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ON CONCTRACTIBILITY OF THE OPERATOR I � trf

Vladimir Jankovi�c and Milan Jovanovi�c

Abstract. We study the set K(f) of positive numbers t for which the operator I � trf is
contractible, where f is a di�erentiable function de�ned on a convex subset of the Hilbert space
(I is the identity operator of that Hilbert space). The set K(f) is interesting for a problem of
minimization of strongly convex functions when the method of contractible mappings is applied.

1. Introduction

Let C be a convex subset of the Hilbert space H and let f : C ! R be a
di�erentiable function on the set C. (That means f can be extended to some open
superset D of the set C, so that its extension is di�erentiable in every point of
the set C.) The function f is a strongly convex function if there exists a positive
number r such that

f((1��)x+�y) � (1��)f(x)+�f(y)�(1��)�rkx�yk2 ; x; y 2 C; 0 � � � 1: (1)

The number r satisfying (1) is called a constant of strong convexity of the function f .
Maximal constant of strong convexity is denoted by r0. The gradient rf satis�es
Lipschitz condition if there exists a nonnegative number L such that

krf(x)�rf(y)k � Lkx� yk; x; y 2 C: (2)

The number L satisfying (2) is called a Lipschitz constant of the gradient rf .
Minimal Lipschitz constant is denoted by L0. The operator I � trf is contractible
if there exists a number q, 0 < q < 1, such that

k(x� trf(x))� (y � trf(y))k � qkx� yk; x; y 2 C: (3)

We introduce the following set

K(f) = f t > 0 j operator I � trf is contractible g:
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The setK(f) is interesting for the method of contractible mappings and our primary
concern is to determine it.

In the sequel the following known theorems will be used (their statements can
be found in [1]).

Theorem A. Positive number r is a constant of strong convexity of the func-
tion f if and only if

hrf(x) �rf(y); x� yi � 2rkx� yk2; x; y 2 C: (4)

Theorem B. If the gradient of the function f satis�es

krf(x)�rf(y)k2 � Lhrf(x)�rf(y); x� yi; x; y 2 C; (5)

then f is convex and its gradient satis�es the Lipschitz condition (2).

Theorem C. If intC 6= �, f is convex, and the gradient of f satis�es the
Lipschitz condition (2), then the condition (5) is ful�lled.

Theorem A can be found in the third paragraph of the fourth chapter of [1].
In the second paragraph of the same chapter there is a theorem according to which
a function f satis�es the condition (5) if and only if it is convex and its gradient
satis�es the Lipschitz condition (2). However, the convexity of f together with the
Lipschitz condition (2) do not imply the condition (5) in the general case. That
can be shown using the function from the example in the next paragraph of this
article. Actually, there is a mistake in the last part of the proof of that theorem
(the step from the case intC 6= � to the general case). All statements from [1] that
we use here are concerned with the �nite dimensional Hilbert space, but they can
easily be generalized to arbitrary Hilbert space.

2. Properties of the set K(f)

Theorem 1. If the set K(f) is non-empty then f is strongly convex and its
gradient satis�es the Lipschitz condition.

Proof. Let t > 0 and 0 < q < 1. Then (3) is equivalent to

(1� q2)kx� yk2 + t2krf(x)�rf(y)k2 �

� 2thrf(x)�rf(y); x� yi; x; y 2 C: (6)

If t 2 K(f), then there exists q, 0 < q < 1, such that (3) holds and consequently
(6) holds too. It follows that

(1� q2)kx� yk2 � 2thrf(x)�rf(y); x� yi; x; y 2 C;

so that (4) is ful�lled for r = (1� q2)=4t. From (6) it follows that

tkrf(x)�rf(y)k2 � 2hrf(x)�rf(y); x� yi; x; y 2 C: (7)

This implies that (5), and consequently (2), holds with L = 2=t.
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Theorem 2. If f is a strongly convex function and if its gradient satis�es the
Lipschitz condition, then

�
0;

4r0
L20

�
� K(f) �

�
0;

2

L0

�
:

Proof. Since (2) holds for L = L0, then (6) is a consequence of the inequality

�
1� q2

2t
+
tL20
2

�
kx� yk2 � hrf(x) �rf(y); x� yi; x; y 2 C: (8)

If 0 < t < 4r0=L
2
0, then tL20=2 < 2r0 and there exists q, 0 < q < 1, such that

(1� q2)=2t+ tL20=2 � 2r0 holds. For such q (8) is valid, and therefore (6) i.e. (3)
hold; therefore t 2 K(f).

Suppose t 2 K(f). For some q, 0 < q < 1, the inequality (6) is valid. From
this inequality it follows (7), and from the inequality (7) it follows (5) i.e. (2) with
L = 2=t. Consequently, L0 � 2=t, i.e. t � 2=L0.

Theorem 3. Suppose intC 6= �. If f is a strongly convex function and if its
gradient satis�es the Lipschitz condition, then

K(f) =

�
0;

2

L0

�
:

Proof. Suppose conditions (4) and (2) hold. Then f(x) � rkxk2 is a convex
function and the Lipschitz condition is ful�lled for its gradient with the constant
L+ 2r. If we apply Theorem C we get

2r(L+ 4r)kx� yk2 + krf(x)�rf(y)k2 �

� (L+ 6r)hrf(x) �rf(y); x� yi; x; y 2 C: (9)

Let t < 2=L0. It can be shown that there exists r, 0 < r � r0, such that t �
2=(L0 + 6r) (2=(L0 + 6r) ! 2=L0; r ! 0+). Also there exists a number L � L0
such that t = 2=(L+6r). Put q = (L+2r)=(L+6r). Then 0 < q < 1. For such L,
r and q the inequality (9) reduces to (6). It follows that t 2 K(f).

Note. If intC = � but riC 6= �, then the set K(f) can be determined
by applying the above theorem on the function f with the domain C which is
considered as the subset of a� C. In that case it is useful to have in mind that the
gradient of the restriction of the function f on some subspace is a projection of the
gradient of the function f onto this subspace. If the dimension of the space H is
�nite, the condition riC 6= � is ful�lled.

Example. Suppose H = R2, C = f (x; x) j x 2 R g and the function f is given
by

f(x; y) = ax2 + by2; a+ b > 0:
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Then rf(x; y) = (2ax; 2by), krf(x; x) � rf(u; u)k2 = 4(a2 + b2)(x � u)2,
hrf(x; x)�rf(u; u); (x; x)�(u; u)i = 2(a+b)(x�u)2, k(x; x)�(u; u)k2 = 2(x�u)2.

It follows that L0 =
p
2(a2 + b2), r0 =

a+b

2
. Since

k[(x; x) � trf(x; x)]� [(u; u)� trf(u; u)]k2 = [(1� 2at)2 + (1� 2bt)2](x� u)2;

then t 2 K(f) if and only if (1 � 2at)2 + (1 � 2bt)2 < 2, which is equivalent to

t <
a+ b

a2 + b2
. It follows that

K(f) =

�
0;

a+ b

a2 + b2

�
=

�
0;

4r0
L20

�
:

3. Method of contractible mappings

Theorem 4. Let H be a Hilbert space and let f : H ! R be a strongly convex
function. If f is di�erentiable and if its gradient satis�es the Lipschitz condition
(2), then the sequence (xn) of the points from H, satisfying

xn+1 = xn � trf(xn); n = 1; 2; 3; . . . ;

converges to x̂, the point in which f reaches the minimum, providing 0 < t < 2=L.

This theorem is the consequence of the Theorem 3. In [2] the convergence is
proved under the condition that 0 < t < 4r=M2, where M is the upper bound
of the norm of the second derivative of f . In [3] the convergence is proved under
slightly more general assumption that 0 < t < 4r=L2. According to the Theorem
2 we have that 4r=L2 � 2=L, and hence the condition 0 < t < 2=L, which provides
convergence in the Theorem 4, is weaker than the corresponding conditions in older
theorems.
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