (2¥) Wolf, (27)

Gustafson-Weidmann, (3) Fredholm, (4) Weyl or Schechter, (5) Browder. It is clear

) : a deleted neighbourhood of Alies in the
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that oex(T) C 0o (T) for k < 1 and o.o(T) C 05(T) C
might be proper. The essential spectra o.x(T), k 1,2,
by other equivalent means [8—11].

Oe (T)7 where the inclusion
2+ 3.4, 5, can be described

The basis of the theory of the essential spectrum o.; for ordinary differential
operators in LP spaces is due to Rota [12]. Balslev and Gamelin [13] investigated
the Fredholm essential spectrum o.3 of ordinary differential operators in spaces
LP,1 < p < oo, and generalization of these results for o,y in LP?, 1 < p < o0, is
dealt with in Goldberg’s monograph [14].

Let us consider a formal differential expression
T::Zak(t)Dk, a<t<oo, —oo0o<a<oo, (1)

where ay(t) are complex valued functions such that ax(t) € C*[a,00), an(t) # 0,
1/an,ar € L*®(a,0), 0 < k < n, and D := d/dt. Denote by T(r,p,[a,)) a
mazimal operator corresponding to (7,p,[a,c0)) which is defined on L?(a,c0) as
follows:

D[T(r,p,[a,00))] :={f : f""") € ACpcla, ); f,7f € LP(a,00)},

where AC),.[a,0) is the set of complex valued functions f, absolutely continuous
on each compact subinterval from [a,o0) and

T(r,p,[a,0))f :==7f for fe€ D[T(r,p,[a,))].

We denote by To(7,p, [a,o0)) a minimal operator defined on LP(a,00) for 1 < p <
oo as closure of restriction of the maximal operator T'(r,p,[a,o0)) on the set of
functions from D[T(r,p,[a,>))], having compact support in (a,00), and for 1 <
p < oo defined by a Banach conJugate T'(t*,7, [a, oo))7 where 7* is the formally
conjugated differential operation 7*g := Ek:o( 1)*D*(arg), and 1/p+1/p' =1
ifl<p<oo;p =wifp=1;p =1if p=o00. Various properties of essential
spectra of minimal and maximal ordinary differential operators are investigated in
[15-17].

THEOREM 1. Let S(7,p,[a,0)),—00 < a < 00, be a closed linear differen-
tial operator in LP(a,00),1 < p < oo, which is an extension of minimal opera-
tor To(T,p, [a,)) and a restriction of mazimal operator T(T,p,[a,0)) generated
by differential operation T (1) with smooth coefficients ay(t), 1/a, € L*(a,0),
0<k<n,

To(r,p, [a,)) C S(1,p,[a,)) C T(r,p, [a,0)).
Then for any b € (a,00) and five versions of essential spectra of differential opera-
tors S(t,p, [a,00)) and S(7,p, [b,00)) the following equalities hold:

oek[S(T,p, [a,0))] = oex[S(T,p,[b,0))], k=1,2, 2% 3. (2)

For Weyl essential spectrum oeq of minimal and mazimal differential operators
the following equalities hold:

oea[To(T, p, [, 00))] = oea[To (T, p, [b,0))],

0T (7,p. [a,00))] = oea[T(. . b, 50))]. )
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Proof. We will consider some key points of the proof. To check the for-
mulas (2) it suffices to consider an equality for Fredholm essential spectrum o3
as essential spectra o.r,k = 1,2,3, and aeiQ coincide for minimal To(T,p,[a, o))
and maximal T'(7,p,[a,00)) operators [15]. The operator To,(T,p,[a,c0)) for
which D[Toy(7,p, [a,00))] := {f : fOD € ACpefa,0); f9)(a) = f9)(b) = 0,
j=0,n—=1; f,7f € LP(a,00)} and Top(7,p, [a,0)) := 7f, in the direct sum of
Banach spaces LP(a,00) = LP(a,b) ® LP(b,00) can be written as a decomposition
Tou(7,p, [a,0)) = To(r,p,la,b]) ® To(1,p,[b,00)). This presentation implies the
equality for Fredholm essential spectra

Oe3 [TOb(Tvpv [a7 OO))] = 0'63[T0(T7p, [av b])] U 0'63[T0(T7p, [bv OO))] (4)

Since oe3[To(T,p,[a,b])] = @ and minimal operator Ty(T,p,[a,0)) is an n-
dimensional extension of the operator Toy(7,p,[a,00)), the equality (4) implies
Oe3 [To(T,]L [a7 OO))] = 063[T0(Tvp7 [bv OO))]

To prove the equality (3) we will introduce an additional operator A (T, p, [a, b])
defined on LP(a,b) for which D[Ay(7,p,[a,b])] = {f : Y € ACi.la,bl;
f9b) =0,j =0,n — 1} and Ay(7,p, [a,b])f := 7f. We define in the direct sum
of Banach spaces LP(a,00) = LP(a,b) ® LP(b,00) an operator Ty(7,p, [a,0)) =
Ap(7,p,[a,b]) ® To(r,p, [b,00)). The identical operator I is Ap-compact since the
bounded inverse A, ' is compact and from p(A,) # 0 we have oeq[Ay(7, p, [a,b])] =
(). Therefore the following equality holds

064[Tb(T7p7 [a7oo))] = 0'34[T0(T,p7 [bvoo))] (5)

We would like to note that the operator Ty(r,p,[a,o0)) is an n-dimensional ex-
tension of the operator Ty, (7, p, [a,00)). On the other hand, the minimal operator
To(T,p,[a,0)) is an n-dimentional extension of the operator To, (7, p, [a,00)) and
hence ind[Ty (T, p, [a, 00)) — AI] = ind[Ty(T, p, [a,0)) — M]. Therefore, the correla-
tion (5) implies the equality (3) for Weyl essential spectrum of minimal operators.
The theorem is proved. m

We denote by B(v,p, [a,o0)) (respectively By(v,p, [a,20))) for —o0o < a < o0
a maximal (minimal) differential operator generated in LP(a,o0), 1 < p < oo, by
the formal differential operation

n—1
v = Y b(t)D*, a<t< oo, (6)
k=0

where complex valued functions by € C*[a,0), 0 < k < n — 1, and by
T(t + v,p, [a,0)) (respectively To(T + v,p, [a,00))) a maximal (minimal) opera-
tor generated in LP(a,0), —00 < a < 00,1 < p < 00, by the formal differential
operation 7 + v, where 7 and v is defined by the formulas (1) and (6). The opera-
tors B(v,p, [a,0)), Bo(v,p, [a,0)) and T(7 + v, p, [a,)), To(T + v, p, [a,0)) are
defined likewise the maximal and minimal differential operator generated by the
operation 7.
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THEOREM 2. The mazimal differential operator B(v,p,[a,>0)) (the minimal
differential operator Boy(v,p,la,0))) generated by v (6) in LP(a,00) 1is
T(r,p,|a,o0))-bounded (respectively Ty(T, p, [a, 00))-bounded) for the differential op-
eration 7 (1), —co <a < oo and 1 < p < oo if by € LY (a,) and

loc

s+1
sup / [br(t)|Pdt = 0 as m—o00, 0<k<n-1. (7)
m<s<oo Js

In case of fairly large a € (0, 00) for mazimal and minimal differential operators
considered the following equalities hold

I(r +v,p,[a,0)) = T(7,p,[a,0)) + B(v,p, [a,)), (8)
TO(T +v,Dp, [a’v OO)) = TO(Tvpv [a’v OO)) + BO(vav [av OO))? (9)

and a relative bound of differential operators B(v,p,[a,>)) and By(v,p, [a,0)) is
strictly less than unity.

Proof. Denote for simplicity T'(7 + v) = T(t + v,p,[a,0)), T(r) =
T(r,p,la,)) and B(v) := B(v,p, [a,0)). We will prove the equality (8) for maxi-
mal operators. It suffices to check the equality for domains D[T'(7+v)] = D[T(7)].
The condition (7) of the theorem implies that Ve > 0 there is a number a € (0, c0)
such that

s+1
/ |be(t)|P dt < e for [s,s+1] Cla,00), 0<k<n—1. (10)

The estimates (10) for coefficients of the perturbating differential operation v (6)

imply the relative boundedness of the operator B(v) in comparison with T'(7).
For functions f € W' (a,00) :== {f : =Y € ACi,cla,0), f) € LP[a, o),

0<i<n},1<p<oo,and 0 <k <n—1 the following inequlity holds

s+1
ety < (IS I 41 0) s [ P, )
s€la,00) /s
where || - ||, is the norm in L?(a,00) [17].

Under conditions on coefficients a(t) of the differential operation 7 (1) there
exists a constant K, which depends on p,n, the length of an interval I as well as
the maximum of the numbers ||1/a,||c0,r and ||agl|os,7,0 < k < n —1, such that for
f € D[T(r,p,I)] the following inequality holds [14]

e, < K(

Due to the estimate (12) the inequalities (10) and (11) immediately imply that
there are a constant M and ¢ = ¢(a) > 0 such that for functions f € D[T'(7)] and
1 < p < oo the following inequality holds

TfI +F1,), 0<k<m 1<p<oo.  (12)

n—1
Wflle < 3@l < e (sl + 111)- (13)
0

k=
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If f € D[T(7)] then by definition 7f € L”(a,00), therefore the inequality
(13) implies vf € LP(a,00) whence f € D[T(r + v)]. Thus we have proved the
inclusion D[T'(7)] € D[T(r + v)]. Now we are going to prove the inverse inclusion
D[T(r +v)] C D[T(r)]. Let f € DI[T(r + v)]; then (v + v)f € LP(a,00) and
f®) 0 <k <n— 1, are continuous functions on each compact interval J C [a, o)
of length not less than 1, therefore vf € LP(J), hence 7f = (r+v)f —vf € LP(J).
The inequality ||7f|l,,; < (T +v)fllp,7 + [V fllp,s and the inequality (13), which
also holds for the norm || ||, in space LP(J), imply the estimate (for 0 < eM < 1)

eM

—— (Il +2)fl, +11£1,)- (14)

Since this inequality holds for any subinterval J C [a,o0) we have vf € LP(a, o),
hence 7f = (t +v)f —vf € LP(a,0), i.e. f € D[T(7)], therefore D[T(7 + v)| =
D[T(1)], whence the equality (8). The equality (9) can be proved like the similar
assertion of theorem 1 of paper [17]. The theorem is proved. m

1 fllp,r <

Using theorem 2 and theorem on essential spectra of maximal and minimal
ordinary differential operators with constant coefficients [16] one can find precise
formulas for essential spectra of differential operators with almost constant coeffi-
cients, i.e. differential operators with variable coefficients tending to constant ones
at infinity.

Let us consider a formal differential operation of the type

n n—1
p::T+V:Zaka+Zbk(t)Dk7 a <t < oo, (15)
k=0 k=0

where ay, are complex numbers, 7 is a differential operation of type (1) with constant
coefficients and by, () are complex valued functions such that by, € C*(a,00), k =
0,n.

THEOREM 3. Let the coefficients bi(t), 0 < k < n — 1 in the differential
operation | (15) satisfy the integral conditions (7). Then for essential spectra of
minimal To(u, p, [a,00)), mazimal T(u,p,[a,c0)) operators generated by p (15) in
LP(a,0), —00 < a < 00,1 < p < o0, and for the closed differential operator
S(u,p, [a,0)), which is an extension of minimal and a restriction of mazimal op-
erators, as well as for similar operators defined by the differential operations 7 (1)
with constant coefficients and v (6), the following equalities hold, which are the
generalizations of Weyl theorem:

O'ek[S(,lL,p, [a’v OO))] = UEk[S(Tvpv [a’v OO)) + S(vav [a’v OO))] = Oek [S(Tvpv [a’v OO))]v
k=1,2,2% 3,
UEk[TO(Mvpv [a’v OO))] = UEk[TO(Tvpv [a’v OO)) + TO(vav [a’v OO))] = Ock [TU(Tvpv [a’v OO))]v
k=4,5,

Oﬁk[T(uvpv [(L, OO))] = O'Ek[T(T,]L [a7 OO)) + T(l/7p, [(L, OO))] = Oek [T(T7p, [(L, OO))]7
k=45
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Proof. Denote by T(u) := T(u,p,[a,00)), To(p) = To(u,p,[a,o0)) and by
T(r+v),T(1), B(v) (respectively To(T 4+ v), To(7), Bo(v)) the maximal (minimal)
operators defined while proving theorem 2.

Note that the inequality (12) for norms of derivatives also holds for a differential
operation 7 — A, A € C. Therefore for functions f € D[T(r)] = D[T'(7 + v)] in
corresponding Lebesque spaces LP(a,00), 1 < p < oo, the inequalities (13) and (14)
imply that there exists such a € (0, 00) and, due to the conditions (7) on coefficients
bk, such fairly small e = £(a),0 < ¢ < 1, for which the following inequalities hold

1 flle < e(lm =Nl + 11£1l),
lwfllp < el +v =N Flp + 1£1p)-

These estimates as well as the following equalities for maximal operators 7'(7 +
v)— A = (T'(r) — M) + B(v) (see formula (8)) and T'(7) — A\ = (T'(7) + B(v) —
M) — B(v) = (T(r +v) — AI) — B(v) imply that the operator T'(7 + v) — A\ can
be considered as a relatively small perturbation of the operator T'(7) — Al and vice
versa. Hence applying the theorem of stability of the index of closed semi-Fredholm
operators [11] we have A € ®*(T'(7)) if and only if A\ € ®*(T'(7) + B(v)) and for
indices the following equality holds ind(T (1) — AI) = ind(T (1) + B(v) — \) =
ind(T(T+v)— ). Therefore for essential spectra of the maximal operator T'(7+v)
the following equalities hold

oe[T(T+v)] = 0alT()), k=T4, op[T(r+v)]=05[T(1).  (16)

Arguing in the same way, using the equality (9) for the minimal operators Ty(7)
and By(v), one can show that for essential spectra of the minimal operator Ty (7+v)
the corresponding equalities hold

ok [To(T + V)] = o [To(7T)], k=T1,4, o5[To(r +v)] = o5 [To(7)]. (17)
The theorem is proved. m

COROLLARY 1. Essential spectra of differential operators generated by the
operation p (15) and defined in theorem 3 can be calculated by the formulas:

Ter[S(p,p, [a,00))] = 055[S (1, p, [a, 0))] = {P(A) : ReA =0}, k=T.3, (18)
Oek [TO(Mvpv [a’v OO))] = U[TO(:uﬂpv [a’v OO))] = {P()‘) : Re) > 0}7 k= 47 57 (19)
oer[T (1, p, a,0))] = o[T' (1, p, [a,00))] = {P(A) : ReA <0}, k=45, (20)

where P is a polynomial corresponding the differential operation with constant co-
efficients T (1)
n
P(t) = at".
k=0

Proof. In theorem 2 of paper [16] the precise formulas for finding all essen-
tial spectra of maximal and minimal differential operators with constant coeffi-
cients were obtained. Therefore the equalities (16), (17) and theorem 3 imply the
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corresponding assertions in case of formal differential operation p = 7 = v (15)
for essential spectra o, k = 1,5, and o2, of minimal Ty(x) and maximal T'(zt)
perturbated differential operators in Lebesque spaces LP(a,o0) and correspond-
ing a € (0,00). The remaining equalities for intermediate differential operators
S(u,p,a,0)) follow from theorem 1 of paper [15]. Finally the formulas (18)—
(20) of all essential spectra of considered differential operators in Lebesque spaces
LP(a,>), 1 < p < oo, for any a € (—o0, 00) follow from theorem 1. The corollary
is proved. m

Let us consider a differential operation p of more general type, namely, as a
perturbation of 7 by a differential operation of the same order n, i.e.

n

o= (ar+Dbi(t)D*, a<t< o, (21)
k=0

where a; are complex numbers and complex valued functions of real argument
br € C*(a,0), for k =0, n.

COROLLARY 2. Let for coefficients of the differential operation @ (21) the
following conditions hold b,,1/(a, + b,) € L*>(a,00) and coefficients by(t), 0 <
k < m, satisfy conditions of tending to 0 at infinity (7). Then for the minimal
To (R, p, [a, 00)), mazimal T (1, p, [a, 00)) and intermediate S(I, p, [a, c0)) differential
operators generated in LP(a,00), —oco < a < 00,1 < p < oo, by the differential
operation T (21) the following generalizations of the classical Weyl theorem hold:

oek[S(I, p, [a,0))] = oek[S(7,p,[a,))], k= 1,2,2% 3,
Ock [To(ﬁvpv [a’v OO))] ek[TO(T D, [a OO))] k= 4, 5,
oet[T (7, p, [a, )] = oek[T(T,p,[a,0))], k=4,5.

Besides, for differential operators defined by the operations i (21) the formulas for
essential spectra (18)-(20) hold.

Proof. Since theorem 2 holds for the differential operation 7 (1) with variable
coefficients, considering the conditions on the coefficients by (t), 0 < k < n, (7) it
suffices to investigate the particular case of the differential operation 7 (21) with
the coefficients by (t) =0, 0 < k < n — 1, the operation of the type

n—1

fii=7+bu(t)D" = (an+ba())D" + > arD". (22)
k=0

In other words to prove the assertion of the theorem for differential operators with
7t (22) and then to consider the general differential operation 7t (21) as a relatively
small perturbation of the differential operation (22). To do so it suffices to present
the differential operation & (22) in the form

T—\ = (1+ba( ) Z aD’” bz—(t)A.
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COROLLARY 3. For essential spectra of minimal To(fi, 00, [a,00)), mazimal
T(@, 00, [a,0)) and intermediate S(R, 0, [a,00)) differential operators generated
by the formal differential operation T (21) in space L*(a,o0), —oco < a < 00,
with coefficients satisfying the conditions of corollary 2 and with their derivatives
satisfying

s+1 )
sup / |b§:)(t)|pdt—>0 as m—oo, 0<i<k 0<k<mn,

m<s<oo
the formulas (18)-(20) hold for differential operators in case p = oo.

To prove this assertion it suffices to apply corollary 2 to differential operators
generated in space L'(a,0) by the formal conjugated differential operation

() f =D _(=1)*D*((ax + br(t))f),
k=0

and then using the formulas of duality (see, for instance, [14,15]) proceed to differ-
ential operators defined by the operation 7 (21) in space L*(a, 00).

Theorem 3 and corollary 1,2,3 generalize the results of [13,14] for Fredholm
and Goldberg essential spectra of maximal operators in space LP(0,00) as well as
the results of [10,18] for various essential spectra of ordinary differential operators
in Hilbert space. We would like to note books [19,20] on localization of essential
spectrum of ordinary self-adjoint differential operators with variable coefficients.

In conclusion I wish to thank Professors K.Gustafson, W.D.Evans, V.Rakocevié¢
who acquainted me with their papers on the theory of essential spectra of linear
operators.
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