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CONVERGENCE OF A FINITE DIFFERENCE METHOD FOR
THE HEAT EQUATION — INTERPOLATION TECHNIQUE

Dejan Bojovi¢ and Bosko S. Jovanovié

Abstract. In this paper we show how the theory of interpolation of function spaces can be
used to establish convergence rate estimates for finite difference schemes. As a model problem we
consider the first initial-boundary value problem for the heat equation with variable coefficients
in a domain (0,1)? x (0,7]. We assume that the solution of the problem and the coefficients
of equation belong to corresponding Sobolev spaces. Using interpolation theory we construct a
fractional-order convergence rate estimate which is consistent with the smoothness of the data.

1. Introduction

For a class of finite difference schemes for parabolic initial-boundary value
problem, estimates of the convergence rate consistent with the smoothness of data,
are of major interest, i.e.

lu — v||W2’""/2(Qz,,T) <C(h+ \/7_')5_T||u||W;.5/2(Q) , s> (1)

Here v = wu(z,t) denotes the solution of the original initial-boundary value prob-
lem, v denotes the solution of corresponding finite difference scheme, h and 7 are
discretisation parameters, W;’3/2(Q) denotes a Sobolev space, WQS’SN(QM) de-
notes a discrete Sobolev space, and C' is a positive generic constant, independent
of h,7 and u. If parameters h and 7 satisfy the condition k1h? < 7 < kyh?,
k1,ky = const > 0, then we obtain the estimate

|l — v||W2’“"/2(Q;,T) < C’hs_r||u||W;,.e/z(Q) , s> (2)
For problems with variable coefficients the constant C' depends on the norms of
coefficients.

A standard technique for the derivation of such estimates is based on the
Bramble-Hilbert lemma [2]. In this paper we expose an alternative technique,
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based on the theory of interpolation of Banach spaces. Estimate (2) was derived
in the paper [3], by the same technique, for r = 2 and 2 < s < 4 in the domain
Q =(0,1) x (0,T]. In this paper we derive estimate (2) for r =2 and 2 < s <4 in
the domain Q = (0,1)? x (0, 7.

2. Interpolation of Banach spaces
In this paper we use the K-method of real interpolation [10,12]. Let {A;, A2}
be an interpolation pair. Define the functional
I((t (I,) = I((t a7A17A2) = 1nf{ ||a1||A1+t||a2||A2 | a e A1+A2,a =ai+tas,a; € Az }

It is obvious that, for a fixed ¢ € (0,00), K(t,a) is a norm in A; + As, equivalent
to the standard norm ||al|4,+4,. For 0 <0 < 1,1 < ¢ < o0, let us define the space
(A1, A2)g,q as follows:

1
oo i dt\ ¢
(1,4 ={a € it o fallan, = ([ K@)’ ) <o),
0
and for ¢ = oo

(A1, A2)p,00 = {a € Ay + Ay |lall(ay 40y, . = , sEp t7K(t,a) < co}.
<t<oo

The space (A1, As)g,q is an interpolation space. The corresponding interpola-
tion functor F({A1, A>}) = (A1, Aa)g,q is of the type 0, i.e.

—0
||L||(A17A2)9,q_’(Bl7B2)9,q < “L”ill—»Bl ”L“ilz—»Bzv

An analogous assertion holds true for bilinear operators:

LEMMA 1. Let A1 C A2, B1 C By and Cy C Cy and let LZA2 X By — Cy be
a continuous bilinear form whose restriction on Ay X By is a continuous maping
with values in Cy. Then L is continuous maping from (A1, A2)g p X (B1,B2)e,q into
(C1,C2)9,r, 0<0<1,1/r=1/p+1/qg—12>0, and

—0
“L”(Al,Az)e,p X (B1,B2)s,q—(C1,C2)g,» S ||L||}41><B1—>Cl ||L||?42><Bz—>02 .

As an example of interpolation spaces, let us consider the Sobolev spaces W
[1]. For noninteger positive s one sets W;(R") = By (R"), where B;, is a Besov
space [12].
For 0 < s1, 82 < 00, 81 # 82, 0< 0 < 1,1 < ¢ < oo we have [12]:
(W;l(]R”), w,? (]R”))M =B, (R"),s=(1-0)s; +0s2.
In such a way, for ¢ = p and noninteger s = (1 — 6)s; + 6s2, we obtain
(szl(]Rn)vwzfz(Rn))e,p =Wy (R*), s = (1 —0)s1 +0s;.
For p = 2 this relation holds without restrictions, i.e.:
(W3 (R*), W32 (R™)) , = W5 (R").
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Hence, W3 (R") are interpolation spaces. The same result holds for Sobolev spaces
in a domain Q with sufficiently smooth boundary.

Let us define the anisotropic Sobolev space WQS’S/2(Q)7 Q=0xI,1=(0,T),
as follows [5]: W5*/?(Q) = Lo(I, W (Q)) n W5/3(I, L5(R)), with the norm

- 1/2
gy = ([ 15O Bsiardt + 1)

These spaces are interpolation spaces, too. For si,s2,71,72 > 0,0 < 0 < 1, we
have [8,12]
(W2"H(@), W™ (@), = W (@), s = (1 — )81 + 082, v = (1 — )1 + 01

3. Initial-boundary value problem and its approximation

Let us consider the first initial-boundary value problem for parabolic equation
with variable coefficients in the cylinder Q = Q x (0,7] = (0,1)% x (0,7T:

ou 2
. Z Di(aiiju) = fv (l',t) € Qv
=1

u=0, (z,t) €00 x][0,T], (3)
w(z,0) = up(xz), x€9Q,
We assume that the generalized solution of the problem (3) belongs to the Sobolev
space W5*/(Q), 2 < s < 4, with the right-hand side f(z,t) which belongs to
W;_Q’S/Q_I(Q). Consequently, the coefficients a;; = a;;(x) belong to the space of
multipliers M (W;il’(sfl)m(Q)), i.e. it is sufficient that [9]:

ai; € Wi H(Q), for 2<s5<4,
ai;; € WiT5(Q), § >0, for s=2.
Let @ be the uniform mesh in Q = [0,1]? with the step size h, w = @ NQ, v =
©NON. Let O, be the uniform mesh in (0,7) with the step size 7, 61 =60, U {T'},
6. =60, U{0,T}. We define the uniform mesh in Q: Qp- =w x 0,, Q= w x 6}
and Q,, = © x ;. We assume that the condition:
k1h2 §T§k2h27 ki,ks = const > 0
is satisfied. We define finite differences in the usual manner:
ot —v v(z,t +7) — v(x,t)
Vz; = =Vz; » ’Ut(xvt) =
_ h i T
where v*i(z,t) = v(z £ hr;, t), and r; is the unit vector along the z; axis. We also
define the Steklov smoothing operators:

1
T f(a,t) = / f(a+ ha'vi t)yda' =T, f(x+ hri 1),
0

= ’U{(l‘,t-f-’l'),

1

T2 f(a,t) = TV f(a,t) = / (1= o) f(x + ha'ri t) da

—1

LT f(x,t) = /1 flat+rt)dt' =T f(,t+7).
0
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We approximate problem (3) with the following finite—difference scheme:

vi+ Ly =TT f, in QF,
v=0, on v x60,, (4)
v =g, on w x {0},

where
2
Lyv = =05 37 ((aijvz,)z; + (ij0e;)z,) -
ij=1
The finite-difference scheme (4) is the standard symmetric scheme with the averaged
right-hand side. Note that for s < 4 the right-hand side may be a discontinuous
function, so without averaging the scheme is not well defined.

4. Convergence of the finite-difference scheme

Let u be the solution of the initial-boundary value problem (3) and v the
solution of the finite difference scheme (4). The error z = u — v satisfies the
conditions

2
s+ Lpz= Y my+e¢, in Qf,

ij=1
z=0, on w x {0}, (5)
z=0, on vyx80,,

where
nij = LT (Di(aiDju)) — 0.5((aijuz, )e, + (aiue,)z,) s @ = up — L g
We define the discrete inner products:

(v,w)y = (V, W)L,y (w) = R: S v(, Hw(-, ),

rEw
(v7w)Qh‘r = (vvw)Lz(sz) = h*r E E v(:r,t)w(x,t) =T Z (v,w)w )
TEW (gt teoy
and the discrete Sobolev norms:
||’U||i = (’U,’U)w ) ||’U||2QhT = (vvv)Qim— )

2
2@]1,1’ + E “vz"ziHQQhr + HUEHQQIIT :

1,7=1

lola gy, = 013, + 3 e
2 ' i=1

The following assertion holds true :

LEMMA 2. Finite-difference scheme (5) satisfies a priori estimate

2
lwz @iy < 2 lImsllen. +llellen. (6)

,]=
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In such a way, the problem of deriving the convergence rate estimate for finite-
difference scheme (4) is now reduced to estimating the right-hand side terms in

(6).
We decompose term 7;; in the following manner: 7;; = 22:1 Mijk, Where
nijn = T2T (ay Ty DiDju) — (LT ai (2T, DiDju)
nije = (T2T as; — ay) (LT, DiDju)
Nijs = aij (T3 T DiDju — 0.5(uz 0, + Ua,z,))
ijs = TPT (Diay T, Dju) — (LT Diai /(T2 T, Dju)
nijs = (L7213 Diag; — 0.5(asj,0; + aij2,) ) (T T, Dju),
Nije = 0.5(aije, + aijz, ) (P11 Dju — 0.5(uy ! +ull)),
7 +1

Nijr = 0.25(0ij0; — aijz, ) (g, —ui’).

Let us derive the estimate (2) for s =2, r = 2.

The value 7;;1 in the node (-,t) € w x {t} can be represented in the form
1 -
Miji (- t) = 72 // k(&1,82)ai5 (&, &)L DiDju(&y, &2, t)d&1dz—
1 1
_ﬁ//k((71702)aij(01702)d01d02 X ﬁ//k(€1752)£_DiDju(£lv£27t)d£1d€2

(7
where e = (1 — h,x1 + h) X (x2 — h, 22 + h) and

k(&1 &2) = <1—th1|) <1_|’§2;hxz|> -

From (7) immediately follows:

c _
mij1 (-, t)] < E||aij||0(a)||72 u( ) lwzce)
Summation over the mesh w yields:
s ()l < Cllasllogn 1T 7u Dllwa(ay < Cllass s 0 10, )z
From here, summing over the mesh 6} we obtain
miillQn. < Cllaijlly+s o) lullyz1q) -

Analogous estimates hold true also for the other terms 7;;, and for term ¢.

In these estimates we assume that u € W2 "'"/3(Q), ¢ > 0. In such a way we
obtain the estimates:

||77ij||QhT < C”aij”WzlJrﬁ(Q)||U||W22+s.1+s/2(Q) R and (8)
||<)0||Qh-r < C||U||W22+s.1+s/z(Q) . (9)
From (6), (8) and (9) we obtain estimate (2) for s =2, r = 2.
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Let us derive estimate (2) for s =3, r = 2.

The value 7;;1 in the node (-,t) € w x {t} can be represented in the form

&1 &2
Nig1 (- 1) =5 //// (€1,&)k 01702)< Dya;j(mi,02)dm + D2aij(£17T2)dT2>

T D D; u(fhfg, ) T D D; u(017027 ))d£1d€2d0'1d0'27 (10)
From here, using Cauchy—Schwarz’s and Hélder’s inequality we obtain
7351 (5 D) < Cllaizlwy oIl Dllws, ) p>2.
p—2
Summing over the meshes w and 6, using the imbeddings W3 () C W, (), we
simply obtain

T

ImijillQu. < Chllasllwzoyllullyzam g, -

Analogous estimates hold true also for the other terms 7;;; and for term ¢. In
such a way we obtain the estimates:

1misll@n, < Chllasllwzllullysa2), and (11)
lellon, < Chllullysorg) - (12)
From (6), (11) and (12) we obtain estimate (2) for s =3, r = 2.

Let us derive estimate (2) for s =4, r = 2.
From (10), using the representation
E_DiDju(glv 627 t) - E_DiDju(o'lv 02, t) =

&1 &2
:/ Tt'_DlDiDju(plvo—%t)dpl +/ E_D2DiDju(€lvp2vt)dp2v

1 g2

and Cauchy-Schwarz’s and Holder’s inequality we obtain

731 (5 )] < Chllaijllw o 1T ul Dllwy, @ »>2.

P2
Summing over the meshes w and #F, using the imbeddings W3 () C W) (Q) and

W3(Q) C W35, (,—s)(Q), we simply obtain
Wi law, < CRlass vz lullyoco) -

Analogous estimates hold true also for the other terms 7n;;; and for term ¢. In
such a way we obtain the estimates:

ImiillQn. < 0h2||aij||wg(sz)||U||W;-2(Q) , and (13)
1llar, < Ch2llullyseg, - (14)
From (6), (13) and (14) we obtain estimate (2) for s =4, r = 2.

Let us define the operators A;; and B as follows:

Nij = Aij(aij,u) and @ = B(u) .
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The operator A,; is, obviously, bilinear. From (8), (11) and (13) it follows that it
is a bounded bilinear operator from Wi%(Q) x WZT='*/2(Q) to Ly(Qn,), from
W2(Q) x W*2(Q) to La(Qn,) and from W(Q) x Wi*(Q) to La(Qn) with the

norm:

||Al] ||W21+5(Q)XW22+E'1+E/2(Q)—>L2(Q]”-) S C 5 (15)

1433 llws @) w3272 @)= Lat@nr) < O (16)

||Aij||WL?(Q)XW;'Z(Q)—’LQ(QIV,—) < Ch? . (17)

Applying Lemma 1, from (16) and (17) it follows that A4;; is a bounded bilinear
operator from

(W@, W), x (W3%(Q),W5°(@),,, = W3 () x ,7*7(Q)

to
(L2(Qnr)s L2(Qnr))g oo = L2(Qnr)
and
2-0
”Aij”W2379(Q)xWﬁ’e'Z*G/z(Q)—»Lz(Q,”) <Ch™, 0<f<1.
Finally, we obtain the estimate:
niillQu, < CH*~llaijllyyz-o (g lullya-sm0r2 gy 0<O<1.
Setting 4 — 6 = s, we obtain the estimate:

Iiillgn, < Ol -1 oy lullys ooy - 3< s <4 (18)
Similarly, from (15) and (16), by interpolation, we obtain the estimate:
”nij”Qm— < Chs—2||aij||W25—1+5(3—5)(Q)||'IL||W25+s(3—5).(s+5(3—s))/Z(Q) , 2<8<3. (19)
Analogously, we obtain the estimate of term ¢:
s—2
lellgn, < O llullyzrsq) - 3<s <4, (20)
||SO||Q,” S Chs—Q||U,||W23+5(375).(5+s(373))/2(Q) 5 2 <s < 3 (21)
Finally, from (8)—(14), (18)—(21) and (6) we obtain the main result of this
paper:

THEOREM. Flinite-difference scheme (4) converges in the norm of the space
Wt (Qnr) and, with condition kih? < 1 < kyh?, the following estimate holds true:

= ,U“WZQJ(QIH-) < Ch372(H}3X ||aij||wg—1+“3“’(ﬂ) + 1)”“”W;+f(3—-*)~<~<+e(3—s))/2(Q) )
2<s<3,

s—2
lu = vllyz1(q,,) < Ch (H}f}X lasjllw;=1(q) + Dllullyzerng), 3< s <4.

The second estimate is consistent with the smoothness of data, while the first esti-
mate is “almost” consistent with the smoothness of data.
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