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SIMPLE SUFFICIENT CONDITIONS FOR UNIVALENCE
Milutin Obradovié

Abstract. For a function f(z) = z + a22? + -+ -, analytic in the unit disc, we find A > 0
such that |f"(z)| < A implies starlikeness (Mocanu’s problem [2]) or convexity. The given results
are sharp.

As usual, let A denote the class of functions f which are analytic in the unit
disc U = {z : |z] < 1}, normalized by f(0) = f'(0) —1 = 0. Let S* C A be the
class of starlike functions in U defined by the condition

Re{zjj(lz)} >0, 2€U,

and let ' C A be the class of conver functions defined by the condition

Re { ZJ{,(S) + 1} >0, zel.

Let f and g be analytic in U. We say that f is subordinate to g, written
f(x) < g(2) or f < g, if there exists a function w analytic in U which satisfies
w(0) =0, |w(z)] < 1 and f(z) = g(w(z)). If g is univalent in U, then f < g if and
only if f(0) = g(0) and f(U) C g(U).

In his paper [2] Mocanu considered the problem of finding A > 0 such that the
condition |f"(z)] < A, z € U, implies f € S*. He found that A = 2/3 is sufficient
for that problem. Later, Ponnusamy and Singh found a better constant A = 2/+/5.
In the next theorem we give a more precise result.

THEOREM 1. If f € A and |f"(2)] € 1, z € U, then f € S*. The result is
sharp.
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For sharpness we may consider the function f(z) = z + 1222 £ > 0. For this
function we have |f"(z)] =14¢ > 1, but f'(z) = 1 4+ (1 4 ¢)z vanishes at the point
z=—1/(1+¢) € U; that means f is not univalent in U.

For the proof of Theorem 1 (and others) we need the following two lemmas.

LEmMA A. If f, g are analytic in U, ¢'(0) # 0, and g is conver (univalent)
i U, then

f<g9g = %/0 f(t)dt<%/0~g(t)dt.

LEMMA B. If f(z) = Y02 arz®, z € U, and g is conver (univalent) in U,
then

2f'(2) < 2g'(z) = f=y

A more general result than the one in Lemma A one can find in [1]. Lemma
B is due to [4].

Proof of Theorem 1. We can write the condition of the theoem as
2f"(2) < z. (1)
- f(2)
By Lemma A, from (1) we obtain f'(z) — —

relation in the following two ways:

1
=< 3% We can arrange the last

) z\
. fe) (1)
2) (z2f'(z 1
ES RS @
From (2), by Lemma B we have M <1+ g, which implies % < ‘M < g,
z z
z € U. From the last relation and (3) we get
1]zf'(z) ‘ ‘f(Z) 2f'(2) ‘ 1
- -1/ < —-1|< =, ze€eU,
2] f(2) z || f(2) 2
!
which finally gives ZJJ:(EZ)) — 1‘ <l,zeU,ie. feS* m

We can prove that the condition in Theorem 1 may be weaker if we have some
additional condition as the following theorem shows.

f2)

THEOREM 2. Let f € A and let |f"(2)] < a,
z

and for every z € U. Then f € S*.

a
>§,forsom60<a<2
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Proof. As in the proof of Theorem 1 we have that

f(z) (2f'(2) a
() 5 @
Suppose that Re { Zt}f(lz(oz;)} = 0 for some 2o, |20] < 1, i.e. let Zoff('z(oz)o) =iz (z is
real). Then for such zy we obtain that
‘ﬂzO) ELm 1)\ _ ‘f(Zo) 1> ‘f@o) L@
20 f(z0) 20 20 2’
2f'(z)

which is a contradiction to (4). It means that Re{

}>07z€U7i.e.f€
S*. m

)

EXAMPLE. For the function f(z) = z + 52° we have f”(z) = 32°, which
implies |f"(z)] < 3/2, z € U, while |f(2)/z| > 1 — Z[z|* > 37/40 > 3/4, z € U.
By theorem 2 it means that f € S5*.

REMARK. If @ =1 in Theorem 2, then the condition |f(2)/z| > 1/2, z € U,
is satisfied (see the proof of Theorem 1), and the statement of Theorem 1 easily
)
f(z)

Finally, we give the convexity condition for the same kind of problem.

<1,z €U, asin Theorem 1.

follows, but we cannot conclude that ‘

THEOREM 3. If f € A and |f"(2)| < 1/2, 2 € U, then f € K. The result is
sharp.

Proof. Since by the condition of the theorem

1
TUORER (5)
then, by applying Lemma B, we obtain
1
flz) <1+ 3% (6)
"
If we put 2MC) + 1 =p(z), then from (5) we have

e
(=) - DF () < 32, ™)

and we want to show that Re{p(z)} > 0, z € U. If not, then suppose that there
exists a zp, |z0| < 1, such that p(z¢) = iz, where x is real. Hence by (6): |f'(z0)| >
1/2, then we have

1

1 1 1 1
1) 22— 121 2 s (41— =-a%>
|(p(z0) = 1) f"(z0)” = 7 = liw = 1F|f"(z0)° = 7 > (" + 1) = 7 = 727 >0,
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which is a contradiction to (7). Therefore, Re{p(z)} > 0, z € U, i.e. f is a convex
function.

If we consider the function f(z) = z 4+ 4222, 0 < e < 1, then we have that
1+e 1 zf"(z) 1+(1+4¢)z
" = >, but —++4+1=———""—
£7(2)] 2 2 0 f'(2) + 1+ =
close to —1, implying that f is not convex. m

becomes negative for z real

REFERENCES

[1] S. S. Miller and P. T. Mocanu, Subordination-preserving integral operators, Trans. Amer.
Math. Soc. 283, 2 (1984), 605—615.

[2] P. T. Mocanu, Two simple sufficient conditions for starlikeness, Mathematica (Cluj) 34 (57)
(1992), 175-181.

[3] S. Ponnusamy and V. Singh, Criteria for strongly starlike functions, Complex Variables: The-
ory and Appl., to appear.

[4] T. J. Suffridge, Some remarks on convex maps of the unit disc, Duke Math. J. 37 (1970),
TT5-T77.

(received 01.08.1997.)

Department of Mathematics, Faculty of Technology and Metallurgy, 4 Karnegijeva Str., 11000
Belgrade, Yugoslavia

E-mail: obrad@elab.tmf.bg.ac.yu



